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ABSTRACT

A study is made of some critical properties of systems that satisfy
the Ornstein-Zernike (0Z) condition that the direct correlation function
cgz) behaves like —(kT)“l times the pair potential V{i) for r such
that V(r)<< kT, even at the critical point. It is pointed out that a
number of models of interest that satisfy this condition exist. The re-
lationship (and great difference) between the implication of this condition
and the results of the Van der Waals - Bragg Williams - Weiss approach is
clarified, and it is noted that in systems satisfying the 0Z condition
both Widom's homogeneity condition and Kadanoff's scaling hypothesis can be
violated, although a self-similarity condition is in general satisfied. The
importance of the subtle interplay between small —IE‘ and large —l£| correl-

ations, which is lost in both the mean-field and scaling picture, is discussed.



I.  INTRODUCTION

In this article we examine some of the critical properties of systems
that satisfy the Ornstein—Zernikel condition that the direct correlation
function c(a) behaves like —VQE)/kT (V(r) = pair potential, k = Boltzmann's
constant, and T = temperature) for r(=t£l) such that V(E)/kT<<l, even at
the critical point.2 We shall call such systems Ornstein-Zernike (0Z)
systems. Here we shall investigate only systems with short-range inter-
action potentials, in another article3 potentialg that fall off like an
inverse power of r will be considered. For reasons of technical conven-
ience we shall focus most of our attention upon lattice systems rather than
continuum fiuids.

Although the two-dimensional Ising model with nearest-neighbor ng)
is not an 0Z system, and reai three-dimensional fluids do not behave near
the critical point like 0Z systems either, we feel that there is still
much tovbe learned from a general study of 0Z systems. Several models that
are exactly soluble prove to be 0Z systems; the spherical modelu’5 with any
VQE) is one such model, as is the one-dimensional Ising model with nearest-
neighbor interactions in the absence of a magnectic field.6 Moreover, we
have elsewhere® found strong evidence that when V(“J::)'\Jr.d—CI for roe with
d = dimension and 0 < ¢ < d/2, a fluid or Ising system in any dimension is
an 0Z system. In addition, a number of important approximations, such as
the Percus-Yevick approximation, satisfy the 0%Z hypothesis;

Over and above our general goal of gaining more insight into the
features that are common to the behavior of all such 0Z systems, we have
several specific objectives in this a?ﬁicle. The first one concerns the
relative status of various "classical" assumptioﬂs. There appears to be

considerable confusion in the current literature, not all of it terminological,
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conceﬁning the relationship between the 0Z hypothesis and the Van der Waals-

1

Bragg—Williams—Weiss approach, which we shall refer to as the mean-field
1

approaéh. In the course of this paper we attempt to clarify this relation-
ship, and to distinguish between the results of the 0Z and mean-field
assumpfions. To illustrate the great difference between them that we find
in Sections 4 and 5, we remark here that under conditions satisfied when
V&E) is of short range, 0Z lattice systems undergo no phase transitions for
d < 3, while the mean-field theories predict such a transition. To give
another example, we find that for a 3-d OZ lattice system with short-range
interactions, certain simple conditions on c(g) imply that the critical
expoﬁeht § used to describe the shape of the critical isotherm must be 5,
whereas in the mean-field theory, 8§ is 3. (For comparison, we note that
the assumption of analyticity of the free-energy as a function of density p
and temperature T in the one-phase region around the critical point
(Tc,pc) implies only that & is some odd integer.)7

Our second objective is to call attention to the breakdown of both
Widom's homogeneity condition8 and Kadanoff's scaling hypothesi59 that we
find occurring in an OZ system. The breakdown of homogeneity is né%’serious -
first because it occurs only in a certain boderline case and second because
it is of such a form that a closely related and useful condition of self-
similarity is étill preserved even on this boderline. The breakdown of
scaling is not a borderline matter, however. For 0Z systems it is complete
‘when the dimension is sufficiently high --- d > 4 for short-ranged potentials.
In this connection our work reveals two aspects of critical correlations
that are left out of the scaling hypothesis. First we find exquisite sensi-

tivity of thermodynamic properties to a certain interplay between the

nature of the correlations among particles or sites that are close together




and the behavior of the correlations among widely separated particles or
sites. It is precisely this inferplay --- the influence of small-r
correlation on large-r correlation and vice versa --- that is responsible
for the difference between the 0Z results and the mean-field results. No
accommodation for this interplay is made in either the mean-field or the
scaling theory, and one of our objectives here is to show Jjust how important
an ingredient has been left out of a theory when this interplay is disre-
garded. Another aspect of correlation that we consider provides us with

