
UNIVERSITY AT STONY BROOK

CEAS Technical Report 697

A Multi-Job Load Sharing Strategy
for Divisible Jobs on Bus Networks

J. Sohn and T.G. Robertazzi

Aug. 15, 1994

A Multi-Job Load Sharing Strategy
for Divisible Jobs on Bus Networks

Jeeho Sohn and Thomas G. Robertazzi, Senior Member, IEEE

Dept. of Electrical Engineering,

SUNY at Stony Brook,

Stony Brook, N.Y. 11794

A Multi-Job Load Sharing Strategy for Divisible Jobs on Bus Networks

Prof. Thomas G. Robertazzi

Dept. of Electrical Engineering

SUNY at Stony Brook

Stony Brook, N.Y. 11794

516-632-841 2

Abstract

In this paper, a load sharing problem involving the optimal load allocation of very

long linear data files over N processors interconnected in a bus-oriented network is

investigated. Two distinct types of bus networks are examined in the case when there

is more than one such outstanding divisible job in the network. These are a network

with load origination at a control processor and a network with load origination at

a computing processor. In both cases, it is assumed that each processor is equipped

with a front-end processor for communications off-loading. It is found that a multi-

job scheme outperforms a single-job scheme in terms of the total solution finish time.

Closed form solutions and simple recursive algorithms for the determination of the

optimal load allocation are also presented.

&y : Greek letter alpha with hat,

subscript English letter small i, superscript English letter small m

a7 : Greek letter alpha,

subscript English letter small i, superscript English letter small m

Z : English letter capital Z

wi : English letter small w,

subscript English letter small i

T : English letter capital T,

subscript English letter small c and m, superscript English letter small m

T : English letter capital T,

subscript English letter small c and p, superscript English letter small m

TT : English letter capital T,

subscript English letter small f, superscript English letter small m

k;: English letter small k,

subscript English letter small i

I'i: Greek letter capital Gamma,

subscript English letter small i

u:: English letter small u,

subscript English letter small n, superscript English letter small m

v,": English letter small v,

subscript English letter small n, superscript English letter small m

1. INTRODUCTION

In recent years, there has been of great deal of interest in distributed sensor networks

[20]. In distributed sensor networks, measurements are made by spatially distinct sensors.

The data is, then, broadcast to a site where the spatially disparate readings are fused so

that meaningful decisions can be made regarding these measurements. One major issue for

distributed sensor networks is the trade-off between communication and computation (121.

That is, the decision of how much time should be spent to communicate the measurements

and how much time should be spent to process (compute) the measurements becomes an

important problem.

Related to the distributed sensor network problem are a number of papers which deal

with scheduling and load sharing in multiprocessors [9,19]. However most work assumes that

a job can be assigned to at most a single processor. Only recently has there been interest

in multiprocessor scheduling with jobs that need to be assigned to more than one processor

18, 13, 211.

Recently there has been work on a load sharing problem involving a divisible job. A

divisible job is a job that can be arbitrarily partitioned in a linear fashion among a number

of processors. Applications include the processing of very long linear data files as in signal

and image processing and Kalman filtering.

In [lo], recursive expressions for calculating the optimal load allocation for linear daisy

chains of processors were presented. This is based on the simplifying premise that for an opti-

mal allocation of load, all processors must stop processing at the same time. Intuitively, this

is because otherwise some processors would be idle while others were still busy. Analogous

solutions have been developed for tree networks [ll] and bus networks [I, 2). Asymptotic

solutions for systems with large or even an infinite number of processors and limitations in

performance when adding processors appear in (3, 151. Closed form solutions were presented

in [4] for bus and tree architectures where processor and link speeds are homogeneous. In

[17], the concept of an equivalent processor that behaves identically to a collection of proces-

sors in the context of a linear daisy chain of processors and a proof that, for a linear daisy

chain of processors load sharing a divisible job, the optimal solution involves all processors

stopping at the same time are introduced. An analytic proof for bus networks that for a

minimal time solution all processors must stop computing at the same time appears in [18].

Previous proofs were heuristic. The equivalence of first distributing load either to the left

or to the right from a point in the interior of a linear daisy chain is demonstrated in [14].

