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Abstract 

In this paper, a load sharing problem involving the optimal load allocation of very 

long linear data files over N processors interconnected in a bus-oriented network is 

investigated. Two distinct types of bus networks are examined in the case when there 

is more than one such outstanding divisible job in the network. These are a network 

with load origination at a control processor and a network with load origination at 

a computing processor. In both cases, it is assumed that each processor is equipped 

with a front-end processor for communications off-loading. It is found that a multi- 

job scheme outperforms a single-job scheme in terms of the total solution finish time. 

Closed form solutions and simple recursive algorithms for the determination of the 

optimal load allocation are also presented. 



&y : Greek letter alpha with hat, 

subscript English letter small i, superscript English letter small m 

a7 : Greek letter alpha, 

subscript English letter small i, superscript English letter small m 

Z : English letter capital Z 

wi : English letter small w, 

subscript English letter small i 

T : English letter capital T, 

subscript English letter small c and m, superscript English letter small m 

T : English letter capital T, 

subscript English letter small c and p, superscript English letter small m 

TT : English letter capital T, 

subscript English letter small f, superscript English letter small m 

k;: English letter small k, 

subscript English letter small i 

I'i: Greek letter capital Gamma, 

subscript English letter small i 

u:: English letter small u, 

subscript English letter small n, superscript English letter small m 

v,": English letter small v, 

subscript English letter small n, superscript English letter small m 



1. INTRODUCTION 

In recent years, there has been of great deal of interest in distributed sensor networks 

[20]. In distributed sensor networks, measurements are made by spatially distinct sensors. 

The data is, then, broadcast to a site where the spatially disparate readings are fused so 

that meaningful decisions can be made regarding these measurements. One major issue for 

distributed sensor networks is the trade-off between communication and computation (121. 

That is, the decision of how much time should be spent to communicate the measurements 

and how much time should be spent to process (compute) the measurements becomes an 

important problem. 

Related to the distributed sensor network problem are a number of papers which deal 

with scheduling and load sharing in multiprocessors [9,19]. However most work assumes that 

a job can be assigned to at most a single processor. Only recently has there been interest 

in multiprocessor scheduling with jobs that need to be assigned to more than one processor 

18, 13, 211. 

Recently there has been work on a load sharing problem involving a divisible job. A 

divisible job is a job that can be arbitrarily partitioned in a linear fashion among a number 

of processors. Applications include the processing of very long linear data files as in signal 

and image processing and Kalman filtering. 

In [lo], recursive expressions for calculating the optimal load allocation for linear daisy 

chains of processors were presented. This is based on the simplifying premise that for an opti- 

mal allocation of load, all processors must stop processing at the same time. Intuitively, this 

is because otherwise some processors would be idle while others were still busy. Analogous 

solutions have been developed for tree networks [ll] and bus networks [I, 2). Asymptotic 

solutions for systems with large or even an infinite number of processors and limitations in 

performance when adding processors appear in (3, 151. Closed form solutions were presented 



in [4] for bus and tree architectures where processor and link speeds are homogeneous. In 

[17], the concept of an equivalent processor that behaves identically to a collection of proces- 

sors in the context of a linear daisy chain of processors and a proof that, for a linear daisy 

chain of processors load sharing a divisible job, the optimal solution involves all processors 

stopping at the same time are introduced. An analytic proof for bus networks that for a 

minimal time solution all processors must stop computing at the same time appears in [18]. 

Previous proofs were heuristic. The equivalence of first distributing load either to the left 

or to the right from a point in the interior of a linear daisy chain is demonstrated in [14]. 

Optimal sequences of load distribution in tree networks are described in [5, 161. A new load 

distribution strategy for tree networks [6] and linear daisy chains [7] has also been discussed. 