an alternative to Kadanoff's hypothesis9 that the domain of validity of

the scaling theory rapidly shrinks as d increases, but always exists in

a neighborhood of the critical point. Kadanoff's idea is appealing and
plausible and is supported in spirit --- although not in a direct technical
way --- by the findings of Hemmer, Kac, and Unlenbecklo, who discovered that
for a potential parameterized by a range parameter y, there is an anomolous
critical region that shrinks to a point as Y > 0 in a one-dimensional system.
Since the limit y - 0 is in some respects similar to the limit d -+ «,
Kadanoff's view would fit in nicely with this result if there were no evidence
of the abrupt disappearance rather than the shrinking of the domain of
validity of scaling thecry as d increases. In an OZ system, however, we
find just such a disappearance as a result of the competition between two

terms in the correlation function.




IT. FORMAL RELATTONS

The pair correlation function h(r) and the 0Z direct correlation

i

function c¢(r) are related to one another by the equation

h(r) = C(E) + o [ C(R—r)h(}f)c}g. (2.1)

“w am

Here p is the expected number density of the system, which we assume to
be uniform and infinite in volume, and hgg) = ggﬁ) - 1 where g{z) is the
radial distribution function or its lattice-system analog. To make contact
with the notation frequently used 7o describe lattice-gas correlations, we
can let T be the occupation variable which takes the values 0 or 1. Then

for a lattice gas in which the volume per site is v, we have

2
(3752 = (v ) 7elny ) + ov by,
(2.2)
<TiTj> - <%i><%j> = (pvo)2h€£ij)+ pvoéij ,

where 5ij is the Kronecker delta and eV, is the expected fraction of occupied
lattice sites. In the lattice-system case integrals over volume as in (2.1)
are to be interpreted as sums over lattice sites, or equivalently, over cells
of volume Voo each cell containing one lattice site. In the case of the
spherical model, T, can take any value (rather than just 0 or 1) with

equal a priori probability, but it is still subject to the "spherical"
constraint that implies that [2(Ti—l/2)2] must equal one, i.e., that
g%)=01maa£=0.

For simplicity we shall set v, = 1 and work only with simple cubic

lattices. The Fourier transform of a function f(r) can then be written as
At

200 = 1 (r) 'EE, (2.3)
r

-~



where the summation is over all d-dimensional vectors with integer compon-

ents; r = (a .,a.). We also have

1°°7'°7d

£(r) = (2m)" B o Hax,

where the ihtegration extends from -7 to 7 for each of the d components
of the vectoré& = (xl,...,xd).

In the case of the continuum fluid we have instead

e

£(x) = J () e E.kdg
and

£(r) = (27 5 E(x) e B Kax,

(2.

(2.

where the integrations in (2.5) and (2.68) extend over all of space. Regard-

less of whether we are considering (2.3) and (2.4) or (2.5) or (2.6),Eq.

(2.1) assumes a particularly simple form in k-space:
B(k) = e(k)/[1-pc(X)],

which can also be written as

Lo () = [1-p800)T7 .

We note that in the continuum case the Dirac delta function rather than

5r o is the transform of 1. The functions h(k) and h(r) are often denoted
P’y ~—n -

as é(&) and 6(59 in the literature';nd 1+ pﬁ(&) is sometimes dencted as
S(E) or x(k}, while p + pzﬁ(ﬁ) has been sometimes written as ﬂQ(E) and
fé(k). Here we shall use i(k} for 1 + bﬁ(E} and x(g) for its inverse
transform.

It is convenient‘to break up c{a} into its value c, at the origin and

the function cl(r), where

(2

u)

5)

(2.6)

(2.7a)

.7b)




c(r) for v # 0
1 X I _
cv(f) = (2.8)

0 for » = 0
M’\v\

}]

c(r) cl(r) +c &
-~ ~ o

r. o0 °

b}

because we can then write

0ch(0) X() = {z - T [cr(2)/el(0)] exp irk}L |
e r#0 . v
= {z - [t ont, (2.9)
= {¢ - ") - S1ston,
where
z = (1-pe)/(p&(0))
and
E =2z -1

After integration with respect to k and use of the condition x(0) =1 - p
Eq. (2.2) has precisely the same form as the saddle-point equation For the
spherical model;q’5 by writing it we have cast the lattice-gas problem into
the form of a saddle-point problem even though there is initially no saddle-
point determination to be made. Eq. (2.9) facilitates contact and comparison
with much work that has already been dome for the spherical,u’5 mean spherical]:l’l2
and GaussianLL models.