Optimal sequences of load distribution in tree networks are described in [5, 161. A new load

distribution strategy for tree networks [6] and linear daisy chains [7] has also been discussed.

All this previous work concentrated on investigating more efficient ways of distributing

load to minimize the total solution time under the premise that there is only one job present

in the network. However most practical computer systems operate in an environment where

multiple jobs may be submitted. An intriguing question is how to efficiently handle the

submission of multiple divisible jobs in a distributed network. Under a naive, single-job

scheme, a distributed network sequentially processes one job at a time. In this paper we

propose a more sophisticated multi-jo b scheme for bus networks that exploits the special

structure of a divisible job on a bus network to yield a smaller finish (solution) time than

the single-job scheme.

This paper is organized as follows: Closed form solutions and simple recursive algorithms

for the determination of the optimal load allocation for two types of bus networks - a

network with load origination at a control processor and a network with load origination

at a computing processor - are presented in section 2 and 3, respectively. In section 4, a

performance evaluation is presented which compares the single-job scheme with the multi-job

scheme. Finally the conclusion appears in section 5.

2. ARCHITECTURE 1:

LOAD ORIGINATION AT A CONTROL PROCESSOR

Consider first the case where the network model consists of a queueing system for incom-

ing jobs, a control processor for distributing the processing load, and N processors attached

to a linear bus as in Fig. 1. New arriving jobs enter the queueing system and wait there for

service. In this paper, the queueing system is assumed to be large enough in size so that

there are no turned away, lost or blocked jobs. It is also assumed that the service discipline

of the queueing system is first-in first-out (FIFO). Under the supervision of the control pro-

cessor, one of the waiting jobs in the queue can be delivered to the processor. The control

processor distributes the processing load among the N processors interconnected through

a bus type communication medium in order to obtain the benefits of parallel processing.

The control processor does no processing itself. Each processor is equipped with a front-end

processor to make it possible to compute and communicate simultaneously. Put another

way, the front-end processor handles communication duties and allow the main processor to

concentrate on computation. Each processor may have a different computing speed.

The following notations will be used throughout this paper:

&r : The fraction of the entire processing load of the mth job that is assigned to the ith

processor in the single-job scheme.

ay : The fraction of the entire processing load of the mth job that is assigned to the ith

processor in the multi-job scheme.

Z : The inverse of the channel speed of the bus.

wi : The inverse of the computing speed of the ith processor.

T,", : The time that it takes to transmit the entire set of measurement data of the mth job

over the channel when Z = 1.

T z : The time that it takes for each processor to process (compute) the entire load of the

mth job when w; = 1.

Tf" : The finish time of the entire processing load of the mth job.

The timing diagram for the bus network with load origination at a control processor in

the single-job scheme and the multi-job scheme are depicted in Fig. 2 and Fig. 3, respectively.

In these timing diagrams communication time appears above the axis and computation time

appears below the axis. It is assumed that at the time of origin, the network with queueing

system has already received more than one job from outside so that multiple jobs are in

the queue and all the processors are idle, and the control processor starts distributing the

first available job's load to the other processors through the bus. In Fig. 2, it takes a time

B$7T:m for the control processor to transmit the first fraction of the first job's load to the

first processor and a time &;ZT:! to transmit the second fraction of the first job's load to

the second processor, and so on. Then after the first processor completed receiving the load

from the control processor which is an amount of &: of the entire load of the first job, it

can start computing immediately and it will take a time of &:wlT,', to finish. The second
- - - - - - -

processor also completesreceiving the load from the control processor at time (8: + &:)ZT&

and it will start computing for a duration of B:W~T;~ of time. This procedure continues

until the last processor. For optimality, all the processors must finish computing at the

same time. Intuitively this is because otherwise the solution time could be improved by

transferring load from busy processor to idle one [17, 181. The single-job scheme is the

scheme in which the load distribution of the next job is started only after the completion of

the current job's computation (T;). Therefore, starting with the second job, the time that

each processor waits for its processing load to be received is wasted. That is, the durations

&;"ZTZ, (by + & y) Z T z , . . . , (&;" + by + . + &E)ZTz for m = 2 , 3 , . . . , are wasted in

processor 1, processor 2, . . . , processor N, respectively.