All this previous work concentrated on investigating more efficient ways of distributing 

load to minimize the total solution time under the premise that there is only one job present 

in the network. However most practical computer systems operate in an environment where 

multiple jobs may be submitted. An intriguing question is how to efficiently handle the 

submission of multiple divisible jobs in a distributed network. Under a naive, single-job 

scheme, a distributed network sequentially processes one job at a time. In this paper we 

propose a more sophisticated multi-jo b scheme for bus networks that exploits the special 

structure of a divisible job on a bus network to yield a smaller finish (solution) time than 

the single-job scheme. 

This paper is organized as follows: Closed form solutions and simple recursive algorithms 

for the determination of the optimal load allocation for two types of bus networks - a 

network with load origination at a control processor and a network with load origination 

at a computing processor - are presented in section 2 and 3, respectively. In section 4, a 

performance evaluation is presented which compares the single-job scheme with the multi-job 

scheme. Finally the conclusion appears in section 5. 



2. ARCHITECTURE 1: 

LOAD ORIGINATION AT A CONTROL PROCESSOR 

Consider first the case where the network model consists of a queueing system for incom- 

ing jobs, a control processor for distributing the processing load, and N processors attached 

to a linear bus as in Fig. 1. New arriving jobs enter the queueing system and wait there for 

service. In this paper, the queueing system is assumed to be large enough in size so that 

there are no turned away, lost or blocked jobs. It is also assumed that the service discipline 

of the queueing system is first-in first-out (FIFO). Under the supervision of the control pro- 

cessor, one of the waiting jobs in the queue can be delivered to the processor. The control 

processor distributes the processing load among the N processors interconnected through 

a bus type communication medium in order to obtain the benefits of parallel processing. 

The control processor does no processing itself. Each processor is equipped with a front-end 

processor to make it possible to compute and communicate simultaneously. Put another 

way, the front-end processor handles communication duties and allow the main processor to 

concentrate on computation. Each processor may have a different computing speed. 

The following notations will be used throughout this paper: 

&r : The fraction of the entire processing load of the mth job that is assigned to the ith 

processor in the single-job scheme. 

ay : The fraction of the entire processing load of the mth job that is assigned to the ith 

processor in the multi-job scheme. 

Z : The inverse of the channel speed of the bus. 

wi : The inverse of the computing speed of the ith processor. 



T,", : The time that it takes to transmit the entire set of measurement data of the mth job 

over the channel when Z = 1. 

T z  : The time that it takes for each processor to process (compute) the entire load of the 

mth job when w; = 1. 

Tf" : The finish time of the entire processing load of the mth job. 

The timing diagram for the bus network with load origination at a control processor in 

the single-job scheme and the multi-job scheme are depicted in Fig. 2 and Fig. 3, respectively. 

In these timing diagrams communication time appears above the axis and computation time 

appears below the axis. It is assumed that at the time of origin, the network with queueing 

system has already received more than one job from outside so that multiple jobs are in 

the queue and all the processors are idle, and the control processor starts distributing the 

first available job's load to the other processors through the bus. In Fig. 2, it takes a time 

B$7T:m for the control processor to transmit the first fraction of the first job's load to the 

first processor and a time &;ZT:! to transmit the second fraction of the first job's load to 

the second processor, and so on. Then after the first processor completed receiving the load 

from the control processor which is an amount of &: of the entire load of the first job, it 

can start computing immediately and it will take a time of &:wlT,', to finish. The second 
- - - - - - -  

processor also completesreceiving the load from the control processor at time (8: + &:)ZT& 

and it will start computing for a duration of B:W~T;~ of time. This procedure continues 

until the last processor. For optimality, all the processors must finish computing at the 

same time. Intuitively this is because otherwise the solution time could be improved by 

transferring load from busy processor to idle one [17, 181. The single-job scheme is the 

scheme in which the load distribution of the next job is started only after the completion of 

the current job's computation (T;). Therefore, starting with the second job, the time that 

each processor waits for its processing load to be received is wasted. That is, the durations 



&;"ZTZ, (by + & y ) Z T z , .  . . , (&;" + by + . + &E)ZTz  for m = 2 , 3 , .  . . , are wasted in 

processor 1, processor 2, . . . , processor N,  respectively. 