For models that are most closely related to real physical systems,18 the
functions c¢(0) and x(0) are related to thermodynamical properties through
fluctuation relations such that

p du

1 dp - ~ -1
el e NP LA b o Y - = ) 2.10
kT dp kT dp 1 p c(0) X(O? > ( )

where P 1is the pressure and ¢ the chemical potential.

In investigating the critical behavior of a system it is convenient




to define a set of critical indices or exponents. For example it appears
that we can describe the shape of the critical isotherm near the critical

point in terms of the index § by wri’cinglLL

. 6 :
P - Pc A ]p - pc[ sgn Ip -~ pc]; T = Tc, o> o, (2.11)

The subscript c¢ here and throughout this article refers to values at the
critical point.

Similarly along the critical isochore, T > Tc’ Wwe assume

dP/dp = p(au/de) ~ |T - T_ Y0 = pes T T s (2.12)

l 2

b - ch v T - T, (T,0) > (T_sp)- (2.13)

The specific heat CV can be described by the index a for T 2> Tc:

c, ™ T - Tcl““, T>T 0= 0, (2.18)

but sometimes it is useful to assume the more specific form

C vA+BI|T-T |+ ...+D|T-7 %+ ..., (2.15)
v C C

where the last term is associated with a singular part of Cv’ in which either
o is not an integer or D is not a constant but is a term of order less than
any positive power and greater than any negative power of T - Tc’ such as
const ln|T - Tci.

We can also describe the most important features of the correlations 5y
means of exponents. We introduce n by assuming that hgﬁ) is of the férm

h(r) o f(Klr)/rd“2+”, for r>>1. (2.16)

Here Ky is an inverse correlation length, which c¢an be defined for both

continuum and lattice systems by setting

-1 2
- 2 - 2.17
kg = AT, AT = (2.17)
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L. . . . . I St
where 92 is the coefficient of k2 in the expansion of x(k) ! in powers of

1/30) = x0T 1+ A2_52 - Au.ﬁ# + .00
In the case of a simple cubic lattice this means that A2 is the second spherical
moment of xgz) over 2d times the zero-th moment, Q(O). As noted by Fisher and
Burford,ls for lattice systems A2 is angle independent but the higher ccef-
ficients Aq’ etc., depend upon.g/k.

In the special case of an hgﬁ) that vanishes faster than any power of r,
k can also be defined by the equation

- k = lim sup [1n h(x)/r]. (2.18)
e

One would expect that near the critical point Ky = K whenever the latter exists
and our computations show this is true in an 07 system, in agreement with the
work of Fisher and Burford. It is convenient to describe the behavior of <y

by defining v and & such that

Ky %‘|T ~ Tc]v for p = oo

: . (2.19)
Ko Ip - pc| for T = Tc'
From Eq. (2.10), assumption (2.16), and the added assumption that h(r) remains

finite for all r, we can conclude quite generally that

(kT)'l dp/dp n KlQ—n, as kK > 0 (2.20)

so that
y = (2-n)v, (8-1) = (2-n)e (2.21)

As can be seen from the definitions of the critical exponents, the case Tc =0
requires special treatment, since T - TC and T then behave in the same way as

the critical point is approached.
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III. THE O0Z ASSUMPTION

|
O% reached a number of conclusions concerning correlations in a system ’
in whiéh the interparticle potential V(r) vanished for all r greater than
some R. Their treatment rests upon a heuristic argument that cannot easily
be given a precise quantitative form, especially when applied to a model in
which there is no R such that V(E) = 0 for r > R. Nevertheless most of the
obscuri?y in the work of 0Z lies in the justification of their basic assump-
tion coﬁcernipg c(r) rather than in its interpretation. The assumption
itself is consistent with the follewing statement, which we shall take aé our
starting point:
In general, CQE) % - VQE)/kT for r such that V(r)<<kT; in (3.1)
particular c(r) g 0 fer r > R if V{E) = 0 for r > R.
This is a strong form of the 07 hypothesis. A weaker assertion is that:
When V{EP = 0 for r > R or when VQE) is short ranged in the sense that
all its spacial moments exist, c{g) will also be short ranged in the
same sense, even at the critical point. (3.2)
This is also consistent with the 0Z argument and, as has been pointed out
by others, for short-ranged V(r) both forms of the 0Z hypothesis Impose a
very strong set of restrictions on critical behavior. Because of its more
specific nature (3.1) is a more convenient form of the 0Z hypothesis for
us to work with in this paper.
We note that (3.1) does not completely determine c{a) for r < R. In fact,
for any potential with a hard core of diameter o, the structure of Eq. (2.1)
is such that16 the requirement that g(r) = 0 inside the core completely
determines c(y) for r < o when c(x) is given for r > o.
For the lattice gas, the "core" is the result of the exclusion of the

multiple occupancy of a site, or --- to use language that does less violence
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to the concept of freely moving particles of a fluid --- of a cell indexed
by the vector r. It is unlikely that 0Z were aware of this restriction on
CQB) for r < ¢ when c(g) is given for r > o, but nevertheless they were
careful to point out that the determination of the precise value of c(r)
'for r < R remained for them an unsolved problem.