The proposed multi-job scheme, on the other hand, is based on the idea that one wants to

reduce the wasted time between two consecutive jobs. Therefore, in this scheme, the control

processor dose not need to wait until the finish time of the previous job's processing and can

start distributing the load immediately after it finishes the transmission of the previous job's

load so that those processors which have completed receiving their processing load prior to the

completion of the previous job's computation (Tf) can start their computation immediately

after Tf . Clearly, one can significantly reduce the overall processing time starting with the

second job in this multi-job scheme. Furthermore, this multi-job scheme is optimum. The

reasons why it is optimum will be discussed later.

Now, the closed-form solutions to find &$ for the optimal load allocation for each pro-

cessor in the single-job scheme which appears in [I81 will be briefly reviewed. Following this,

the recursive algorithm to find a$ for m > 2 for the optimal load allocation in the multi-job

scheme will be examined.

2.1. Closed-Form Solution to Find in the Single-Job Scheme

Since distributing the processing load is done in the same fashion for every job in the

single-job scheme and for the first job in the multi-job scheme, the closed-form solutions to

find by and a: are the same in both cases. The case of finding by for the mth job in the

single-job scheme will thus solely be reviewed.

As proved in [18], the minimum time solution occurs when all processors finish their com-

putation at the same time. Based on that fact, one can set up the following set of equations

from Fig. 2. This equates the computation time of the ith processor to the transmission plus

computation time of the i + 1st processor. Although Fig. 2 shows the timing diagram only

for the first job and the second job this section will demonstrate the closed-form solution to

find the optimum fraction &y for the general mth job.

This equation can be solved as

where

Here ki can be directly found from the system parameters (wi , Z) and the size of the mth

job (T z , T,"). Since the fractions of the total processing load should sum to one, can be

obtained by the normalization equation.

Once ti;" is found, one can easily calculate the rest of the load allocation fractions (AT, &?, . . . , &F)

by using Eq.(2). Note that the single-job scheme is optimal if only a single job is to be solved.

When multiple jobs are involved it is not optimal, as the following sections will demonstrate.

2.2. Algorithm to Find a? in the Multi-Job Scheme:

When TT-' 2 ZTz--' + Z T z for rn 2 2

This section will consider the case that the transmission of the mth job's processing load

is started immediately after the control processor finishes the transmission of the (m - 1)st

job's processing load and is finished before the completion of the (m - 1)st job's computation

(TT-') as shown in Fig. 4. In other words, the location of Tfm-' is placed after the time

that the transmission of the mth job's processing load is finished. In this case, the algorithm

to find the ar is very simple. Note that Fig. 4 shows the timing diagram only for the

first two jobs and the transmission time for each fraction of load is abbreviated to only its

corresponding fraction (e.g., a: ZT:m just as a:). For our purposes one may think of the first

job as the (m - 1)st job and the second job as the mth job.

Since all the processors have received their processing load prior to the finish time of

the previous job (TT-') they can simultaneously start their computation immediately after

TT-' and finish their computation at the same time for a minimal solution time. Therefore,

the processing time in each processor is the same. That is,

and those equations can be further expressed as a function of a;".

As the normalization equation states that the sum of the fractions of the total processing

load is one, a? can be obtained.

Therefore, one can derive a simple closed-form solution.

Note that since there is no wasted time between the consecutive jobs in every processor,

the total required processing time for the mth job (Tf" - TY-') is minimized compared to

any other cases.

2.3. Algorithm to Find ar in the Multi-Job Scheme:

When TY-' < ZT:-l+ ZTG for rn > 2

This subsection will consider the case when Ty-' is located somewhere during the trans-

mission period of the mth job's load. That is, some of the processors which have received

their processing load before Tfm-' can start their computation immediately after TT-l while

the other processors which did not receive their processing load yet have to wait some period

of time for their processing load to be delivered. In Fig. 5, again one can think of the first

job as the (m - 1)st job and the second job as the mth job. The processing finish time of the

(m - 1)st job's load (Tfm-') is in the transmission of the nth fraction of the mth job's load.

Let denote the time interval between TT-' and the time that the ith processor receives

its processing load for the mth job. Thus processor 1 to processor n-1 can start their com-

putation immediately after Tfm-' while processor n, processor n+1, . . . , processor N have

to wait I', , . . . , rN amounts of time to receive their processing load and start their

computation at time Tfm-' + I?,, ~fm-' + . . . , Tf"-' + rN, respectively.