The proposed multi-job scheme, on the other hand, is based on the idea that one wants to 

reduce the wasted time between two consecutive jobs. Therefore, in this scheme, the control 

processor dose not need to wait until the finish time of the previous job's processing and can 

start distributing the load immediately after it finishes the transmission of the previous job's 

load so that those processors which have completed receiving their processing load prior to the 

completion of the previous job's computation (Tf ) can start their computation immediately 

after Tf . Clearly, one can significantly reduce the overall processing time starting with the 

second job in this multi-job scheme. Furthermore, this multi-job scheme is optimum. The 

reasons why it is optimum will be discussed later. 

Now, the closed-form solutions to find &$ for the optimal load allocation for each pro- 

cessor in the single-job scheme which appears in [I81 will be briefly reviewed. Following this, 

the recursive algorithm to find a$ for m > 2 for the optimal load allocation in the multi-job 

scheme will be examined. 

2.1. Closed-Form Solution to Find in the Single-Job Scheme 

Since distributing the processing load is done in the same fashion for every job in the 

single-job scheme and for the first job in the multi-job scheme, the closed-form solutions to 

find by and a: are the same in both cases. The case of finding by for the mth job in the 

single-job scheme will thus solely be reviewed. 

As proved in [18], the minimum time solution occurs when all processors finish their com- 

putation at  the same time. Based on that fact, one can set up the following set of equations 

from Fig. 2. This equates the computation time of the ith processor to the transmission plus 

computation time of the i + 1st processor. Although Fig. 2 shows the timing diagram only 



for the first job and the second job this section will demonstrate the closed-form solution to 

find the optimum fraction &y for the general mth job. 

This equation can be solved as 

where 

Here ki can be directly found from the system parameters (wi ,  Z )  and the size of the mth 

job ( T z ,  T,"). Since the fractions of the total processing load should sum to one, can be 

obtained by the normalization equation. 

Once ti;" is found, one can easily calculate the rest of the load allocation fractions (AT,  &?, . . . , &F) 

by using Eq.(2). Note that the single-job scheme is optimal if only a single job is to be solved. 

When multiple jobs are involved it is not optimal, as the following sections will demonstrate. 

2.2. Algorithm to  Find a? in the Multi-Job Scheme: 

When TT-' 2 ZTz--' + Z T z  for rn 2 2 

This section will consider the case that the transmission of the mth job's processing load 

is started immediately after the control processor finishes the transmission of the (m - 1)st 

job's processing load and is finished before the completion of the (m - 1)st job's computation 



(TT-') as shown in Fig. 4. In other words, the location of Tfm-' is placed after the time 

that the transmission of the mth job's processing load is finished. In this case, the algorithm 

to find the ar  is very simple. Note that Fig. 4 shows the timing diagram only for the 

first two jobs and the transmission time for each fraction of load is abbreviated to only its 

corresponding fraction (e.g., a: ZT:m just as a:). For our purposes one may think of the first 

job as the (m - 1)st job and the second job as the mth job. 

Since all the processors have received their processing load prior to the finish time of 

the previous job (TT-') they can simultaneously start their computation immediately after 

TT-' and finish their computation at the same time for a minimal solution time. Therefore, 

the processing time in each processor is the same. That is, 

and those equations can be further expressed as a function of a;". 

As the normalization equation states that the sum of the fractions of the total processing 

load is one, a? can be obtained. 

Therefore, one can derive a simple closed-form solution. 

Note that since there is no wasted time between the consecutive jobs in every processor, 

the total required processing time for the mth job (Tf" - TY-') is minimized compared to 

any other cases. 



2.3. Algorithm to Find ar in the Multi-Job Scheme: 

When TY-' < ZT:-l+ ZTG for rn > 2 

This subsection will consider the case when Ty-' is located somewhere during the trans- 

mission period of the mth job's load. That is, some of the processors which have received 

their processing load before Tfm-' can start their computation immediately after TT-l while 

the other processors which did not receive their processing load yet have to wait some period 

of time for their processing load to be delivered. In Fig. 5, again one can think of the first 

job as the (m - 1)st job and the second job as the mth job. The processing finish time of the 

(m - 1)st job's load (Tfm-') is in the transmission of the nth fraction of the mth job's load. 

