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ABSTRACT
i We éhow how both the "eclassical" expression for the free-energy
density and Widom's alternative exoression can be modified so as to be con-
sistent with known and expected critical behavior in all dimensions. In so

doing, we postulate that an increase in the effective range of interaction

due to an increase in dimensionality will tend to inhibit density fluctua-

tions.
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INTRODUCTION

f Widom has shownl how the square gradient theory of surface tension

!
and critical opalescence can be modified so as to be consistent with known
i l
| z
results for the two-dimensional lattice gas. However, as‘Widoml and others2’3
! :
%ave pointed out, his modified theory may itself break down in higher di-
i :

mensions when applied to a continuum fluid or the Ising model., Moreover,

éor the spherical model with a shért-ranged interaction potential it can

i

%asily be verified that certain of the relationships between critical ex-
ﬁonents implied by Widom's theory -- our Eq. (15a) with p=o is one of them ~-

o not hold when the dimensionality d is greater than fouru.

In this note we show a way in which the "classical' free-energy ex-

e Oy

?ansion that is assumed in the square-gradient theory can be modified so as
%o be consistent with both the known two-dimensional Ising results and the
gxpected continuum and Ising results for higher dimensionality. A key point
of our argument is the assuﬁption that an increase in the effective volume

of interaction will tend to, inhibit density fluctuationms.

[ o PR

I. THE SQUARE-GRADIENT THEORY REANALYSED

According to the square-gradient theory, the Helmholtz free energy
¢ associated with a density inhomogeneity 4n occurring over a volume Vv

-small compared to a total volume of the fluid is given by ¢l + ¢2 where

8, = Bvtam) /o,

2 (1)
Av(An/L)
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with P assumed constant and A assumed to be a slowly varying positive
o

functibn of the mean density p and temperature T. Here KT is the iso-
thermal compressibility and viLd, and hence L 1is the linear size of the
volumé v .over which the inhomgeneity is being considered. In using (1),
Widomgidentifies L with a correlation length K—l, which becomes infi-
nite at the critical point. In Widom's treatment this length appears as
both the interface thickness separating two phases and the range of the two-
point correlation function h(z), and in its former role it appears in an

expression for the surface tension ¢ that is similar to (1) and is based

on the same assumptions (¢ 1is Widoem's vy):
2,2 2 :
o = BL(8p)"/p Ky + AL(4p/L) " (2)

where Ap 1s the difference between the dinsities of the two phases. Mini-

mizing this o with respect to L leads to the relation
2
B/o%Ky = ALY (@)

The justification for (1) lies in an expansions’6 for a local free-
energy density F(E) associated with any deviation of the local density
n(r) from p. Expanding F(r) about its mean value over the volume § of

the whole system, F, yields

.

AF(E:) = F(r) - T =
' (%)
2 2
;éa(An) + .. t %b(vn) + e ’

‘where An = n(E)-p and Vn is the gradient of n(r).
The free energy ¢ associated with the density fluctuation in a

volume v is then obtained by integration over that volume:

e

T




f : b= RNy (5)

Asican hé seen from the treatments of F(r) given by Landau and Lifshitzs

and by qisher6’7 the constants a and b are proportional to the zeroth
|
| ! -

and second moments of e¢{r), the "modified" direct correlation function.
| 5 '

It follows that the constant a is inversely proportional to the zeroth

1}

moﬁent bf h(r) = h(g) + 6(3)/p, where 5(3) is the Dirac delta function

i

(6? the Kronecker delta, in the lattice-gas case):

f 'BKT—l ~a~ IQ;(E)q?fJ [Ighgg)q?]-l
(8)
A~b~ [, rla(ryar .

Here p = lrl and c(r) + 6(r)/p 1is the direct correlation function ec(r).

