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ABSTRACT

,
We derive a relationship involving the exponents 0, n, and an

exponent Q that measures the deviation from homogeneity of the direct cor-

relation function.
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In previous worksl,2, herein referred to as I and II, we derived

a relations~ip between the critical expon~nts 0 and ~. In the usual no-

.tation, it is

.z r := _~?'ZtK [ Z.l .£ [d - / ) /(~. -1-1)]
(1)

This was derived assuming that long-range correlations satisfy a certain

homogeneity (scaling) condition described below. Recently Ferer, Moore, and

Wortis3 concluded, on the basis of numerical analysis of Ising expansions,

that such homogeneity is probably not satisfied in 3 dimensions. They con-

sidered the 2-point correlation function [our her) in the notation of I
......

and II] along the critical isochore [i.e. for number density p equal the

critical density Pc' in the lattice-gas language used in I and IIJ when

the temperature T is above the critical temperature T .c In I and II we

worked at T=T for small Ip-p I, but if her) does not satisfy a homo-c c -

geneity condition for large Irl along the critical isochore, there is no

reason to expect it to do so along the critical isotherm; the purpose

of this note is to reassess our derivation of (1) assuming a weakened form

of homogeneity of the direct correlation function c(r) that is suggested

by the findings of ref. [3]. [It is the off-critical behavior of c(r)

rathe~ than of her) that enters crucially into our derivation of (1).]
.....

Our main result is a demonstration that a weakening in homogeneity

of c(r) for large r=I~1 and small Kr (K-l = the correlation length) of

the form and magnitude suggested by the work of Ferer et. al. can indeed

lead to a deviation from (1) of the order of magnitude that appears to be

found in 3 dimensions. Specifically, we derive a new relationship [eq. (13)]

among ~, 0, d, and an exponent Q that measures the deviation of c(r)

from its strong-scaling form at T=T .c If Q is taken to be of the same



3

sign and magnitude as the corresponding exponent q associated with h(r)

at P=Pc' then we find that the value of q~ 1/7 arrived at4 in ref. [3]

yields 11~ 1/21. ~lehave no a priori reason for identifying Q and q,

but we suspect that any weak-scaling theory in which a single parameter

must bear the full burden of expressing the departure from strong scaling

.will make thi~ identification. A study of c(r)..-
at T=T

c comparable in

accuracy to the study of her}
....

at P=Pc made in ref. [3] would do much to

clarify the feasibility of such a theory.

- .-.-- -."- - .~.-._.~~- -, ~
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VIe use the notation of I except as othe:rwise indicated, wI'iting a.

function of £12 sometimes as f(12) and sometimes as f~12} as conven-

ience dictates, and sometimes ~Titing R2-~1 simply as r. We write Irl
....

as r. As in I, the subscript c refers to a c~itical value and the sub-

script 0 to evaluation 'at number density pg(12) rather than p. We shall

work mainly with oCr} = c(r)-o(r)n(r),- ~ ~ -'"

C2(r) = c(r)-c (r), and-- - c--

her) = h(r)-o(r)n(r), rather than c(r) and her} themselves, where oCr)...

is the delta function [Kronecker for a lattice system, Dirac for a fluid]

and n(r) is the I-point density function, which is just p in a uniform

system.

In I and II we showed the way ,in which (1) followed from the re-

sult c (r) ;."[h (r)JP, for r'~ co, which yieldedc - c

;;z -71 = /'J?'?~l'L[,z/ £(/<7- /) / fjo + tJ ] ./

(2)

with p equal to 0, the exponent that measures the shape of the critical

isotherm; IIJ-IJ I .v I p-p I 0 atc c T=T (IJ= chemical potential). Our workcA_ -S-L
h can be written as h = h +h , wherewas based on the postulate that

for Ka « 1 and rIa» 1, we have
- A1
h -:::: h with

"I..
~c. /L/ rL-&!.. J (3.a)

AL-J.; ~ -[(x.,-) -r .c-~= e{I(.-r) }(&'f-_~ (3.b)

Here t is used to denote what is usually written as 2-~. In the same

spirit, we postulated that
-S -1

c = c +c , where for Ka« 1 and rIa» 1,'

-1 -1
we have c == c, with c such that

e J; "\../ -r-AJ- -~f..
c:- )

A, /\1 17

C u _ C( -::= F ( i( ~) "1'- -..:L.-c<'t;.::::;

(4.a)

,.fl .

X.-<;J.. +'. /.::- (I(r) .

(4.b)

! .
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As argued in I and II, we expect t = min[s,2J. In [3] it was pointed out

that if one assumes (3) then one also expects the Ising-model f(x) in (3)

to be given by

.

(/-cL)/Y ~{
-;:(~).-~ r.:t'-70/r'YOc~T~~~

(3.c)

because only then does the K dependence for x ~ 0 merge smoothly into a

K dependence of h(r) at r~a that is consistent with having the spe-

cific heat at p=pc' T ~ T , given by . C ;v 3£(r )/aTc v- at r=a. Similarly

when (4) is assumed, it is natural to postulate that F(x) in (4) is such

that

F{~) -~ z i?FZ-M K~~~ .'»f.~;t I
(4.c)

on the following basis: We have

(;A" /J 4-
j C;? t'~ rV)(

(5)

from (4.b). From (3.b), the expectation that i£Sdr will remain bounded as
....

