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A solution is presented for the temperature distribution in  a fluid flowing i n  an eccentric 
annulus formed with circular cylinders under the assumption of slug flow. The flow is  assumed 
to be fully developed thermally with constant thermophysical properties. The outer surface is 
assumed t o  be adiabatic and the inner surface temperature is assumed to be independent of 
circumferential position. General expressions and numerical results for a typical set of conditions 
are presented for the quantities, local heat flux, local heat transfer coefficient, adiabatic 
surface temperature distribution, and average Nusselt number. The application o f  the present 
results to the prediction of turbulent heat transfer to liquid metals is indicated, and a compari- 
son with other liquid metal heat transfer analyses is presented. 

One of the critical problems encountered in the longi- 
tudinal flow in close-packed tubular heat exchangers is 
that of tube misalignment For example, Friedland, Dwyer, 
Maresca, and Bondla (1) observed variations by a factor 
of 2 to 4 of the average Nusselt number between different 
tubes in such an array. These investigators attributed this 
variation principally to the effect of tube misalignment in 
an initially geometrically symmetrical array. 

An exact solution for the laminar flow velocity and 
temperature distributions between cylinders arranged in 
symmetrical triangular or square arrays has been pre- 
sented by Sparrow and Loeffler (2, 3 ) .  Deissler and 
Taylor (4) have analyzed the turbulent flow case using 
an approximate graphical technique. Dwyer and Tu (5) 
have presented a n  approximate analysis for turbulent flow 
heat transfer through bundles in which the model of an 
annulus was assumed. In this model, the hexagonal sec- 
tion associated with each tube is replaced by an imaginary 
annulus surrounding the tube such that the cross-sectional 
area of the annulus equals the hexagonal cross-sectional 
area associated with each tube. Sparrow and Loeffler (3) 
showed that for laminar flow, the approximate annulus 
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model predicts the average Nusselt number with an error 
of less than 5% from the exact value for tube-spacing 
ratios (ratio of tube center distance to tube diameter) as 
low as 1.5. The error becomes even less at higher spacing 
ratios, and for turbulent flow, the error would be less than 
that for Iaminar flow at the same spacing ratio. 

This background for the symmetric case suggests the 
use of an eccentric annulus as a model representative of 
the flow around a misaligned tube in an otherwise sym- 
metric array. The purpose of the present investigation is 
to analyze the temperature distribution in an eccentric 
annulus assuming slug flow. Hartnett and Irvine (6)  
have shown that the slug flow Nusselt number is useful 
in estimating the total Nusselt number for liquid metals 
flowing in noncircular passages. 

In the analysis, a thermally fully developed flow will 
be assumed with constant heat rate per unit length of the 
inner surface. The outer surface will be assumed to be 
adiabatic. The temperature on the inner surface will be 
assumed to be independent of circumferential position. As 
pointed out by Hartnett and I ~ i n e  (6 ) ,  these boundary 
conditions represent one of three classes of boundary 
conditions of technical interest in noncircular duct heat 
transfer. 
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Fig. 1. Eccentric annulus geometry. 
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o Fig. 3. Outer tube surface temperature dis- 
Fig. 2. Local heat flux on inner tube surface. tribution. 

THE ANALYSIS 

The geometry considered in the present analysis is 
shown in Figure 1. The governing equation for the tem- 
perature distribution is 

For a thermally fully developed flow, the temperature 
A T  
"1 

gradient - must be a constant (7). This condition plus 
a2 

the assumption of constant thennophysical properties and 
slug flow mean that the left-hand side of Equation (1) is 
constant. 

The boundarv conditions assumed are that T = Ti 
a? 

along TI and - = 0 along TZ.  The condition along TI 
an 

assumes that at any Z location, the inner surface tempera- 
ture is independent of peripheral position. The inner 
surface temperature TI will vary linearly with Z because 
of the assumption of constant heat rate per unit length 
of the inner surface. There will be a peripheral variation 
of local heat flux on the inner surface. The boundary con- 
dition along T2 expresses the fact that the outer surface 
is assumed to be adiabatic. Other possible boundary con- 
ditions are discussed in reference 6. 