-~

From (6) and kTpKT = pfnﬁ(r)dr where k is Boltzman's constant, cne sees
that if unexhibited terms in (4) can be neglected, one indeed has B equal
to a constant. On the other hand we would expect2 that near the critical

% . b

1 fQPQE(E)q; . (7)

h(r) # f(Kr)/rd'2+n; r>>R (8)

where R is the range of the interaction potential and f(x) ~ constant for

x~0, yielding the relation

d-2+n
r

ﬁ(ﬁ) ~ 1/ (9)

for R << r << k' near the critical point.
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From (8) and (8), A~b~x " near the critical point. Despite this very sen-
|

sitive and singular dependence of b on k, Egs. (1) through (&) still make

sense and lead to expressions that are consistent without knowledge of the
latti¢e gas when d=2. TFor example, finding L by minimizing o still

leads to (3) and yields
Y' = (2—7'&)\" P
as well as

286 -v'+y"'

=
1"

28 + (l—n)v} .

=
1]

. . .2 cas
Here we are using Fisher's notation™ for critical exponents supplemented by
the use of p +to describe the temperature variation of o on the coexis-
tence curve, i.e., we are assuming that along the coexistence curve near the
critical poin T
point ( c’pc)
8 v’
lo-o_| ~ lT-T 1", « ~ [T-T ] ,

]
et |TY ~ -7 |¥
Ky [T Tcl , o0~ |T Tcl .

We remark that out result b~x " duplicates a relation derived by Josephson8
in connection with the use of a variant of (4) that is appropriate to the
consideration of a superfluid, and (6) and (7) provide a basis for Josephson's
result that is somewhat different from Josephson's original argument.

Although the use of (4) with (6) leads to results that are consis-
tent with the known behavior of the two-dimensional lattice gas, these results
in themsel?es do not appear to Imply a relation between n and the exponent
8 that describes the shapg of the critical isotherm. This is in contrast

to.the results of the modification of the square-gradient theory proposed by
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Widom, who assumed that density fluctuations in the vicinity of the critical

!
point manifest themselves with high probability as the appearance of micro-

. -4 . e i aas
domains of conjugate phase and volume v~k ~, Widom's assumption implies
both that the expected free energy associated with density fluctuations over
the volume v is a constant of order unity times kT, and that the expected

- 2 , . .
value of (An) over the volume v is proportionzl to the square of the
difference Ap between the mean density p - of the dominant phase and the

mean density op of the conjugate phase (which in turn is proportional

conj.
to (ompc)2 ). Here we shall Petaiﬁ the first of these conclusions but not
the second, on the following grounds:

We might anticipate the appearance of microdomains of conjugate
phase to become less and less likely as the dimensionality increases, since
the number of mclecules caught within the range of each other's Interaction
potential will increase if the linear interaction range remains constant,
and the effects of this average decrease in the freedom of a molecule to
move uninhibited by neighboring molecules will presumably include a decrease
of average fluctuation amplitude as d 1increases. Thus, over a volume
ﬂK-d, Ap  will no longer répresent the order of magnitude of the largest
likely fluctuation amplitude for all d but instead will represent only an
upper estimate of that quantity, which may or may not be realized @y the
actual fluctuation amplitude with appreciable frequency, depending upon
whefher d is small or large. Hypothesizing that the mean-square fluctua-

. . =d . A
tion over a volume -~K can still be expressed as a power of Ap, we con-

clude that instead of
5
() = clep) , (10)

- with C of order (Ap)o, we shall find along the coexistence curve
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7
(m)?) ~ (8p)?*P (11)
1
-where }pzo and where we anticipate p>0 for large d.- From (8) and
(e = o%r n@azry (12)
we have
| . (), ~ 2N (13)
li .
Assuming that
ol |E
k=~ lo-p,] (1)

along the coexistence curve, our two different assessments of <¥An)2>§

yield

“e(d-24n) =2+ p , - (15a)
and

2/e € d-2+n . (15b)

This is equivalent to the Gdnton;Buckingham inequalityg 24(d~2+n)" 1 < 8+1

if we accept the relation (2-n)e = 8-1, which follows from the use of (8),
(8) and the assumption that (1%) holds on the critical isotherm as well as

on the coexistence curve. We note that we have not arrived at a relationship
that determines n given d and €, as we would have on the basis of Wi-
‘dom's argument. Instead we have derived a result that can be written as an
equality only after the introduction of p, which is a measure of the extent
to which density fluctuations have been inhibited by the interaction poten-
tial. Our argument implies that p20, and also that p ié nondecreasing

as d increases, but it provides no quantitative means for assessing p

—
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independent of the use of (15a). However, we can gain further insight into
I
the nature of p by viewing (15) in a somewhat different way. If the pro-
i

bability of a fluctuation of amplitude ~!Ap’ appearing over a volume v~K°d

i
’- - a > - . s
is negligible for a given d, one can consider shrinking the volume one is

| !

