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Abstract

An approach to study correlated percolation in lattice models of mi-

croemulsions is presented. Mean-field-like equations for the percolation 10-

cus for each of the molecular species are obtained, whose only input are the

structure functions of the microemulsion model. Using a spin-l Hamiltonian

introduced by Schick and collaborators as a model for microemulsions, we find

that the water percolation threshold increases as the surfactant becomes more

lipophilic. This is in qualitative agreement with the behavior found in real

microemulsions as salt is added to the system.
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Ternary mixtures of oil, water and amphiphile exhibit interesting struc-

tural properties due to the amphiphile's tendency of being localized at the

water-oil internal interfaces. In particular, the underlying structure of the ther-

modynamically disordered phase is highly dependent on the system's tempera-

ture and composition as well as on the surfactant's ability to solubilize oil and

water and its hydrophilic-lipophilic (HL) balance (see, for instance, references

[1] and [2]). At small water-to-oil concentration ratios the microemulsion's

structure appears to consist of surfactant-coated water droplets dispersed in a

continuum oil-rich phase. This is the so called water-in-oil (WfO) microemul-

sion. Such microemulsions have been extensively reported in the literature to

present sudden increases of several orders of magnitude in their electrical con-

ductivity as well as sharp variations in their dielectric behavior and viscosity

when either the temperature or the volume fraction of the dispersed phase

reaches a certain threshold value [3,4,5,6,7]. These phenomena have been as-

sociated with a percolative transition of the (surfactant-coated) water globules

and have been investigated by means of phenomenological theories, either an-

alytically or via computer simulations (see the review article by S. Safran et.

ai. in reference [8]). The microemulsion in these studies is modeled by a one-

component fluid of hard-spheres, representing the water globules, interacting

with one another via an additional attractive potential. Despite the relative

success of such phenomenological theories in determining some static and dy-

namical percolation properties of WfO-microemulsions, an understanding of

their clustering properties in terms of a model for the molecular interactions

between the components of the mixture is still lacking. Therefore, questions
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such as the effects of the molecular interactions (e.g. the amphiphilic strength),

salinity, composition and structural changes, upon the microemulsion's clus-

tering properties remain to be addressed. A first step toward a microscopic

theory for percolation phenomena in microemulsions has been recently pro-

posed by Blossey and Schick [9] who determine correlated site percolation

threshold lines of a two-component lattice model displaying a closed loop phase

diagram. However, like phenomenological models their two-component lattice

model cannot address, for instance, the effects of the amphiphilic interactions

on the percolative properties of microemulsions.

We report here a novel approach to study percolation in microemulsion

systems. Unlike phenomenological theories, the present framework assumes

no a priori structure for the microemulsion, but rather assumes that the

correlations between particles and hence the thermodynamic and structural

properties of the mixture stem from the microscopic interactions of a (lattice)

Hamiltonian model for microemulsions. References [10,11,12,13] are examples

of such models (see also [2]). The clustering or percolative properties are ob-

tained via an extension to multi-component mixtures of the Kikuchi's original

tagging trick to study correlated percolation in the ordinary lattice-gas[14].

Consider the disordered phase of a 3-component microemulsion model,

where the three species of particles are mixed in a homogeneous, isotropic

state. We are interested in determining the critical locus of percolation for each

molecular species, where a cluster of species a (a =water, oil or surfactant) is

defined in a geometrical way. Two particles of the same species are connected if

they occupy nearest-neighbor sites on the lattice. Particles of different species
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do not belong to the same cluster, so that we can investigate clustering of

each species, one at a time. In order to find the concentration threshold

for a given molecular species a we must also notice that the particles are

distributed over the lattice according to a given Hamiltonian, from which

the thermodynamics and the correlations between particles are to be derived.

There will be many clusters of a given species a. To each of these clusters

we randomly associate a + or a - tag. In the present context these tags are

mathematical devices labeling each cluster; they do not affect the energy of

the system and therefore have no influence upon its thermal properties. From

our definition of connectivity, it follows that clusters with different tags are not

in contact with each other, otherwise both would be forming a single, larger

cluster, having a single tag. Kikuchi's tagging trick is based on the following

theorems, which are satisfied in the model we consider here [14]:

Uniqueness: In a homogeneous, isotropic mixture of particles for which con-

nectivity of a given molecular species is defined, there cannot exist more than

one infinite cluster of that particular species.

Tag Symmetry: In the most probable distribution of clusters of a given

specIes

N+ = N- for n < 00 ,n n

where N"j: is the number of :I: clusters of size n (size of a cluster is the number

of connected particles in the cluster).