Let denote the time interval between TT-' and the time that the ith processor receives 

its processing load for the mth job. Thus processor 1 to processor n-1 can start their com- 

putation immediately after Tfm-' while processor n, processor n+1, . . . , processor N have 

to wait I', , . . . , rN amounts of time to receive their processing load and start their 

computation at time Tfm-' + I?,, ~fm-' + . . . , Tf"-' + rN, respectively. 

Now let us derive the algorithm to find am which minimizes the  total s ~ l u t i o a t i m e ~  
- - - - - - - - - - - - - - -  

a -  - - - - - - - - - - 
- - 

- - - - - - - - - - - - - - - -  

We will assume that all processors must stop at the same time. The processing time of 

processor 1 to processor n- 1 is the same since they simultaneously start their computation 

and finish it at the same time. 

Therefore, 

w1 Qr = -a; i =  1,2, ..., n -  1 
W i  

The next step is to find an expression for I?;, which is the time interval between T?-* 



and the time the it h processor receives its processing load. 

The processing time of the ith processor to compute its processing load is then 

Now consider the processing time taken by the nth processor to compute its processing load, 

i.e., the processing time when i = n. 

Here a: can be expressed by rearranging, as a function of a? since a?, a?, . . . , a:-:_, are 

function of aT; as found previously. 

Here u: and v: are constants which are functions of system parameters (2, w;), the com- 

putation size of the (rn - 1)st job (Tg-I), the size of the mth job (T,", T g ) ,  and (a;-'). 

Let us consider the case for the next processor, i.e., when i = n + 1. 

' Here a;-' is assumed to be a known value because this is the fraction found when the (m - 1)st job is 

distributed. 



Again a,"++, can be expressed as a function of a?. 

where and v,"++, are also constants since ur and v r  have been found previously. 

One can see that this procedure can be continued up to the case where i = N. Then every 

fraction that the originating processor should calculate to achieve the minimum solution time 

is found as a function of a?. 

Once all a: have been found, a? can then be calculated from the normalization equation. 

As a summary of this section, let us rephrase the algorithm to find ar when the case 

' a ;  
a? = W i  



n-1 

where it is defined that C u r o r  v y  = 0. 
i=n 

2.4. When the position of ~ f m - '  is  changed due to the new values of cry 

Reading along so far, one should understand that an unrealizable situation has been 

described as one can ask how can one determine in which fraction of transmission Tfm-' is 

located even before the actual values of a3 are calculated. Actually it may seem impossible 

to determine the location of Tfm-' because to do that, all values of ar should be calculated 

first and to calculate the values of ar, the location of TY-' should be decided, and so on. 

But this dilemma can be resolved in the following recursive fashion: First, identify the 

location of TT-' by using the values of 83  calculated in the single-job scheme. Since only 

the values of the system parameters and the size of mth job are required to calculate b?, 

one can easily compute &3 by the closed-form solution described in section 2.1. Next the 

location of Tfm-' can be decided. Once the location of Tfm-' is known, tentative ar can be 

computed by the algorithm described in the previous section. 

In the next step, one investigates the location of Tfm-' as in Fig. 6. If the location of 

TT-' is changed from 8: to a:+:+, or even to a:+:+,, a:+:+,, . . . , then one simply increases the 

value of n to the corresponding new value, n + 1, n + 2, . . ., and calculates the values of the 

C Y ~  again. The process is repeated until the location of Tfm-' is not changed when comparing 

the location of TT-' with the previous values of a? and with the new values of cry at the 

time of each iteration. 

Note that when it is said that the position or location of Tfm-' is changed it means that 

the fraction in which Ty-' is located is changed. Actually, T?-' itself is not changed and 

depends only on the previous job's load. 

