A WEAK-SCALING RELATION AMONG CRITICAL EXPONENTS[†]

by

G. Stell

Department of Mechanics
College of Engineering
State University of New York at Stony Brook
Stony Brook, New York

Report No. 144

July, 1969

[†]This work was supported in part by the Research Foundation of the State University of New York

ABSTRACT

We derive a relationship involving the exponents δ , η , and an exponent Q that measures the deviation from homogeneity of the direct correlation function.

In previous works 1,2 , herein referred to as I and II, we derived a relationship between the critical exponents δ and η . In the usual notation, it is

$$2 - \eta = min[2, d(s-1)/(s+1)].$$
 (1)

This was derived assuming that long-range correlations satisfy a certain homogeneity (scaling) condition described below. Recently Ferer, Moore, and Wortis concluded, on the basis of numerical analysis of Ising expansions, that such homogeneity is probably not satisfied in 3 dimensions. They considered the 2-point correlation function [our $\hat{\mathbf{h}}(\mathbf{r})$ in the notation of I and II] along the critical isochore [i.e. for number density ρ equal the critical density $\rho_{\mathbf{c}}$, in the lattice-gas language used in I and II] when the temperature T is above the critical temperature T_c. In I and II we worked at T=T_c for small $|\rho-\rho_{\mathbf{c}}|$, but if $\hat{\mathbf{h}}(\mathbf{r})$ does not satisfy a homogeneity condition for large $|\mathbf{r}|$ along the critical isochore, there is no reason to expect it to do so along the critical isotherm; the purpose of this note is to reassess our derivation of (1) assuming a weakened form of homogeneity of the direct correlation function $\mathbf{c}(\mathbf{r})$ that is suggested by the findings of ref. [3]. [It is the off-critical behavior of $\mathbf{c}(\mathbf{r})$ rather than of $\hat{\mathbf{h}}(\mathbf{r})$ that enters crucially into our derivation of (1).]

Our main result is a demonstration that a weakening in homogeneity of $c(\mathbf{r})$ for large $\mathbf{r} = |\mathbf{r}|$ and small $\kappa \mathbf{r}$ (κ^{-1} = the correlation length) of the form and magnitude suggested by the work of Ferer et. al. can indeed lead to a deviation from (1) of the order of magnitude that appears to be found in 3 dimensions. Specifically, we derive a new relationship [eq. (13)] among η , δ , d, and an exponent Q that measures the deviation of $c(\mathbf{r})$ from its strong-scaling form at $T=T_c$. If Q is taken to be of the same

sign and magnitude as the corresponding exponent q associated with $\hat{h}(r)$ at $\rho=\rho_c$, then we find that the value of $q\approx 1/7$ arrived at in ref. [3] yields $\eta\approx 1/21$. We have no a priori reason for identifying Q and q, but we suspect that any weak-scaling theory in which a single parameter must bear the full burden of expressing the departure from strong scaling will make this identification. A study of c(r) at $T=T_c$ comparable in accuracy to the study of $\hat{h}(r)$ at $\rho=\rho_c$ made in ref. [3] would do much to clarify the feasibility of such a theory.

We use the notation of I except as otherwise indicated, writing a function of r_{12} sometimes as f(12) and sometimes as $f(r_{12})$ as convenience dictates, and sometimes writing r_2 - r_1 simply as r. We write |r| as r. As in I, the subscript r refers to a critical value and the subscript r to to evaluation at number density r pg(12) rather than r. We shall work mainly with r c(r) = r c(r)-r c(r)n(r), r c(r) = r c(r)-r c(r), and r h(r) = r h(r)-r c(r)n(r), rather than r c(r) and r h(r) themselves, where r c(r) is the delta function [Kronecker for a lattice system, Dirac for a fluid] and r is the l-point density function, which is just r in a uniform system.

In I and II we showed the way in which (1) followed from the result $c_c(r) \sim [\hat{h}_c(r)]^D$, for $r \to \infty$, which yielded

with p equal to δ , the exponent that measures the shape of the critical isotherm; $|\mu-\mu_{\mathbf{c}}| \sim |\rho-\rho_{\mathbf{c}}|^{\delta}$ at $T=T_{\mathbf{c}}$ (μ = chemical potential). Our work was based on the postulate that $\hat{\mathbf{h}}$ can be written as $\hat{\mathbf{h}} = \hat{\mathbf{h}}^S + \hat{\mathbf{h}}^L$, where for $\kappa a << 1$ and r/a >> 1, we have $\hat{\mathbf{h}} = \hat{\mathbf{h}}^L$ with

Here t is used to denote what is usually written as 2-n. In the same spirit, we postulated that $\hat{c}=\hat{c}^S+\hat{c}^L$, where for $\kappa a <<1$ and r/a >>1, we have $\hat{c}=\hat{c}^L$, with \hat{c}^L such that

$$\hat{e}_{c}^{\mu} \sim \tau^{-s-d}$$
, (4.a)