? ) . -0d .
sampling until one comes to a smaller volume w-x' , 0g£6<l, over which
? |

!

the prébability of such a fluctuation has become appreciable, so that

i |
! ! <'(An)2>m~cw(Ap)2 as Ap>0

where Ccu is of order one. For such w, it is also reasonable, on the basis
| - w
of (9) and (12), to expect

| (?An)%>w ~ w<x2“ﬂ)/4>—l " nm(d~2+n)

|
so that

?

(Ap)2 - K6(d-—2+n)

4

or B | | -
o 2/e = 8(d-2+n) N (16}

which is another way of writing (15).
Using a relation suggested by considerations discussed by us else-
0 ‘ .
wherel we can relate 6 to the exponent s that we expect3 to appear in

the direct correlation function for large p:

t

‘ -~
i cgi) ~ fb(Kr)/rd+s, r>>R, s 3> 2-n .

The relationlo is
2/e = &5, an
implying through (186) that
8 = (d—s)/(d—Q;n) - - (18)

Since s 1is the exponent associated with the '"singular part“ll of the

o ]
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Fourier transform EQk) of EQS), (18) can be interpreted to mean that the

length K-e appears in the problem whenever the regular part of c(k) domi-
| : PN

pates the singular part. As noted elsewherea, if the regular part of e (k)

(which reflects the immediate presence of the pair potential) were suppressed,

one would have

h(r) -~ f(K_z;)/rd—S, r>>R,
| |
instead of (8). Hence one would expect

<(An)?)v - K(3."'8

instead of (13). Thus the inhibitory effect of the pair potential changes
<(An)%>v in a way that enters both of the assessments of that quantity that
we make in relating € to n. Ignoring thé effect in'both assessments
yields (17), which we believe is in fact correct, but furthef implies that
s=2-n, which we believe becomes incorrect as d»»,

In conclusion, we consider the relation

LE(@)-Fp, ~ kI/v . (19)

If we apply to (4), using the estimates a~K2-n, b*K-n, and as-
v

suming, as is plausible, that <(Vn)%>; ~ <(An)2/v2/d>v, we then find from

(13) that

<F@-F), ~ oD .

Thus we are not forced by our arguments to modify (19). It is perhaps note-

worthy and surprising that our picture of the fluctuation-inhibiting effect

of the pair potential has led us to abandon (10) rather than (19), since

Widom has suggestedl that (19) rather than (10) is the hypothesis most open




10

t theory.

lern

Y

the square-grad

icion in

to sus

Acknowledgments

pful

iy

debted to Prof. M.E. Fisher for a very hel

is in

-

The author

erning this work.

iscussion conc

d




10.

11,

|

1

I-

i
N
|
o
g
W
|

/
/.‘ - 11

‘ References
B. Widom, J. Chem. Phys. 43, 3892 (1965).

M.E. Fisher, Rep. Prog. Phys. 30, 615 (1967).

G. Stell, Phys. Rev. Letters 20, 533.

For long-ranged potentials, the dimensiocnality at which these relations
break down for the spherical model is dependent upon the potential's
range. See G.S. Joyce, Phys. Rev. 146, 343 (1966), and also J.D.
Gunton and M.J. Buckingham, Phys. Rev., 166, 152 (1968).

L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press,
Ltd., London, 1958), Sec. 116.

M.E. Fisher, J. Math Phys., 5, 9u4 (1984).

See in particular footnote 53 of ref. B.
B.D. Josephson, Phys. Letters 21, 608 (1966).

J.D. Gunton and M.J. Buckingham, Phys. Rev. Letters 20, 143 (1368).
To appear, Molecular Physics (1969).

See ref. 2 for a discussion of the way one relates exponents to the

singular part of a function. In the notation of Fisher, we could
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