Let us give an example. Suppose that there is a bus network with 5 processors. For 



the second job, first calculate &f by the closed-form solution with the single-job scheme 

( . . . , ) If Tf is located in the transmission of the second fraction (&;), set n = 2 

and calculate the new values of a: by the algorithm of the multi-job scheme (a:, a:, . . . , a:). 

Now if T: is located in the transmission of the fourth fraction (a:) when reidentifying the 

location, reset n = 4 and recalculate at. If the location of T; is still in the transmission 

of a: after recalculation and reidentification, then stop. In practice, however, the case such 

that the location of T; is changed after the second iteration is rare. 

Note that the value of n never decreases in each iteration. It always increases. This is 

because the earlier parts of the fractions (e.g., a:, a:) become smaller and the latter parts 

of the fractions (e.g., a&-, , a&) become larger with each iteration. 

2.5. Is This Multi- Jo b Scheme Optimal? 

For a single job, the load distribution strategy is optimal if the finish time of each 

processor is the same. But what of the multi-job scheme? Is this optimality still valid in 

multi-job scheme? The answer is that for the given load distribution sequence and network 

configuration, the multi-job scheme is optimal. 

For each individual job in the multi-job scheme, the minimum finish time occurs when 

all the processors finish computing at the same time, otherwise one can improve the finish 

time by transferring the load from busy processors to idle processors. Then how about when 

one considers the performance criteria to be the overall processing time of all jobs? For 

instance if there are 10 jobs in the system, is this multi-job scheme also optimum in terms 
p p p p p p p p p p p p p p - - - - - - - - - - - -  

of fthe 10th 703's procGsihg finish time? To answer this question in the negative one might 

come up with a strategy to close the gaps I', to rN and achieve a time performance which 

is less than the multi-job scheme. However there will be serious disadvantages in closing 

the gaps so that the result will actually be worse for the following three reasons. First, the 



processing finish time will be higher for the first job and possibly some of the next few jobs. 

This is because except for the last job the other jobs will not have the property that each 

of its load fractions are finished processing at the same finish time. The second problem 

is that the distribution of a given job will depend not only on its own size but also on the 

size of the other jobs. Since this is purely deterministic system it is not causally possible to 

determine the size of the future job which might not be even exist. The last reason is that 

one cannot actually close the gaps if the computational load of the (m - 1)st job is small 

(Tg-' is small) and the communication load of the mth job is relatively large (TE is large). 

Therefore this proposed multi-job scheme is an optimal load distribution strategy. 

3. ARCHITECTURE 2: 

LOAD ORIGINATION AT A COMPUTING PROCESSOR 

The bus network to be examined in this section is the one with load origination at a 

computing processor as in Fig. 7. As with the case of the network with load origination at a 

control processor, arriving jobs first enter a queuing system and wait for service. One of the 

one of the N processors. Without 

loss of generality, we will assume this is processor 1. Processor 1 distributes the processing 

load of the received job among the other processors for parallel processing. Each processor is 

equipped with a front-end processor for communications off-loading. That is, the processors 

can communicate and compute at the same time. It is also assumed here that each processor 

may have a different computing speed. 

As one might guess, the solution procedure to find the best fractions for optimal load 

allocation is very similar to the case of a network with load origination at a control processor. 

In particular, the closed-form solutions to find By (single-job scheme) and at are exactly 



the same. On the other hand, the algorithm to find a3 for m 2 2 in the multi-job scheme is 

similar but not identical to that for a network with load origination at a control processor. 

The difference is that the originating processor (processor 1) in this case does not need to 

transmit its own fraction (a?) of the load. The following will describe the procedure to find 

a?. 