As argued in I and II, we expect t = min[s,2]. In [3] it was pointed out that if one assumes (3) then one also expects the Ising-model f(x) in (3) to be given by

because only then does the κ dependence for $x \to o$ merge smoothly into a κ dependence of $\hat{h}(\mathbf{r})$ at $\mathbf{r} \sim a$ that is consistent with having the specific heat at $\rho = \rho_c$, $T \geqslant T_c$, given by $C_v \sim \partial \hat{h}(\mathbf{r})/\partial T$ at $\mathbf{r} = a$. Similarly when (4) is assumed, it is natural to postulate that F(x) in (4) is such that

$$F(x) \rightarrow x^m as x \rightarrow 0, m > t,$$
 (4.c)

on the following basis: We have

$$\int \hat{C}_{2}^{4} dr \, n \, \mathcal{H}^{4} \tag{5}$$

from (4.b). From (3.b), the expectation that $\int \hat{h}^{S} d\mathbf{r}$ will remain bounded as $\kappa \to 0$, and the Fourier-transform relation,

$$-\rho \hat{C}(k) = [\rho \hat{H}(k)]^{-1}, \qquad (6)$$

we have $\int \hat{c}_2 d\mathbf{r} \sim \kappa^{\dagger}$. Thus by subtraction, since $s \geqslant t$,

But since \hat{c}_2^S is a short-range object, loaded at the origin, Eq. (7) is consistent with $\hat{c}_2^S \sim (\kappa^m$ times a function of r that is essentially independent of κ), and if the κ -dependence of \hat{c}_2^L is to smoothly merge into that of \hat{c}_2^S , we expect (4.c).

In [3] a deviation from (3.b) was found that suggests the form,

if x=kr,

$$f^{-1}(\hat{h}^{-1}\hat{h}^{-1}) = f(x) + g \text{ as } x \to 0, \qquad (3.b')$$

$$= f_2(x) \quad \text{otherwise},$$

instead of (3.b), with f(x) still given by (3.c) and q on the order of 1/7. The condition $x \to 0$ in (3.b') can be made more specific. Moore, Jasnow, and Wortis f found that

$$\int \hat{h}(\tau) d\tau \sim K^{-t} \quad \text{for } \rho = \rho_c \tag{8}$$

despite their evidence that (3.b) breaks down when $x \to 0$. This implies that $x \to 0$ cannot simply be taken to mean x less than some fixed small number (which would lead to $\int \hat{h}(r)dr \sim \kappa^{-t-q}$ for q > 0) but instead suggests the introduction of a second length $\sim \mathcal{R}^{-\theta}$, 0 < 0 < 1, such that $x \to 0$ is taken to mean $x < \kappa^{\theta}$. If (3.b') holds with this interpretation of $x \to 0$ it is again possible for (8) to be satisfied. The deviation from (4.b) that is then more-or-less obviously suggested by (3.b') is of the form, for $\kappa a >> 1$ and r >> a,

$$f^{\ell+2}(\hat{c}-\hat{c}_c) \simeq F(x) f^{\ell}$$
 for $x < K^{\theta}$. (4.b')
$$\simeq F_2(x) \quad \text{otherwise,}$$

with $x = \kappa r$ and F(x) given by a power of x,

$$F(x) \sim x^{\tau}$$
. (4.c')

We shall conclude below that τ = t-Q. The quantity 0 will be left undetermined, as will Q, although we should expect the latter to be of the same order of magnitude as the q in (3.b'). We shall assume s=t in (4.b') for simplicity because we wish to investigate the possibility that t < 2, and for such t there is no reason to postulate a separate expo-

nent for c, as pointed out in I and II.

We showed in II that if (3.a), (3.b), (4.a) and (4.b) are assumed, then the terms in our expansion of c that contain the functional derivatives of \hat{c} with respect to n [i.e. contributions involving certain ℓ -point correlation effects for $\ell > 2$] do not dominate the contributions to c that are wholly expressible in terms of \hat{c} and \hat{h} . In this note we shall continue to neglect the ℓ -point effects for $\ell > 2$. Ignoring these higher derivatives of \hat{c} and assuming that the pair potential is short ranged, we are left at the critical point for large r_{12} with

$$c_{c}(12) \stackrel{\text{def}}{=} const. [h_{c}(12)]^{S} + S_{1}$$
,
 $S_{1} \stackrel{\text{def}}{=} \rho \int [\hat{C}_{2}^{S}(13)]_{0} h_{c}(23) d(3) + \rho \int [\hat{C}_{2}^{D}(13)]_{0} h_{c}(23) d(3)$
 $-\rho h_{c}(12) \int [\hat{C}_{c}(12)]_{0} d(2)$.