Now let us derive the algorithm to find am which minimizes the total s ~ l u t i o a t i m e ~
- - - - - - - - - - - - - - -

a - - - - - - - - - - -
- -

- - - - - - - - - - - - - - - -

We will assume that all processors must stop at the same time. The processing time of

processor 1 to processor n- 1 is the same since they simultaneously start their computation

and finish it at the same time.

Therefore,

w1 Qr = -a; i = 1,2, ..., n - 1
W i

The next step is to find an expression for I?;, which is the time interval between T?-*

and the time the it h processor receives its processing load.

The processing time of the ith processor to compute its processing load is then

Now consider the processing time taken by the nth processor to compute its processing load,

i.e., the processing time when i = n.

Here a: can be expressed by rearranging, as a function of a? since a?, a?, . . . , a:-:_, are

function of aT; as found previously.

Here u: and v: are constants which are functions of system parameters (2, w;), the com-

putation size of the (rn - 1)st job (Tg-I), the size of the mth job (T,", T g) , and (a;-').

Let us consider the case for the next processor, i.e., when i = n + 1.

' Here a;-' is assumed to be a known value because this is the fraction found when the (m - 1)st job is

distributed.

Again a,"++, can be expressed as a function of a?.

where and v,"++, are also constants since ur and v r have been found previously.

One can see that this procedure can be continued up to the case where i = N. Then every

fraction that the originating processor should calculate to achieve the minimum solution time

is found as a function of a?.

Once all a: have been found, a? can then be calculated from the normalization equation.

As a summary of this section, let us rephrase the algorithm to find ar when the case

' a ;
a? = W i

n-1

where it is defined that C u r o r v y = 0.
i=n

2.4. When the position of ~ f m - ' is changed due to the new values of cry

Reading along so far, one should understand that an unrealizable situation has been

described as one can ask how can one determine in which fraction of transmission Tfm-' is

located even before the actual values of a3 are calculated. Actually it may seem impossible

to determine the location of Tfm-' because to do that, all values of ar should be calculated

first and to calculate the values of ar, the location of TY-' should be decided, and so on.

But this dilemma can be resolved in the following recursive fashion: First, identify the

location of TT-' by using the values of 83 calculated in the single-job scheme. Since only

the values of the system parameters and the size of mth job are required to calculate b?,

one can easily compute &3 by the closed-form solution described in section 2.1. Next the

location of Tfm-' can be decided. Once the location of Tfm-' is known, tentative ar can be

computed by the algorithm described in the previous section.

In the next step, one investigates the location of Tfm-' as in Fig. 6. If the location of

TT-' is changed from 8: to a:+:+, or even to a:+:+,, a:+:+,, . . . , then one simply increases the

value of n to the corresponding new value, n + 1, n + 2, . . ., and calculates the values of the

C Y ~ again. The process is repeated until the location of Tfm-' is not changed when comparing

the location of TT-' with the previous values of a? and with the new values of cry at the

time of each iteration.

Note that when it is said that the position or location of Tfm-' is changed it means that

the fraction in which Ty-' is located is changed. Actually, T?-' itself is not changed and

depends only on the previous job's load.

Let us give an example. Suppose that there is a bus network with 5 processors. For

the second job, first calculate &f by the closed-form solution with the single-job scheme

(. . . ,) If Tf is located in the transmission of the second fraction (&;), set n = 2

and calculate the new values of a: by the algorithm of the multi-job scheme (a:, a:, . . . , a:).

Now if T: is located in the transmission of the fourth fraction (a:) when reidentifying the

location, reset n = 4 and recalculate at. If the location of T; is still in the transmission

of a: after recalculation and reidentification, then stop. In practice, however, the case such

that the location of T; is changed after the second iteration is rare.

Note that the value of n never decreases in each iteration. It always increases. This is

because the earlier parts of the fractions (e.g., a:, a:) become smaller and the latter parts

of the fractions (e.g., a&-, , a&) become larger with each iteration.