When ~ f m - '  2 (1 - a y - l ) Z T ~ - ~  + (1 - a;")ZTg as in Fig. 8, the resulting equations are 

the same as in section 2.2, specifically Eq.(8) and Eq.(9). But there is a difference. In the 

case where the load is distributed at a control processor, the total amount of the transmission 

time for one job was independent of how the control processor assigns the fractions (a?) 

or where Tfm-' is located. That is, the total amount of the transmission time for the mth 

job was a fixed value (ZTG). But in the case where the load is distributed at a computing 

processor, it is not. Since the total amount of the transmission time where the load is 

distributed at a computing processor is (a; + a," + + a$)ZTE = (1 - a y ) Z T z ,  there 

is a strong dependency on the value of a?. In other words, the smaller the value of a?, the 

larger the total amount of the transmission time, and vice versa. Therefore, it is possible for 

the following case to exist. When first determining the location of Tfm-' in the algorithm 

in section 2.4 by using the values of the load allocation fractions in the single-job scheme 

(&?, 8 5 . .  . , &;), Tfm-' is located after the time that processor 1 finishes the transmission 

of the mth job's load. So one might calculate the new values of the fractions (a?) simply by 

using Eq.(8) and Eq.(9). But when identifying the location of ~ f m - '  again after calculation, 

it is possible that the new location of Tfm-' is placed before the end of the transmission as 

in Fig. 9. This is because, as mentioned before, the early fractions becomes smaller and the 

latter fractions becomes larger in the multi-job scheme compared to the single-job scheme. If 

this happens, the situation becomes the case that Tfm-' < (1 - ay-')ZT;-' + (1 - a?)ZT,", . 

One more thing that must be pointed out is that as one can see in Fig. 9 it takes less time 

to transmit the mth job's load in the single-job scheme than in the multi-job scheme because 



the multi-job's total transmission time is longer than the single-job's. However, the total 

processing time (Ty - ~ 7 - l )  to compute the mth job's load in the single-job scheme takes 

longer than that in the multi-job scheme because if the load allocation fractions calculated 

in the single-job scheme are used in the multi-job scheme then, for jobs after the first job, 

each processor does not finish its computation at the same time. This increases the solution 

time. This is because the single job load fractions are based on the assumption that there is 

waiting time. 

When Tfm-' < (1 - Q;-~)ZT;-~ + (1 - a;")ZTG, the resulting equations are very 

similar to those in section 2.3, specifically Eq.(18) to Eq.(21). The only difference is that 
n-1 

w1 
the summation term in the numerator of uy is the sum of from k = 2 to n - 1 or - 

k=2 W k  

in the case where the load is distributed at a control processor while the summation term in 
n-1 w1 the numerator of uy is the sum of $ from k = 1 to n - 1 or x- in the case where the 
k=l Wk 

load is distributed at a computing processor. 

4. PERFORMANCE EVALUATION 

Based on the previous results, some performance evaluation results were computed for 

various cases - the single-job scheme and the multi-job scheme for the network with load 

origination at a control processor and the network with load origination at a computing 

processor. In each plot, the total solution finish time is drawn against the number of jobs. 

In this section, the total number of presented jobs is 10 and no new jobs arrive. That is, 

the queue initially contains 10 jobs. There are five processors in the network, and it is 

assumed that the values of the channel speed, the computing speed of each processor and 

communication load for every job are assigned to unity (2, all wi's, T g  = 1 for all m). 

In Fig. 10, the total solution finish time is plotted against the number of jobs when 



the computational load of every job is 6 (T; = 6 for all m) which is a relatively 

medium load in comparison with communication load which is set to one and with five 

processors. Since the computational load for every job is the same, the total solution 

finish time is linear in the single-job scheme. Clearly, the the multi-job scheme is 

superior to the single-job scheme in terms of the total solution finish time. 

Fig. 11 and Fig. 12 plot the solution time when the computational load of the first 

half of 10 jobs is 10 (T," = 10 for m = 1,2,-, 5, heavy computational load) and that 

of the second half of 10 jobs is 3 (T; = 3 for m = 6,7, , l o ,  light computational 

load), and vice versa for the single-job scheme and for the multi-job scheme for the 

network with load origination at a control processor and for the network with load 

origination at a computing processor. Naturally, the total solution finish time of the 

last job in the single-job scheme is the same no matter what order the computational 

load is assigned although there is some difference in the total solution finish time in the 

middle of the processing of the given jobs. However, for the multi-job scheme assigning 

the job with the heavy computational load first and the one with light computational 

load last causes a reduction of the total solution finish time at the end of processing. 