In view of these two theorems it is clear how to define a percolation order

parameter. Let us divide the particles of species a into three categories. Those
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belonging to finite + clusters, those belonging to finite - clusters, and those

belonging to an infinite, + cluster, with fractions pi ' pi and pt" respectively.

The total number densities of ::i:-taggeda particles are

p+ = pi + p~

p = Pi. (1)

By the symmetry theorem pi = pi, therefore

~ = p+- p- = p~ (2)

is the concentration of particles a belonging to an infinitely extending (isotropic)

cluster. That is, ~is the percolation order parameter for species a, it is non-

zero when the species a percolates and zero otherwise.

There are two distributions to be determined in this problem. The dis-

tribution of the three species of (untagged) particles, which is assumed to be

known according to the Hamiltonian of the mixture, and the distribution of

tags over the particles of species a. The most probable distribution of + and

- tags among this species is found by maximizing the entropy of the tagged

system since neighboring a-particles are connected with probability one. Fur-

thermore, configurations of nearest-neighbor pairs a+ - a- are not allowed

since all a's in a cluster have the same tag. Percolation occurs when the con-

centrations of a+ and a- are not equal. The entropy of the system, with the

a species tagged, is approximated in our work here in the pair approximation

of the Kikuchi's cluster variational method[15]. We have a ternary mixture

of species W, 0 and S (W=water, O=oil, S=surfactant). Let us investigate
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clustering of the surfactant, so the S-molecules are tagged with either a + or a

- tag. The concentrations are denoted p, with pS = p++ p-, and are subject

to the constraint pW+ pO+ pS = 1. Let Yij be the fractions of nearest-neighbor

pairs of particles i and j with multiplicity i.lJij(e.g., Yws+ is the fraction of

nearest-neighbor pairs of water and (+ )-tagged surfactant particles, while Y++

refers to pairs of nearest-neighborsurfactant particles tagged with a + . These

configurations have multiplicities 2 and 1 respectively). The pair configura-

tions are also subject to the constraint L:ij i.lJijYij= 1. The entropy per particle

in the pair approximation is given by

S = (2d -1) L:£(pi) - dL:i.lJij£(Yij) , (3)
ij

where £( x) = x In x. We find

S = (2d -1) [pW lnpw + pO In pO + p+ lnp+ + p- lnp-]

-d[Yww InYww + Yoo InYoo + 2Ywo InYwo

+2Yws+ InYws++ 2Yos+InYos+

+2Yws- InYws- + 2Yos- InYos-

+y++ In y++ + Y-- InY--] . (4)

The fractions p and Yare geometrically related to each other. The fractions

of water and oil molecules are respectively given by

pW = Yww + Ywo + Yws++ Yws- ,

pO - Yoo+ Ywo + Yos++ Yos- . (5)

Similarly, the total fraction of tagged surfactant molecules are

p+ = Yws++ Yos++ y++ ,
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p- = Yws- + Yos- + Y-- . (6)

Adding equations (6) we obtain the total surfactant concentration

ps = Yws + Yos + Y+++ Y-- , (7)

where

Yws = Yws++ Yws-

Yos = Yos++ Yos- . (8)

The quantities Yww, Yoo, Yss, Ywo, Yws and Yos are all obtained from the

ensemble distribution dictated by the Hamiltonian model. The percolation

order parameter is obtained by subtracting equations (6)

~ = p+- p- = ~w+ ~o+ Y++- Y-- , (9)

where

~w = Yws+ - Yws- and ~o = Yos+ - Yos- . (10)

The natural independent variables for the percolation transition are ~,~wand

~o. Solving equations (6)-(10) for the tagged unknowns, we obtain

p-3: = (ps:i: 0/2 ,

Yws~ - (Yws:i:~w)/2

Yos~ = (Yos:i: ~o)/2 ,

Y++ = [(pS- Yws- Yos)+ (~- ~w- ~o)]/2

Y-- = [(pS- Yws- Yos)- (~- ~w- ~o)]/2

(11)
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These equations are substituted into (4) and the resulting entropy is then

maximized with respect to the variables~, ~w and ~o. The extremum condition

on the entropy with respect to ~gives

pS + ~ y++
(2d-l)In -~ dIny_- =0. (12)

Let us define an auxiliary variable t by

t = ~ In pS + ~
4d c '",

(13)

such that t = 0 at the percolation criticality (i.e. when ~= 0). We have then

~ = pS tanh(2dt) . (14)

Similarly, the extrema with respect to ~w and ~o give

~w = Yws tanh[(2d - 1)t] ,

~o = Yos tanh[(2d - 1)t] (15)

;,From equations (11), (12) and (13) we obtain

y++ - y-- = (pS - Yws - Yos) tanh[2(2d -1)t] . (16)