2.5. Is This Multi- Jo b Scheme Optimal?

For a single job, the load distribution strategy is optimal if the finish time of each

processor is the same. But what of the multi-job scheme? Is this optimality still valid in

multi-job scheme? The answer is that for the given load distribution sequence and network

configuration, the multi-job scheme is optimal.

For each individual job in the multi-job scheme, the minimum finish time occurs when

all the processors finish computing at the same time, otherwise one can improve the finish

time by transferring the load from busy processors to idle processors. Then how about when

one considers the performance criteria to be the overall processing time of all jobs? For

instance if there are 10 jobs in the system, is this multi-job scheme also optimum in terms
p p p p p p p p p p p p p p - - - - - - - - - - - -

of fthe 10th 703's procGsihg finish time? To answer this question in the negative one might

come up with a strategy to close the gaps I', to rN and achieve a time performance which

is less than the multi-job scheme. However there will be serious disadvantages in closing

the gaps so that the result will actually be worse for the following three reasons. First, the

processing finish time will be higher for the first job and possibly some of the next few jobs.

This is because except for the last job the other jobs will not have the property that each

of its load fractions are finished processing at the same finish time. The second problem

is that the distribution of a given job will depend not only on its own size but also on the

size of the other jobs. Since this is purely deterministic system it is not causally possible to

determine the size of the future job which might not be even exist. The last reason is that

one cannot actually close the gaps if the computational load of the (m - 1)st job is small

(Tg-' is small) and the communication load of the mth job is relatively large (TE is large).

Therefore this proposed multi-job scheme is an optimal load distribution strategy.

3. ARCHITECTURE 2:

LOAD ORIGINATION AT A COMPUTING PROCESSOR

The bus network to be examined in this section is the one with load origination at a

computing processor as in Fig. 7. As with the case of the network with load origination at a

control processor, arriving jobs first enter a queuing system and wait for service. One of the

one of the N processors. Without

loss of generality, we will assume this is processor 1. Processor 1 distributes the processing

load of the received job among the other processors for parallel processing. Each processor is

equipped with a front-end processor for communications off-loading. That is, the processors

can communicate and compute at the same time. It is also assumed here that each processor

may have a different computing speed.

As one might guess, the solution procedure to find the best fractions for optimal load

allocation is very similar to the case of a network with load origination at a control processor.

In particular, the closed-form solutions to find By (single-job scheme) and at are exactly

the same. On the other hand, the algorithm to find a3 for m 2 2 in the multi-job scheme is

similar but not identical to that for a network with load origination at a control processor.

The difference is that the originating processor (processor 1) in this case does not need to

transmit its own fraction (a?) of the load. The following will describe the procedure to find

a?.

When ~ f m - ' 2 (1 - a y - l) Z T ~ - ~ + (1 - a;")ZTg as in Fig. 8, the resulting equations are

the same as in section 2.2, specifically Eq.(8) and Eq.(9). But there is a difference. In the

case where the load is distributed at a control processor, the total amount of the transmission

time for one job was independent of how the control processor assigns the fractions (a?)

or where Tfm-' is located. That is, the total amount of the transmission time for the mth

job was a fixed value (ZTG). But in the case where the load is distributed at a computing

processor, it is not. Since the total amount of the transmission time where the load is

distributed at a computing processor is (a; + a," + + a$)ZTE = (1 - a y) Z T z , there

is a strong dependency on the value of a?. In other words, the smaller the value of a?, the

larger the total amount of the transmission time, and vice versa. Therefore, it is possible for

the following case to exist. When first determining the location of Tfm-' in the algorithm

in section 2.4 by using the values of the load allocation fractions in the single-job scheme

(&?, 8 5 . . . , &;), Tfm-' is located after the time that processor 1 finishes the transmission

of the mth job's load. So one might calculate the new values of the fractions (a?) simply by

using Eq.(8) and Eq.(9). But when identifying the location of ~ f m - ' again after calculation,

it is possible that the new location of Tfm-' is placed before the end of the transmission as

in Fig. 9. This is because, as mentioned before, the early fractions becomes smaller and the

latter fractions becomes larger in the multi-job scheme compared to the single-job scheme. If

this happens, the situation becomes the case that Tfm-' < (1 - ay-')ZT;-' + (1 - a?)ZT,", .