Because of the asymmetry of the geometry, cylindrical 
coordinates cannot be used, and bipolar coordinates (8) 
are appropriate. Je&ey (9) has shown the utility of bi- 
polar coordinates in treating two dimensional problems 
involving two circles of arbitra radii and center distance. 7 The problem is then to trans er Equation (1) and the 
boundary conditions to bipolar coordinates and obtain a 
solution in this coordinate system. El-Saden (10) has 
recently considered the problem of heat conduction with 
internal sources in an eccentrically hollow cylinder. The 
geometry and governing differential equation for this 
problem are identical to the present problem; however, 
the boundary conditions are different for the two cases. 
Consequently, the general solution obtained by El-Saden 
is applicabIe to the present problem, and the constants 
appearing in the general solution may be determined 
from the boundary conditions of the present problem. The 
algebraic details are laborious and tedious, and only the 

final result will be presented here. Many of the algebraic 
details are contained in reference 10. The solution for the 
dimensionless temperature distribution may be written 
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flux. I t  is clear that large temperature vmiations can occur 
along the adiabatic surface for high eccentricities, 

AVERAGE NUSSELT NUMBER 

An expression for the average Nusselt number can be 
obtained by starting with the definition 01 a: 

. - - 
k an 

When the total heat flux per unit length is written as 
a x 

Q = ~ T T ~ ~ ( T I - T ~ )  = p U A C p -  
az ( 6 )  

o and Equations (5) and (6) are combined, we get 
0 0.2 0.4 0.6 0.8 I .O 

sb 
T - TI  

(r= 

c2- n T I  
(7)  

Fig. 4. Average slug Nusaelt number. 2-It-  ( T I - T b )  
k A 

where is the average heat transfer coefficient and A  is 
the cross-sectional area. Since the inner surface tempera- 
ture is uniform in the circumferential direction, we may 
write 

The heat transfer parameters of interest can now be 2  
determined from the temperature distribution of Equation n - T b =  ( T i - T ) b = : - $ S  ( T l - - T ) d A  (8) 

A  
xaic (2) .  
- the where the integration is to be performed over half the 

[t INNER SURFACE HEAT FLUX DISTRIBUTION area owing to symmetry. When the average Nusselt 
number is defhed in teims of the hydraulic diameter by 

The local heat flux at the inner surface can be evalu- the expression - ated from the Fourier equation - h 4v (rz2 - 1 ' 1 ~ )  
NU=- 

k 2w (rz + T I )  
(9) 

t% ( 3 )  and Equations (8) and (9) are substituted into (7) one 

where n is the direction normal to the inner surface. With 
the relations between physical and bipolar coordinates 

(20) 
expressed by Equations ( 2 f )  and ( 2 g ) ,  it can be shown 
that . . 

1 - cosh a cos 5  aT 
cos 81 (4) 

(2bf where 81 is the angular position measured by a radius 
vector with center at S I  and the relationship between f 

~ E c )  and 81 along T I  is 
sinh a! sin 5 

tan 81) = 
C O S ~  a cos 5  - 1 ( 4 4  

(Ld) With Equations ( 3 ) ,  ( 4 ) ,  and (4a) ,  the local heat 
flux at the inner surface was calculated. The results are 
shown in Figure 2 for two eccentricity values of 0.6 and 

r2 
Q2e) 0.8 and for a radius ratio of - = 3.5. The ordinate of 

T l  

Figure 2 is the ratio of local to average heat flux around 
lw  the inner surface. It is seen that the heat transfer is high- 

est in the region of maximum separation of the surfaces 
and decreases monotonically to a minimum on the side 

i 2:) of minimum separation. 

i*) ADIABATIC SURFACE TEMPERATURE DISTRIBUTION 

The temperature distribution around the outer surface 
f2i) can be obtained from Equation ( 2 )  by the substitution 

7  = /3 where /3 is a constant determined by Equation 
( 2 j ) .  The temperature distribution is shown in Figure 3  

(2j) Tz 
for eccentricity values of 0.6 and 0.8 and for - = 3.5. 