When treating a potential V(E) with a core it is often convenient

to break V(r) into a core part plus the rest.

V{r) = q(r) + wix) ~ (3.3a)
where
q(r) A for r < 0
- 0 forr >0 ,
w(g) =0 forr<o (3.3b)

In the special case of a nearest-neighbor interaction, (3.1) implies that
(2.9) reduces to

~ d
pc.x(k) = [z-2 £ cos x.1,
ol 3=1 ] | (3.1)

z = (l—pco)/pcl, k= (xl,...,xd),

where ¢

1 denotes c(r) at r = 1.

The inverse transform of the right-hand side of (3.4) has been exhaustively
studied and tabulated.l7 When w(r) = 0 in (3.3), (3.1) further implies that
A’L
we have simply '
px(x) = 1/(1-pc ), (3.5)
but glr) = 0 at r = 0 implies that x(r) =1 - p at r = 0 so that (3.5) yields

in the lattice-gas case

1-opcg = 1/p0(1-p)

or
c, = -1/(1-p). (3.6)




For completeness we note some simple results for two 07 models of interest.
. . . s 6
For the nearest-neighbor one-dimensional lattice gas at p = 1/2, Percus

found

(3.7)

where 1 + £ = exp [- w(1)/kT]. TFor o # 1/2, cﬁf) is still short ranged in
the sense of having an exponential decay and thus satisfies (3.1) but not
(3.2).

For the spherical model of a lattice-gas it can be immediately verified
that

c(y) = - V(r)/XT for r # 0 (3.8)

regardless of the potential or of p.
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IV. THE MEAN-FIELD ASSUMPTION

|
i
|
For our purposes it is Important to be able to characterize the mean-field
theory in terms of cga). The basis of the mean-field theory is an assumption
equivalent to the statement that if the potential of a system is a sum of qu)
and w{a) as in (8.3), then the thermodynamic effect of the term w(f) can be
added to that of the qgf) in the form of an expression involving only w{g} and
the thermodynamics that describe the system when w(r) = 0. The possible presence
of a "cr;ss term" manifesting the influence of q{z) on the change in the thermo-
dynamics when w(g) is introduced is neglected. As was pointed out by Boltzmann}8
one expects to come closest to realizing this Van der Waals-type assumption when
wgf) is weak and long ranged. Expressing these ideas in terms of CEE), we
might hope to recover the mean-field result by first obtaining the CQE} for
the system in which wgz) = 0 and then assuming that the change in c(x) that
comes of adding the w(r) to g(xz) will depend entirely on WQE) rather than on
both W(E} and qQE). On the basis of (3.1) we can further expect to have,

for a weak long-range w(r),

c&a) =c(z) - w(r)/kT, (4.1)

where here and below the superscript zero refers to the quantity that is

found for a given p and T when W{f) = 0. According to Boltzmann's reasoning,
Eq. (4.1) should yield the mean-field result of Van der Waals when applied to

a fluid, or the Bragg-Williams-Weiss results when applied to a lattice system.
This is easily seen to be the case --- when use is made of Eq. (2.10), Eq. (4.1)

immediately yields

dP/dp = (dP/dp)° + p w(0), | (1.2a)
which becomes after integration with respect to p:

P = PO +(1/2) 92 w(0). (4.2b)
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Eq. (4.2) has the form derived by Van der Waals, although in his original

derivationlg the constant in the second term of (4.2a) was not clearly iden-
AN

tified with w(0). However, in the derivation given by Boltzmann18 this
identification is clear.

Van der Waals also considered a method for obtaining successively better
and better approximations to P° for a hard-sphere system and Boltzmann further
deyeloped systematic and exact procedures for accomplishing this, but for

computational purposes Van der Waals and his contemporaries often used the

simple approximationQO suggested by Van der Waals:

o v P
P /ki s (4.3)

where 2b 1s the volume of a d-dimensional sphere with radius o, 2b = 20
for d =1, 2b = 4/3 ﬂ03 for d = 3. In the lattice-gas case we can immediately

assess (dP/dp)° from (2.10) and (3.8). In all dimensions it is given by

(aP/dp)°/kT = 1/(1-p), (u.4)

which yields the Bragg-Williams-Weiss equation of state when used in (4.2).
Eq. (4.2) is applicable only to a system in a single phase and must be
supplemented by a further prescription, such as Maxwell's construction, in
order to yield a coexistence curve and a two-phase region.
It is a simple matter to Verif§ that if (dP/dp)° is given by either (4.2)
or by any reasonable estimate of its continuum analog, including that deter-
mined by (4.3), then a critical point at T, >0 exists for all d, with

5:’Y:l (4.5)

in (2.11) and (2.12), respectively.