This is because serving the heavy computational load first results in a timing diagram 

like Fig. 4 rather than Fig. 5. If there are several heavy jobs ahead of the light jobs, 

the load distribution will be done much ahead of the time of its computation and 

this means there is no wasted time or less waiting time between the consecutive jobs. 

Therefore, if it is possible to assign the order of service at one's convenience, i.e., the 

service discipline is not restricted to FIFO, assigning heavy computational load first 

can reduce the overall solution finish time. 



CONCLUSION 

In this paper, an efficient strategy for optimal load allocation for bus networks with 

multiple jobs is discussed. Starting from the second job in the multi-job scheme, it is found 

that one can reduce the total solution finish time by comparison with the single-job scheme. 

It is also found that in the multi-job scheme the overall job computing finish time can be 

futher reduced by assigning jobs with a heavy computational load job first. 
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Figure Captions 

Figure 1. Bus network with load origination at a control processor. 

Figure 2. Timing diagram for the bus network with load origination at a control processor 

in the single-job scheme. 

Figure 3. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme. 

Figure 4. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme when Tf 2 ZTL + ZTk. 

Figure 5. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme when Tf < ZT& + ZT;. 

Figure 6. Transmission timing diagram for the bus network with load origination at a 

control processor in the single-job scheme and in the multi-job scheme. 

Figure 7. Bus network with load origination at a computing processor. 

Figure 8. Timing diagram for the bus network with load origination at a computing pro- 

cessor in the multi-job scheme when T; 2 (1 - cri)ZTA + (1 - a:)ZTZm. 

Figure 9. Transmission timing diagram for the bus network with load origination at a 

computing processor in the single-job scheme and in the multi-job scheme. 
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Figure 10. Total solution time when Tg = 6  for all m. 

Figure 11. Total solution time for network with load origination at a control processor 

when Tg = 10 for m = 1,2, .  . . , 5  and T," = 3 for m = 6,7 , .  . . , l o ,  and vice versa. 

Figure 12. Total solution time for network with load origination at a computing processor 

when Tg = 10 for m = 1,2 ,..., 5 and T," = 3 for m = 6 ,7  ,..., 10, and vice versa. 
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Figure 1. Bus network with load origination at a control processor. 
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Figure 2. Timing diagram for the bus network with load origination at a control processor 

in the single-job scheme. 
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Figure 3. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme. 
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Figure 4. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme when Tf 2 ZTL + ZT&. 
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Figure 5. Timing diagram for the bus network with load origination at a control processor 

in the multi-job scheme when Tf  < ZT:m + ZTzm. 
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Figure 6. Transmission timing diagram for the bus network with load origination at a 

control processor in the single-job scheme and in the multi-job scheme. 
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Figure 7. Bus network with load origination at a computing processor. 
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Figure 8. Timing diagram for the bus network with load origination at a computing 

processor in the multi-job scheme when Tf > (1 - a:)ZT:m + ( 1  - a:)ZTA. 

Processor 3 I ajwd',', I 4 ~ 3 T , 2 ~  I -'cornp 

Processor N . 

I ~ ~ L W N T ; ~  I Q$wNT:~ 
+ I Comp 



Figure 9. Transmission timing diagram for the bus network with load origination at a 

computing processor in the single-job scheme and in the multi-job scheme. 
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Figure 10. Total solution time when T," = 6 for all m. 
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Figure 11. Total solution time for network with load origination at a control processor 
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Figure 12. Total solution time for network with load origination at a computing processor 

when Tg = 10 for m = 1,2,. . . , 5  and Tg = 3 for m = 6 , 7 , .  . . , l o ,  and vice versa. 