One more thing that must be pointed out is that as one can see in Fig. 9 it takes less time

to transmit the mth job's load in the single-job scheme than in the multi-job scheme because

the multi-job's total transmission time is longer than the single-job's. However, the total

processing time (Ty - ~ 7 - l) to compute the mth job's load in the single-job scheme takes

longer than that in the multi-job scheme because if the load allocation fractions calculated

in the single-job scheme are used in the multi-job scheme then, for jobs after the first job,

each processor does not finish its computation at the same time. This increases the solution

time. This is because the single job load fractions are based on the assumption that there is

waiting time.

When Tfm-' < (1 - Q;-~)ZT;-~ + (1 - a;")ZTG, the resulting equations are very

similar to those in section 2.3, specifically Eq.(18) to Eq.(21). The only difference is that
n-1

w1
the summation term in the numerator of uy is the sum of from k = 2 to n - 1 or -

k=2 W k

in the case where the load is distributed at a control processor while the summation term in
n-1 w1 the numerator of uy is the sum of $ from k = 1 to n - 1 or x- in the case where the
k=l Wk

load is distributed at a computing processor.

4. PERFORMANCE EVALUATION

Based on the previous results, some performance evaluation results were computed for

various cases - the single-job scheme and the multi-job scheme for the network with load

origination at a control processor and the network with load origination at a computing

processor. In each plot, the total solution finish time is drawn against the number of jobs.

In this section, the total number of presented jobs is 10 and no new jobs arrive. That is,

the queue initially contains 10 jobs. There are five processors in the network, and it is

assumed that the values of the channel speed, the computing speed of each processor and

communication load for every job are assigned to unity (2, all wi's, T g = 1 for all m).

In Fig. 10, the total solution finish time is plotted against the number of jobs when

the computational load of every job is 6 (T; = 6 for all m) which is a relatively

medium load in comparison with communication load which is set to one and with five

processors. Since the computational load for every job is the same, the total solution

finish time is linear in the single-job scheme. Clearly, the the multi-job scheme is

superior to the single-job scheme in terms of the total solution finish time.

Fig. 11 and Fig. 12 plot the solution time when the computational load of the first

half of 10 jobs is 10 (T," = 10 for m = 1,2,-, 5, heavy computational load) and that

of the second half of 10 jobs is 3 (T; = 3 for m = 6,7, , l o , light computational

load), and vice versa for the single-job scheme and for the multi-job scheme for the

network with load origination at a control processor and for the network with load

origination at a computing processor. Naturally, the total solution finish time of the

last job in the single-job scheme is the same no matter what order the computational

load is assigned although there is some difference in the total solution finish time in the

middle of the processing of the given jobs. However, for the multi-job scheme assigning

the job with the heavy computational load first and the one with light computational

load last causes a reduction of the total solution finish time at the end of processing.

This is because serving the heavy computational load first results in a timing diagram

like Fig. 4 rather than Fig. 5. If there are several heavy jobs ahead of the light jobs,

the load distribution will be done much ahead of the time of its computation and

this means there is no wasted time or less waiting time between the consecutive jobs.

Therefore, if it is possible to assign the order of service at one's convenience, i.e., the

service discipline is not restricted to FIFO, assigning heavy computational load first

can reduce the overall solution finish time.

CONCLUSION

In this paper, an efficient strategy for optimal load allocation for bus networks with

multiple jobs is discussed. Starting from the second job in the multi-job scheme, it is found

that one can reduce the total solution finish time by comparison with the single-job scheme.

It is also found that in the multi-job scheme the overall job computing finish time can be

futher reduced by assigning jobs with a heavy computational load job first.

Acknowledgement

The research in this paper was supported in part by the BMDO/IST under the U.S.

Office of Naval Research under grant no. N00014-91- J4O63.

References

Bataineh, S., and Robertazzi, T. G. Distributed computation for a bus network with

communication delays. PTOC. 1991 Conference on Information Sciences and Systems.

The Johns Hopkins University, Baltimore, MD, 1991, pp. 709-714.

Bataineh, S., and Robertazzi, T. G. Bus oriented load sharing for a network of sensor

driven processors. IEEE Trans. Systems, Man and Cybernetics. 21, (1991), 1202-1205.