It can also be verified in a straightforward way that the use of Maxwell's




constructicn with (4.2) and a reasonable P° yields

B = l/2 , (4;6)

in (2.13) while the specific heat proves to be of the form given by (2.1%)

and (2.15) with

o =0,D=0. (4.7)
Eq. (4.1) also completely determines an hg;) when c®(r) is given, and we

can thus also obtain n, v, and €, as we show in the next section. Before
passing on to Section V, we note the following two points. Firstly, the mean-
field equation of state is insensitive to the form of the potential. As long.
as w(0) exists, it is w(0) that determines the nature of the critical behavior
in the mean-field approximation, whether WQE) is zero for large r or not.
Secondly, there is no guarantee that h(g) + 1 defined by (2.1) and (4.1) will
be zero for r < d. The weaker and longer-ranged wgf) is, the smaller this

h(£) + 1 is likely to be for r < ¢, since in the limit of a w(g) that is =zero

at any r, we would expect c®(r) to coincide for r <o with the c(r) that results
when wgz) is added to q(E). For an arbitrary w&E), however, we must expect

the condition hgﬁ) = -1 for r £ 0 to be violated. The result of this violation
is a measure of the importance of the subtle interplay between the correlations
over large distances and those over small distances, and we shall find that the
effects of this interplay on critical behavior can be immense. We shall study
these effects in a lattice system by comparing the use of the mean-field cgf):

c{gﬁ = - w{a)/kT for » > 0, (%.8)

¢, = -1/(1-p), (4.9a)

with the use of the same CQE) for » > 0, but with

e, such that h(0) = -1 (4.9b)
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V. THE 0Z RESULTS FOR A NEAREST-NEIGHBOR POTENTIAL

WQ note from the form of (2.9) that the T and p dependence of
pcl(O)QgE) is contained entirely in the quantity =z when (4.8) is satis-
fied. We also see from (3.4) that in the nearest-neighbor case, this is
true as long as c{g) = 0 for » > 1, even if the stronger assumption that
e, = - w/kT is not satisfied. In the nearest-neighbor case, (2.17) can

be re-expressed as

"
& _ _ . )
K.“n (1 pc, decl)/pc (5.1)

1 1°

and we find that Ky exactly satisfies (2.18), since the large -r form of the

pclx(g) given by (3.4) is

d/2 d-2

r)(d_Q)/2 K CKlr)/(Qn) T (5.2)

peyx(x) = (k) (d-2)/2

when Kv(X) is the Bessel function of imaginary argument, such that as x > «

K, (x) > (n/2x)/2 ¥

Comparing this result with (2.18) we see that we can drop the subscript on
Ky We also note that
n = 0. (5.3)
For fixed r, (either » ~ 1 or r>>1) we find that pclxga) always has an

asymptotic expansion that can be written as

2

i |2 d- d-2
clx€£) = fogzg + fl(L)K + fQ(E)K ot fs(E)K In K+ ..., (5.4)

where fl(EQ and ngE) are not zero for r = 0 or v = 1 and fa(z) is zero when
and only when d 1is odd, for all r. The unexhibited terms are always
dominated by the presence of at least one of the terms shown. From (2.10),
(5.2), and (5.4) we see that (dP/dp}_l can + « only if « -+ 0; thus only if

< > 0 can we have a critical point at which dP/dp = 0. TFor d > 3, the right-

L4



hand side of (5.4) remains finite as ¥ + 0 and (2.20) and (2.21) immediately
follow. For d = 1 and 4 = 2, however, the question is more subtle since for
any fixed_g, pClX(E) will go to infinity as ¥ = 0, and only if either ¢, or
h{z) become infinite is consistency maintained in these dimensions. For

the lattice gas and similar models the result h{f) + » for fixed r represents
unacceptable behavior of h(r), and for any such model that is an OZ system

e

¢ must become infinite for d = 1 and d = 2 in the nearest-neighbor case. When
<y is given by a relationship such as (3.7) or (4.8) this means that T must
be zero in order for ¥ to be zero. In this section we have as yet said nothing
that involves the difference between (4.9a) and (4.8b), but from the above
remarks we must conclude that the mean-field theory, for which TC # 0, can only
be consistent with the unacceptable result that hQE) > @ for fixed r as Kk > 0.
This is a well-known catastrophe what occurs in the mean-field theory. However,
the 0Z theory is in no obvious way inconsistent with alternative possibility
that there is no critical point at T # 0 so that the only possible critical
temperature is zero in 1 or 2 dimensions. The difference in these alternatives
resides wholly in the difference between (4.9a) and (4.9b).