K ~ 0, and the Fourier-transform relation,

A ;A-I

-- ~ C{!::) = [ (J JI(~) ] ,
(6)

... t
we have Jc2d;:-v K

Thus by subtraction, since s ~ t,

ref. Lr -v )( ~ 471~:t./ c _ /
(7)

But since c2s is a short-range object, loaded at the origin, Eq. (7) is

consistent with C2s~(Km times a function of r that is essentially inde-'

pendent of K), and if the Ie-dependence of
~ L . hI .

c2 ~s to smoot y merge ~nto

thatof
"S
c2 ' we expect (4.c).

In [3] a deviation from (3.b) was found that suggests the form,

I
.i r
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if X=ICr,

,,£-,f(i "- ft.: ) ::: f ( 'K) -?'-$ ad.. -;:t'-? 0 1
(3.b')

::: f;(;y) otherwise,

instead of (3.b), with f(x) still given by (3.c) and q
4

on the order of

.1/7. The condition x ~ 0 in (3.b') can be made more specific. Moore,

Jasnow, and WortisS found that

A . -r £ (8)fA~Mf~ ;{ r' /"=/"c
despite their evidence that (3.b) breaks down when x ~ O. This implies

that x ~ 0 cannot simply be taken to.mean x less than some fixed small

number (which would lead to fh(r)dr ~ IC-t-q for q > 0) but instead sug-"" -
gests the introductionof a second length N Jl::"~ . 0 < e < 1, such that

x~O is taken to mean x < ICe. If (3.b') holds with this interpretation

of x ~ 0 it is again possible for (8) to be satisfied. The deviation from

(4.b) that is then more-or-less obviously suggested by (3.b') is of the

form, for ICa» 1 and r» a,

-'// 4-(c -Cc) ~ Ff:t:);f"' ({ fo;r
~<)(t9

(4.b')

d. ;:; (;() . otherwise,

with x = ICr and F(x) given by a power of x,

,..,

F(~),v X" . (4.c')

,.
We shall concludebelow that T = t-Q. The quantity 0 will be left un-

determined, as will Q, although we should expect the latter to be of the

same order of magnitude as the q in (3.b'). We shall assume s=t in

(4.b') for simplicity because we wish to investigate the possibility that"

t < 2, and for such t there is no reason to postulate a separate expo-

!!'~
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nent for c, as pointed out in I and II.

We showed in II that if (3.a), (3.b), (4.a) and (4.b) are assumed,

then the terms in our expansion of c that contain the functional deriva-c
A

tives of c with respect to n [i.e. contributions involving certain 1-,

point correlation effects for ~ > 2] do not dominate the contributions to
i

c that are wholly expressible in terms of c and h. In this note we
- c

shall continue to neglect the t-point effects for 1 > 2. Ignoring these

higher derivatives of c and assuming that the pair potential is short

ranged, we are left at the critical point for large r12 with

Cc.(I:Z ) ~ ,nul'. Itc (1:<.)J~+ 51 ~

s, .~f' /l£;(,3)]ohc (Z3)£t.3) +~ J[cf{I.3)J()A~{.:l.3) £(3)

- (J-){c (IZ) Jteer/~JJo d/(2.) , .

Since Jjel (/3)Jo Ac (.z3) d(3) ~V~c{/~!f!~.s(I:l)l~{.<) (9)

for r12 ~ m , we have

S/ :;: -f1.Jc;(l2 )/fC;lh(lzJl/(2)'
./ . \

-I-;9%C;'(;3)1o h(:f.:23)£(,5) . -- ------

for r12 ~ m. In II, the first integral of (10) was found to be of order
s 0+1

h K from (5), and the second of order h . We shall not concern our-
c 0 c

selves further with the second integral since O(ho+l) is not likely. to bec

increased beyond O(ho) by a small departure from (4.b). It is no longerc

£..,.

(10)

true however that we can expect (5) to hold. In fact, letting

I /\.~/ J AL/7 j /\J..I?

C~ ~: Cil. ~£" -I- C:z d£ -'
~ < )(B .)c.~.xfl

(11)

---:.--~ ----

we find from (4.b') and (4.c') that if T-t+Q > O. then

At T-(1-0)(Q+T-t)
D

J 0C2d.!:IU K ,
while a reasonable

F2(x) (for example
X<K .

F2(x) -
t for

e and F () const-constx for x > 1)x ,,'.<x<l 2X,N x e
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still yields Q(Kt) for the second integral in (11)6.

Fr~m the argument used to deduce that the power appearing in (4.c)

is at least t, we can now estimate 't" in (4.c'), using 't"-(1-0)(Q+'t"-t) in

(5) instead of s ~ t. If T-(l-0)(Q+T-t) ~ t, , the argument leads to the

conclusion that 't"-(1-0)( Q+'t"-t)= 't", which is satisfied if 't"= t-Q , and

t-qwe thus concluded that Sl /V h K ,C 0

implies Q <.0 and Sl,v K K ~] Butc 0

implies K t,...,h 0-1.
o . c

with

t
K ~

Q ~ o. ['t"-(l-0)(Q+'t"-t) > t

I 1

15-1
p-p , coming from (8) andc

Hence if Q ~ 0, then

and in (2) w~ have

~ = 5' - f q (i'.- I ) /£ ]
(12)

instead of a, yielding the restriction, if t < 2:

As an equation for t this has two solutions, one of which approaches

d(a-l)/(a+l) as Q ~ o. This is the one we should expect to find realized.

The deviation of p from <5 in (12) is of the right order of magnitude

to give reasonable values of ~ if7 Q~q. To see this we note that if

d=3 and 0=5, then the solution of (13).that approaches 2 as Q ~o goes

like t ~ 2-(Q/3) for small Q so that if Q were equal to q:Z 1/7,

then ~ would be ~ 1/21.
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