Using equations (14), (15) and (16) we can rewrite equation (9) as

pS tanh(2dt) = (Yws + Yos) tanh[(2d - l)t]

+(ps - Yws - Yos) tanh[2(2d-1)t] . (17)

As criticality is approached (i.e. as t -+ 0), we may expand both sides of this

equation. The line of percolation threshold for the surfactant species is then

given by the solution of

s 2d - 1
p = n 1 n(YWS + Yos) . (18)
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Similarly, one obtains the threshold lines for water and oil

pW - 2d - 1(Ywo+ Yws) ,d-2

2d - 1(Ywo + Yos) . (19)pO -

It should be noticed that the same expressions for the thresholds would have

been obtained had we assigned tags to all the three species (e.g. species S

tagged + or -, species W tagged 0 or *, species a tagged t or t), where,

according to our discussion above, one must avoid the pair configurations WO-

w*,at - at and S+ - S-.

In a lattice of coordination number z, Yij is given by

1 "'~ . .Yij = lim N L.i L.i < p'(r) pJ(r + b) > ,
N -00 z r 6

(20)

where the sum in 15goes over all nearest neighbors of site rand < .. . > means

thermodynamic average. Fourier expanding the local densities ~(r) around

their respective equilibrium values in the disordered phase,

pj(r) = ~ + L: ~(k)eik . r ,
k;l:o

(21)

d
.

h 1 . 1. 1 '"
1

ddk
b

.
an usmg t e re atlOn 1m N L.i'.. = -( )d. . . , we 0 tam

N-oo k BZ 211"

. . 1 [ ddk
Yij = p~ tYo+ d lBz (211")d.\(k) Sij(k) .

(22)

(BZ stands for Brillouin Zone.) Here Sij is the structure function given by

Sij(k) = < /(k) ~(-k) > , (23)
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d

and >'(k)= L cos(ki), with ki the ith cartesian component on the vector k.
;;::1

Using equation (22) and the relations

in equations (18) and (19), we obtain the following equation for the percolation

density threshold of a given species a

(l~)2 - n,l 1 pa + Gaa(T, {p}) = 0, a = W,O,S, (25)

where

1

j
1r ddk

Gaa(T, {p}) = d -1r(27r)d >'(k)Saa(k) .

(26)

In the limit of high temperatures, where the particle correlations are vanish-

ingly small, we obtain a mean-field random site percolation threshold

1
a T-::"'00- .

P - 2d - 1
(27)

At finite temperatures, equation (25) must be solved numerically. Further-

more, this equation yields meaningful approximated values for the thresholds

for any temperature as long as the system is in a disordered, isotropic ther-

modynamic state.

In Fig.1 we show the percolation threshold for water clusters as function

of the coupling C defined in the spin-1 model due to Schick and collaborators.

The structure function Sww for this model is calculated in reference[16]. The
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system is in the disordered phase with parameters KI J =0.5 and LI J = -4.0

held at temperature TIJ = 5.0. The concentration ratio w = pW Ips is fixed

at w = 4.0 and the coordinate axis, 4>,measures the concentrations of water

plus surfactant (4) = pW + pS) at (percolation) criticality for water clusters.

The coupling C is a measure of the difference between the interactions of the

surfactant with oil and water in Schick's model. When C < 0 the amphiphile

dissolves better in water than in oil, while for C > 0 the reverse is true. Thus,

by increasing the value of C one can mimic the effect of adding salt to a system

where the surfactant is ionic. Our results show that water clusters percolate

at higher thresholds as the surfactant becomes more lipophilic (hydrophobic).

This is in qualitative agreement with experimental results on water + AOT +

undecane, where 4>was found to increase with salinity[6].

In conclusion, we have introduced a novel approach to study site-correlated

percolation phenomena in lattice models of microemulsions, which is able to

address questions related to the effects of molecular interactions upon the

clustering properties of these systems. The formalism is quite general in the

sense that it is applicable to any ternary mixture of particles, in particu-

lar to any 3-state model for microemulsions. (Binary mixtures of water and

surfactant can be readily treated also.) Equation (25) requires only the knowl-

edge of the structure functions, which can be easily calculated for a variety

of microemulsion models within a local mean field approximation. A general-

ized theory to treat site-bond correlated percolation in microscopic models of

microemulsions[17] will be published elsewhere[18].
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Figure Caption

Figure 1. Percolation threshold line for water particles as function of the
coupling C in the disordered phase of the model proposed by Schick and col-
laborators. The system is at T / J = 5.0 with w = pW /ps = 4.0 and coupling
energies K/J = 0.5 and L/J = -4.0.
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