The exceptional behavior of ¢, that occurs in the 0Z theory for d = 1

1

and d = 2 entails special analysis and for the remainder of this work we shall

restrict our comments to the case of a ¢, that remains finite at the critical

point and hence to the case of d > 3. Since (5.1) precludes the possibility

that cl > 0 as k¢ » 0, we assume that cl " KO for small .

We can determine the behavior of CV by using (5.4) for r = 1, since the

configurational internal energy is given by

U . =172 o[w(0) + z w(z) hz)]. (5.5)
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Using (2.19), we see that (5.5) implies for p = p,and T > T
c

2v-1 -2)v- - - :
CV " O (AT ) + OCAT(d 2)v l) + eO(AT(d 2)v llnAT), (5.86)
where we have set AT = T - Tc and where
1l for even d
= (5.7)

0 for odd d.

We are interested in AT = 0. If d = 3 the second term is dominant while if

d = U the last term dominates. For d > 5 the first term dominates. Thus

we can identify v - 1 with the=a of (2.14) when d = 3 and 2v - 1 with

when d > 4:
v=1- o ford=3,
(5.8)
v = (1-a)/2 for d > 4,
and from (2.21) and (5.3)
v = 2(1-a) for 4 = 3,
. (5.9)
v=1-a ford>Hh.

Note that for d = 3 we have another dilemma in the mean-field theory, since
the values o = 0 and vy = 1 noted in Section IV are inconsistent with (5.9).

To determine the value of y in- the 0Z theory when (4.9b) rather than (4.9a)

is used we consider (5.4) at r = 0. We have
clp(l—p) = [ci&l-p)]c + O(KQ) + O(Kd-z)'+ eO(KdQanK). (5.10)
Letting p - pc = Ap, |Ap| = M, and ¢p T C. = Acl we find
0 2(Ac ) - ¢ MQ'— Ac M2 = O(KQ) + O(Kd—Q) + eO(Kd-anK) (5.11)
c 1 1lc 1
n N X
If we also assume (4.8), then —Acl = %wl - Bcwl = wlAB, where we have written

1/XT as B to distinguish it from the critical exponent B. We shall treat the

%
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case of —¢y =,gvH-first, coming back to the more general (2.9) later. We
can drop the term AclM2 on the left-hand side of (5.11) as k > 0 and we find
0(x) for d = 3
- pczwlAE + B 42 ={0(«’1nK) for d = u (5.12)

1 2
0(xk") for d > 4

From this we can read off the values of v, g, §, and ¥y:

V=1 ford=3 Yy =2 ford =3
v =1/2 ford 2 4 vy =1 ford >4
(5.13)
€ =2 ford=3 § =5 for d = 3
€ =1fordz4 § =3 for d > 4.

Note that for d = 3, both y and 8 are different than in the mean-field thecry.
A special remark must be made concerning d = 4, since one does not find

that ¥ is asymptotically proporticnal to AT or M“ in that case as « =+ Cc,

because of the presence of the Ilnk in (5.12). One still has (2.18) and (5.6)

if one defines asymptotic order as indicated in footnote 14, but one will

not find

CV « const + 1ln AT (5.11)
as AT >~ 0 for p = pc.
Instead one finds

Cy = const + (1/1n AT), (5.15)

so that CV remains finite at the critical point for d = 4 despite the appearance
of the Inx .
"
Because of the lnk we do not have homogeneity of k as a function of A8 or

AT and M2 for d = 4, as we do for d # 4,,but we still have self-similarity

2 .
of curves of constant « in the (48,47 ) or (AT, MQ) planes. This suggests
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that the conjectured homogeneity of «k, which we have noted elsewhere2l is
equivalent to the homogeneity condition conjectured by Widom8, should be
weakened to a conjecture concerning the self-similarity of curves of constant %

k (and hence of constant compressibility or susceptibility). : j

From (5.8) and (5.13) we find o = 0 for all d > 3. Furthermore, by {

matching .terms in (2.15) and (5.6) we find that when d > 3, 1k

mv - 1=0, (5.16) !if

ST RN NP a1 Y

where m = minimum of 4-2 and 2, in_agreemént with (5.13), and that whenever ;Z;

a singular term in (2.15) appears,

(d -m)v-1-¢= o (5.17)

For d = 3, no singularity appears. For odd d > 4, o is an integer plus 1/2 -
. -0

while for even d 2 4, o is an integer but the term const. AT ®1nAT always

appears. We can summarize the relation between o and v by eliminating m : k

in (5.16) and (5.17) to get B

6. = 2 - dv, (5.18). | ﬂ
s B i

where an integer o signifies that no singularity appears unless the condition

for the presence of a 1niAT term:

d-2=2j,3=1, ..., (5.19)

is also satisfied.