Bataineh, S., and Robertazzi, T. G. Ultimate performance limits for networks of load

sharing processors. Proc. 1992 Conference on Information Science and Systems. Prince-

ton University, Princeton, NJ, 1992, pp. 794-799.

[4] Bataineh, S., Hsiung, T., and Robertazzi, T. G. Closed form solutions for bus and tree

networks of processors load sharing a divisible job. International Conference on Parallel

Processing. St. Charles, IL, 1993, Accepted by the IEEE Trans. Computers.

[5] Bharadwaj, V., Ghose, D., and Mani, V. Optimal sequencing and arrangement in dis-

tributed single-level tree networks with communication delays. accepted by the IEEE

Trans. Parallel and Distributed Systems.

[6] Bharadwaj, V., Ghose, D., and Mani, V. An efficient load distribution strategy for a

distributed linear network of processors with communication delays. accepted by the

Computer and Mathematics with Applications.

[7] Bharadwaj, V., Ghose, D., and Mani, V. Installment techniques in tree networks. ac-

cepted by the IEEE Trans. Aerospace and Electronic System.

[8] Blazewicz, J., Drabowski, M., and Weglarz, J. Scheduling multiprocessor tasks to min-

imize schedule length. IEEE Trans. Computers. C-35 (1986), 389-398.

[9] Bokhari, S. H. Assignment problems in parallel and distributed computing. Kluwer Aca-

demic Publishers, Boston, 1987.

[lo] Cheng, Y. C., and Robertazzi, T. G. Distributed computation with communication

delays. IEEE Trans. Aerospace and Electronic Systems. 24, (l988), 700-712.

[ll] Cheng, Y. C., and Robertazzi, T. G. Distributed computation for a tree network with

communication delays. IEEE Trans. Aerospace and Electronic Systems. 26 , (1 990), 51 1-

516.

(121 Chong, C. Y., Tse, E., and Mori, S. Distributed estimation in networks. presented at

the American Control Conference. (San Francisco).

[13] Du, J., and Leung, J. Y. T. Complexity of scheduling parallel task systems. SIAM

Journal on Discrete Mathematics. (1989), 473-487.

[14] Ghose, D., and Mani, V. Distributed computation in a linear network: Closed-form

solutions and computational techniques. IEEE Trans. Aerospace and Electronic Systems.

30, (1994).

[15] Ghose, D., and Mani, V. Distributed computation with communication delays: Asymp-

totic performance analysis. accepted by the J. Parallel and Distrib. Comput.

[16] Kim, H. J., Jee, G. I., and Lee, J. G. Optimal load distribution for tree network pro-

cessors. submitted for publication.

[17] Robertazzi, T. G. Processor equivalence for a linear daisy chain of load sharing proces-

sors. IEEE Trans. Aerospace and Electronic Systems. 29, (l993), 1216-1221.

[18] Sohn, J. and Robertazzi, T. G. Optimal load sharing for a divisible job on a bus net-

work. PTOC. 1993 Conference on Information Science and Systems. The Johns Hopkins

University, Baltimore, MD, 1993.

[19] Stone, H. S. Multiprocessor scheduling with the aid of network flow algorithms. IEEE

Trans. Software Engineering. SE-3, (1977), 85-93.

[20] Tenney, R. R., and Sandell, N. R., Jr. Detection with distributed sensors. IEEE Trans.

Aerospace and Electronic Systems. AES-17, (1981), 501-510.

[21] Zhm, W., Ramamritham, K., and Stankovic, J. A. Preemptive scheduling under time

and resource constraints. IEEE Trans. Computers. C-36, (1987), 949-960.

Figure Captions

Figure 1. Bus network with load origination at a control processor.

Figure 2. Timing diagram for the bus network with load origination at a control processor

in the single-job scheme.

Figure 3. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme.

Figure 4. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme when Tf 2 ZTL + ZTk.

Figure 5. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme when Tf < ZT& + ZT;.

Figure 6. Transmission timing diagram for the bus network with load origination at a

control processor in the single-job scheme and in the multi-job scheme.

Figure 7. Bus network with load origination at a computing processor.

Figure 8. Timing diagram for the bus network with load origination at a computing pro-

cessor in the multi-job scheme when T; 2 (1 - cri)ZTA + (1 - a:)ZTZm.