Since $\int [\hat{C}_{2}^{5}(13)]_{0} h_{c}(23) d(3) \sim h_{c}(12) [\hat{C}_{2}^{5}(12)]_{0} d(2)$ (9)

for $r_{12} \rightarrow \infty$, we have

$$5, \approx -\rho h_{c}(12) \left[\hat{c}_{2}^{L}(12) \right]_{o} \ell(2). \tag{10}$$

$$+ \rho \left[\hat{c}_{2}^{L}(13) \right]_{o} h_{c}(23) \ell(3). \tag{10}$$

for $r_{12} \rightarrow \infty$. In II, the first integral of (10) was found to be of order h_c^{s} from (5), and the second of order $h_c^{\delta+1}$. We shall not concern ourselves further with the second integral since $O(h_c^{\delta+1})$ is not likely to be increased beyond $O(h_c^{\delta})$ by a small departure from (4.b). It is no longer true however that we can expect (5) to hold. In fact, letting

$$\int \hat{C}_{2}^{h} dr = \int \hat{C}_{2}^{h} dr + \int \hat{C}_{2}^{h} dr, \qquad (11)$$

we find from (4.b') and (4.c') that if τ -t+Q > 0, then $\int_{\mathbf{x} < \kappa} \hat{\mathbf{c}}_2^{\mathbf{L}} d\mathbf{r} \sim \kappa^{\tau - (1-\theta)(Q+\tau - t)}, \text{ while a reasonable } F_2(\mathbf{x}) \text{ (for example } F_2(\mathbf{x}) \sim \mathbf{x}^t \text{ for } \kappa^\theta < \mathbf{x} < 1 \text{ and } F_2(\mathbf{x}) \sim \mathbf{x}^{\text{const}} e^{-\text{const} \; \mathbf{x}} \text{ for } \mathbf{x} > 1)$

still yields $O(\kappa^{t})$ for the second integral in $(11)^{6}$.

From the argument used to deduce that the power appearing in (4.c) is at least t, we can now estimate τ in (4.c'), using τ -(1-0)(Q+ τ -t) in (5) instead of $s \geqslant t$. If τ -(1-0)(Q+ τ -t) $\leqslant t$, the argument leads to the conclusion that τ -(1-0)(Q+ τ -t) = τ , which is satisfied if τ = t-Q, and we thus concluded that $S_1 \sim h_c \kappa_o^{t-q}$, with $Q \geqslant 0$. $[\tau$ -(1-0)(Q+ τ -t) > t implies Q < 0 and $S_1 \sim \kappa_c \kappa_o^{t}$] But $\kappa^t \sim |\rho - \rho_c|^{\delta - 1}$, coming from (8) and $|\mu - \mu_c| \sim |\rho - \rho_c|^{\delta}$, implies $\kappa_o^t \sim h_c^{\delta - 1}$. Hence if $Q \geqslant 0$, then $S_1 \sim h^{\delta - [Q(\delta - 1)/t]}$, and in (2) we have

$$p = 5 - [q(s-1)/t]$$
 (12)

instead of δ , yielding the restriction , if t < 2:

As an equation for t this has two solutions, one of which approaches $d(\delta-1)/(\delta+1)$ as $Q \to 0$. This is the one we should expect to find realized. The deviation of p from δ in (12) is of the right order of magnitude to give reasonable values of η if $Q \approx q$. To see this we note that if d=3 and $\delta=5$, then the solution of (13) that approaches 2 as $Q \to 0$ goes like t $\approx 2-(Q/3)$ for small Q so that if Q were equal to $q \approx 1/7$, then η would be $\approx 1/21$.

References

- G. Stell, Phys. Rev. Letters 20, 533 (1968).
- 2. G. Stell, "Extension of the Ornstein-Zernike Theory II" (to appear).
- 3. M. Ferer, M.A. Moore, and M. Wortis, Phys. Rev. Letters 22, 1382 (1969).
- 4. In ref. [3] it is actually the combination $[(1-\alpha)/\nu]+t-d+Q$ that is assessed: It is found to be 0.47 \pm 0.06 while $[(1-\alpha)/\nu]+t-d$ is estimated in [3] to be 0.33 \pm 0.01. Hence the resulting estimate of Q, obtained by subtraction, already depends on estimates of α , ν , and t.
- 5. M.A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Letters 22, 940 (1969).
- 6. The case τ -t+Q < 0 cannot be adequately handled within the framework of our assumptions. It gives rise to a small x divergence in the first integral as a result of the simple functional form we postulate for \hat{c}_2^L and, strictly speaking, is untenable under our postulate. We therefore ignore this case here.
- 7. Our work provides only a hint that one should set Q=q. If one treats (4.b') and (4.c') as globally (rather than asymptotically) valid, one finds directly through (6) that for $\kappa \to 0$, Q=q. Also implied is $\tau = (1-\alpha)/\nu$, giving rise to the divergence difficulties noted in footnote 6. It is to be expected that ignoring the asymptotic nature of (4) will lead to such difficulties; the question is whether a more sophisticated treatment of \hat{c}^L can justify retaining Q=q while bypassing the divergences.