From our discussion we can see at this point that some of the scaling

relations that involve dimensicnality explicitly are not satisfied when (4.8)

and (4.9b) are assumed. For example we see from (5.3) and (5.13) that the

relation

n =2 - d(é-1)/(s+1)

is not satisfied for d > U4 whereas we see that the relation derived by us

&3

T
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previously (for a non-0Z system),22
n = maximum of 0 and 2 - H(S—l)/(6+l),

remains trivially valid. On the other hand (5.18) is consistent with the re-
sults of scaling theory, although scaling theofy does not appear to give a
clear means of deciding between o = 0 and o = 2-dy when o < 0.

We have still to investigate the critical exponent B8 under the assumptions
(4.8) and (4.9b). For d > 4 the determination of B is straightforward, since
the expression for

2,1/2

N (o 2wl AR ¥ M ' (5.20)
K. pc wl B - Bcwl 2 *

which follows from (5.12), and the related expression for the chemical potential,

U(O3T) - U(p 3T) 1
¢ - 1 e duln,T) 4 (5.21)
_ _ pc dn
p pc p pc
T fg KQ(n,T) dn,
o p-p, €

can be used for T < Tc to determine a coexistence curve by means of Maxwell's

rule or the condition that u(pC+M,T) = u(pC—M,T). We have

.
u(p,T) - u(p ,T) g |w. |
< v L w4 %l (5.22)
C .
Ao 3 .

so the coexistence curve is given by the equation

¥ w
2
5 Ly? - o v |28

(5.23)

in the critical region. The critical exponent B 1s given by
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B =1/2, (5.24)

and the dome of metastability in the (p,g) plane can be reasonably identified
with the locus of points at which « = 0.

For 4 = 3, éll of this is changed. Vhen we use equations (5.12) and
(5.21) we find instead

wlp,T) - u(pC,T)
bp

2
l p

Ty N 2 29
N
wie, AB” + (2/8)%yi Pe ABM

2 1

+ (JL/ES)EC?'Wl ut, . (5.25)

2

I 4D L, 24 2
Wy Eoc AE + (2/3)%’c¢% A%’MQ + (1/5)?%'C M”].

There is no real value of Af for which p(p¢+M;T) = u(pc—M;f) according to
(5.25). Thus we cannot find a coexistence curve by means of the analytic
continuation of our expression for k or u into the subcritical region, and
there appears to be no natural alternative to such continuation that suggests
itself as a means of locating the coexistence curve.

This is somewhat surprising because the spherical model, which is an
BZ system, has a coexistence curve such that B = 1/2 when d = 3 (as well as
when d > 4). However, as indicated in footnote 13, Eq. (2.7) does not have

its normal status in the case of this model. Our computation suggests that

0Z systems in which Eq. (2.7) does have its usual status may not exist for

d 3 when the potential is of short range. It further suggests that for

d

1]

3 and short-range V(r), approximations that satisfy the 0Z condition,
such as the PY approximation, may be associated with pathological subcritical
behavior of the compressibility when that quantity is obtained from h(r)
thru Eqs. (2.7) and (2.10). -

The borderline case of d = 4 is complicated by the appearance of the

Kzan in (5.4) and we forego its analysis here.



VI. GENERALIZATICNS OF THE PRECEDING RESULTS

The preceding analysis was centered on the lattice-gas case in which
(4.8) and (4.9b) were assumed to hold. These equations involve a stronger
assumption than (3.1), however, which implies in the nearest neighbor case
only that
<, is such that h(Q) = -1,
cy is undetermined, (6.1)
c(r) = 0 for v > i.
On the basis of (6.1) our previous analysis is unchanged through Eq. (5.3)
but to go further we must examine what can be said about the temperature
and density dependence of e - Here the invariance of ¢y under the inter-
change of p and 2pc -p whicﬁ follows directly from the hole-particle
symmetry of a lattice gas enters strongly. It implies that ¢y is an even

function of Ap.