n 

(241 
The maximum temperature occurs on the side of minimum 
separation, 180 deg. from the position of maximum heat 

obtains 
1  

-=- 
2 ~ 2 r i J S a d A  

- 
NU w ( ~ - ~ ~ ) 5 ( r ~ + r i ) a  

(10) 

Since the solution for a is in terms of (f, ?) variables, 
the eIement of arer dA = dx d y  must be expressed in 
terms of (5, r l )  variables. With the transformation 

d A = d i d y = J  (5,111 @d7, (11)  
where 

and Equations (2 f )  and ( 2 g )  the expression for d A  be- 
comes -.- .- 

dA = 
c2 & dv 

(cosh i j  - cos 5 )  
Substituting Equation ( 1 2 )  into Equation ( 1 0 )  gives 

1  2  (sinh a) 
-= - 

2 

NU w(z-1)3(;+l) 

0 

(cosh 7  - cos f )  
* d 7  ( 1 3 )  

The double integration of Equation ( 1 3 )  was per- 
formed graphical1y;and the average Nusselt number as 
a function of eccentricity is shown in Figure 4 for 

- =  r2 1.94. This value was chosen to correspond to the 
9.1 
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Fig. 5. Average Nusselt number calculated from Equation (16). 

annulus model in a tube array with a pitch-to-diameter 
ratio of 1.375. For the limiting case of concentric annuli, 
the equation for the average Nusselt number may be 
written ( 1 1 )  

It is clear from Figure 4 that a considerable reduction in 
average Nusselt number occurs at high eccentricity. 

APPLICATION TO LIQUID METAL HEAT TRANSFER 

The expression suggested by Lyon (12), Hartnett and 
Ilvine ( 6 )  and others for estimating the turbulent Nus- 
selt number for liquid metals is 

Nu = c~ Nu)s + cz (Pe) O.8 (15) 

where Cr and Cz are constants and Nu)s is the slug Nus- 
selt number. Hartnett and Irvine ( 6 )  suggested the val- 
ues Ci  = 0.667 and Cz = 0.025 to provide the closest 
agreement between Equation (15)  and experimental tube. 
data. For lack of a better assumption, the same values will 
be assumed applicable in the present analysis so that the 
equation 

NU = 0.667  NU)^ + 0.025 (Pe)O.S (16) 

is to be used for the prediction of turbulent Nusselt num- 
bers for liquid metals. 

Values of Nu horn Equation ( 1 6 )  are shown in Figure 
5 for various values of eccentricity including zero eccen- 
tricity. Shown also is the curve of Nu vs. Pe from the 
analysis of Dwyer and Tu (5) for the concentric annulus. 
For zero eccentricity, the value of Nu given by Equation 
( 1 6 )  differs from the Dwyer-Tu value by less than 1% 
at Pe = 100 and by 8% at Pe = 10,000. For small values 
of Pe, the effect of eccentricity in reducing the average 
Nusselt number is very pronounced. For example, at 
Pe = 100, the value of Nu for an eccentricity of 0.9 is 
reduced by a factor of 2.3 below the value for the con- 
centric case. 
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NOTATION t'( 
A = flow area = r (r22 - ri2) 
An, Bn, E, F = constants defined by Equations ( 2 )  
c = length defined by Equations (2h)  
C p  = heat capacity at constant pressure 
e = eccentricity = (rz - T I )  

h = heat transfer coefficient 
k = thermal conductivity 
Nu = Nusselt number defined by Equation (9) 
Pe = Peclet number 
q = heat flux 
Q = total heat transfer per unit length of inner cylin- 

der 
r i ,  r2 = inner and outer radii, respectkely 
2' = temperature 
Ti = inner surface temperature 
Tb = bulk temperature defined by Equation (8) 
U = slug flow velocity 
x, y, z = space coordinates defined in Figure 1 

Greek Letters 

a, /3 = constants d e h e d  by Equations (2 i )  and (21) 
y = radius ratio = ri/ra 
7, f = curvilinear coordinates defined by Equations 

( 2 f )  and ( 2 g )  
p = fluid density 
a = dimensionless temperature difference defined by 

Equation (2a)  
= eccentricity ratio = e /  (n - T I )  

Subscripts F 
1 = inner surface 
- = outer surface 
0 = average 
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