Figure 9. Transmission timing diagram for the bus network with load origination at a

computing processor in the single-job scheme and in the multi-job scheme.
p p p p p p p p p p p p p p p - - - - - - - - - - - - - - - - - -

Figure 10. Total solution time when Tg = 6 for all m.

Figure 11. Total solution time for network with load origination at a control processor

when Tg = 10 for m = 1,2, . . . , 5 and T," = 3 for m = 6,7 , . . . , l o , and vice versa.

Figure 12. Total solution time for network with load origination at a computing processor

when Tg = 10 for m = 1,2 ,..., 5 and T," = 3 for m = 6 ,7 ,..., 10, and vice versa.

Control processor c L

Figure 1. Bus network with load origination at a control processor.

Arrivals - I l l

Bus

C

Processor N . Processor 1 Processor 2

Control
processor

Processor

Processor

Processor

Figure 2. Timing diagram for the bus network with load origination at a control processor

in the single-job scheme.

Control
processor

Processor 1

Processor 2

Processor N

_. Q: w2Tk I I 0; w2TZp I Comp

Figure 3. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme.

Control
processor

Processor

Processor

Processor N

Figure 4. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme when Tf 2 ZTL + ZT&.

Control (a: I a: I at, Iat,+ll ah I a: (a: I aT, I Q : + ~ I a& I Comm
processor I

Figure 5. Timing diagram for the bus network with load origination at a control processor

in the multi-job scheme when Tf < ZT:m + ZTzm.

Proc n
I n I

akwn Tk I a;wnT,Z,
i I Comp

Figure 6. Transmission timing diagram for the bus network with load origination at a

control processor in the single-job scheme and in the multi-job scheme.

1
+ single-job scheme

+ multi-job scheme

t
-

Control
processor

. . .
6y AT+:+, b; &?

a?

6:

a; cry 4' a:+:+,

Arrivals

Bus

Figure 7. Bus network with load origination at a computing processor.

Processor N
b

. Processor 1 Processor 2

I-, Job 1 ----t---- Job 2 .-.I

Figure 8. Timing diagram for the bus network with load origination at a computing

processor in the multi-job scheme when Tf > (1 - a:)ZT:m + (1 - a:)ZTA.

Processor 3 I ajwd',', I 4 ~ 3 T , 2 ~ I -'cornp

Processor N .

I ~ ~ L W N T ; ~ I Q$wNT:~
+ I Comp

Figure 9. Transmission timing diagram for the bus network with load origination at a

computing processor in the single-job scheme and in the multi-job scheme.

Processor 1

t
i

. . . I - single-job scheme &? S r

G'

4

a? a?-I

i

&?

- multi-job scheme

1 I 1 I I I I I

single-job scheme with load origination at a control processor +
single-job scheme with load origination at a computing processor -+--

multi-job scheme with load origination at a control procesor -a-
, multi- job scheme with load origination at a computing processor - - ~ -

1 2 3 4 5 6 7 8 9 10
Number of jobs

Figure 10. Total solution time when T," = 6 for all m.

single-job scheme when Tcp=lO to Tcp=3 4-
single-job scheme when Tcp=3 to Tcp=lO -+--
multi-job scheme when Tcp=lO to Tcp=3 -a-
multi- job scheme when Tcp=3 to Tcp=lO -+--

1 2 3 4 5 6 7 8 9 10
Number of jobs

Figure 11. Total solution time for network with load origination at a control processor

- - J N h T " cp- -- - lofor -m-= l , ~ , - - 5 a n d - T " - i - 3 f o i - ~ ~ - 7 1 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - , , . . . , . . .
CP - , and vice versa.

I 1 I I I 1 I I

single-job scheme when Tcp=lO to Tcp=3 +
single-job scheme when Tcp=3 to Tcp=lO -+--
multi-job scheme when Tcp=lO to Tcp=3 - Q - - .
multi- job scheme when Tcp=3 to Tcp=lO --*.---.

1 2 3 4 5 6 7 8 9 10
Number of jobs

Figure 12. Total solution time for network with load origination at a computing processor

when Tg = 10 for m = 1,2,. . . , 5 and Tg = 3 for m = 6 , 7 , . . . , l o , and vice versa.