N
If we further assume that ¢, must be an analytic in B and p about

. 1
(Ec,pc), then c, must be of the form
cl=clc+aM2+b 8 + ... . (6.2)

Assuming b > 0, which is reasonable, then there are three distinct possi-

2
If e @ < c,

bilities, depending upon the relative values of pc2a and ¢ 1e

1c’

as would be the case of ¢, were essentially independent of p, all the

critical exponents found in Sec. V would remain unchanged. In contrast,

~

the very special p dependence of ¢

c would result

represented by pcza 1c

1

in some exponents that are different (for example, when d = 3, then €. = 4)

while pc2a > ¢. would lead to unacceptable negative or imaginary values

lc
Y]
of k when AR=0.
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Another departure from (4.8) can be attained by relaxing the require-
v
ments of analyticity at (BC,OC). For example, if Acl were a homogeneous

function of M and (AT)\)/€ of degree p, then when M = 0, (5.11) would yield

p=¢ford=3andp-=2c ford2U4. When AT = 0, (5.11) would yield
€ <2ford=3and € <1 ford >4, which would imply 6 < 5 for d = 3 and
§ £33 for d 2 4, with v not subject to any cbvious constraints. Thus it

appears that for d = 3 an approximation could be constructed that has values
of v, €, v, and £ that are very close to those actually observed in the

~ Ising Model. For example, by setting Ac., to a function that becomes, for

1
small M and T,

5,1/8

we would have v = 5/8, ¢ = 2, y = 5/4, § = 5. However, there appears to be
no way of changing o = 0 and certainly no way of changing the n = 0 by means

of a judicious choice of ¢ Moreover, a more thorough investigation of the

1
approximation that such a choice of Acl defines would have to be made before
if is clear that it is free of serious inconsistencies and that it can be
associated with a reasonable coexistence curve by means of the condition
u(pc + M,T) = wlo, - M,T).

If we do not restrict our attention to the nearest-neighbor case we would
still expect to find the same kindé of results as long as we continue to
look at short-range potentials all of whose moments exist. Eq. (4.8) can be
used as it stands and Eqs. (6.2»(6.3) can also be used if they are taken
to hold for any r # 0. Whén (4.8) is used, computations can still be done
explicitly in the case of certain potentials (such as the Green's”functionl7

for the lattice analog of the Helmholtz equation) that lend themselves to

the necessary manipulations.

Ac. ={const M® + const (AT) R ' (8.3)




If we consider potentials that are of the form —l/rd+c for large r,
the resulps are quite different. Joyce5 has treated the case of such
potentials in great detail for the spherical model, and we show in a
separate article that most of his results are valid for any 0Z system. For

example, it can be shown that assuming (4.9),

hir) ~ constant

s as r > ® (6.4)
r

at the critical point, where s = minimum of 2 and o, while off the

critical point,

B(x) ~ - BRI as o > - - (6.5)
rather than (5.2).

This brings up a point concerning terminology that is a source of ambiguity
in the literature. The result (5.2) is often referred to as the 0Z result
irrespective of the potential whereas the results consistent with (2.1) and
(4.9) are very much dependent upon the form of VQE), as (6.4). and (6.5)
indicate. Moreover, in a quantum system it is an effective potential --- the
actual pair potential modified by quantum effects --- that must be considered
rather than the potential itself if one wishes to apply the reasoning of
Ornstein and Zernike; for example, for a - . Bose gas in its ground state
one expects23 VefoE) v l/r2 and ﬁence, according to (3.1) one must expect
c(z) n 1/v° rvather than c(r) n 0 for large r.

The full generalization of the results of Sect. V to a fluid presents
technical difficulties associated with the extended repulsive core character-
istic of any reasonable intermolecular potential, but certain of the preceding
results appear to generalize without difficulty. In particular, assuming (3.1)

we expect to again find (5.2) for large r, as well as (5.4) for a fixed r

kK > 0. This is consistent with the general observation based on (2.9) that

x
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when (4.8) is used the case of a wgﬁ) extending over arbitrarily many
lattice sites cannot be essentially different from the nearest-neighbor
case as long as all the moments of WQE) exist. It is also supported by the

following more specific argument. Except for small r, we expect h{a) to
d/2 d-2

behave like the solution (KP)(d~2)/2K(d_2)/2(Kr)/2ﬁ r of the Helmholtz
equation Vzh{g) - th(g) = 0, but for fixed r and
k>0, (Kr)(d-Q)/2K(d_2)/2(Kr)/2wd/2rd‘2 behaves precisely like the right-

hand side of (5.4),

-2

0(1) + O(KQ) + O(Kd»Q) + GO(Kd lnk),

just as the transform of (3.4) does.
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