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Abstract. Two forms of holographic spatial filtering may be used for the
deconvolution of accidentally blurred images and of images deliberately
‘ coded ’ for aperture-synthesis purposes. The first is generally applicable and
uses a Fourier-transform division filter realized by holography from the
instrumental ¢ spread function’ of the system. The second, even more straight-
forward, is particularly suited for the special case when the autocorrelation
function of the spread function is or may suitably be made to be sharply peaked.
This form should permit one to realize a new class of optical systems in cases
where conventional (lens and mirror) systems may not be readily realized
(e.g. for X-ray and ultrasonic imaging, for space astronomy and photography,
among others). Previously unpublished, new theoretical and experimental
results are given. Applications to the possibilities of achieving ¢ super-
resolutions > and for solving the ‘ phase problem’ in X-ray crystallography
are also briefly mentioned.

1. Introduction

Recent work has demonstrated that it is possible to extract greatly sharpened
‘deblurred’ images from photographs which have been blurred by accident or
deliberately coded, for instance in view of ‘aperture synthesis’ applications
[1-8]. Theblurring or coding of the blurred photograph g(x, y) may be expressed
as the spatial convolution:

e = [ [ rwo -y ) s, 1)

between the desired image f (%, y) and the instrumental impulse response function
(spread function, i.e. image of a point) % (x,y). Itis well known that equation (1)
takes on the form of the product:

G(u,v)=F(u,v) H(u,v), (2)
in the spatial Fourier-transform domain], where we have:
. +e -
F(u,v)= Jj f(x,y)exp [2ni(ux+ vy)] dxdy 3)

and similarly for G and H, with suitable normalization]. It is also well known
that a Fourier-transform relation such as that of equation (3) exists between the

+ Presented on 24 September 1968, by invitation, at the International Commission for
Optics Symposium on Applications of Coherent Light, in Florence, Italy.
I For a general background, notations and approximations used see, e.g.
STROKE, G. W., 1966, An Introduction to Coherent Optics and Holography (New York:
Academic Press); second, revised and enlarged edition, December 1968.
STROKE, G. W., 1967, Handbuch der Physik, Vol. 29, edited by S. Fliigge (Berlin: Springer
Verlag), pp. 426-754, notably pp. 504-570. o
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and the transmission of this positive (P)is:

Ep=[g(x,y) N1 =g(%,3), [ywye=2] (13

if the condition of equation (11) is satisfied. '
Finally, as we recall below, with particular reference to this work, it is now
well known (see, e.g. [8]), that the three angularly separated waves, produced by
holograms, have electric field-vector amplitudes which can readily be made to be
independent of the photographic recording and processing conditions under some
. specified conditions.  For instance, let £ (, v) describe the field produced by the
‘object”’ field in the plane (u,v) of the hologram, and let Ey (4, v) be the field
similarly produced by the ‘reference’ source in the hologram plane. The

exposure of the hologram is (with the time-averaging understood):

. 1(u,9) = (Eo+ Bg)(Eo+ Er)*, )
i.e. in the well-known form:
I(u,0)=[|Eo*+ | Ex1+ [Eo Er*] + [Eo* ER], v (15)

where the three separated waves have been separately bracketed. The electric
field vector distribution of the field transmitted through the hologram processed

with a y, may be made to be proportional to I(u,v), with the y appearing only asa
scale factor, provided only that one respects the simple condition:

| Exf* > | Eof. (16)
In practice, the condition > may mean approximately: '
|Egl* = (4 to 10)| Eof,
as an example. Indeed, if we write equation ( 15) in the form:
|Eo|? Eg*
2
I(u,v)=|Eg| {1+ T l2+ ° ¢ o } (17)

and if we recall that the electric field transmitted through the hologram (negative!)
is (upon illumination with a wave of unit amplitude):

Ep=1I(u, v)=x2, (18)

we readily see, by a binomial expansion of equation (18), that the form (1 +¢), with
e small, of equation (17) gives:

~ —y YN |Eo[* E, E
Epe|Ey N{l— 4 IERI2+ + 5 ]} . (19)

i.e.
Epx|Eg|—7~—2 [IERI2 - 7-’21l IEo |2:|
- y—ZN |Eg|=*~—2 [Eq Eg*]

— B Bl rx=2 [Eo* Er]. (20)
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spatial part of the complex electric field amplitude E(x,y) in the pupil of a per-
fectly corrected (ideal) lens system and the field E(x, v) in the image plane (u, )1,
i.e. ‘

E(u,v)= f f i: F(x,y) exp [2mi(ux +vy)] dx dy. )

It is also known that one may readily realize by transmission through a photo-
graphic transparency an electric field vector distribution Eq(x, v) equal to the
exposure g(x, y) of a photographic transparency, i.e.

ET(x:y) =£(x,) : (3)
by suitable processing of the photographic negative exposed to the ‘intensity’
g(x, y), where we have

§(x, y)=<E(x, y, t) E*(x, y, 1)) (6)
under the usual assumptions [see Stroke, loc. cit. 1966, 1967, 1968), and similarly
for the spread function A(x, y). For instance, in the linear range of the Hurter
and Driffield curve, where the slope is tan—! yy, and where we have

1
logW =yxlogg(x,y) ] (7)

the ‘amplitude’ transmission of the negative exposed to g(x, y) is

| Ex [=g(x, y)7x", (8)
By taking suitable care, it is possible to make the phase transmission of the negative
to be a constant, so that we may write :

Ep (%) =g(w,y) 7. )
It should be clear (as first pointed out by Gabor [14]) that we may make
Ep(xy)=g(xy) [yn=-2] (10)

with the condition yy= —2}. In practice [1] this condition may be realized by
making a contact print of the negative (N), and by processing this positive (P) in
such a way that the condition:

wre=2, (11)
be satisfied. In other words, the exposure of the positive P is:
[9()~7sE =g (5, 3) (12)

1 For a general background, notations and approximations used see, e.g., G. W. Stroke
(1966, 1967), op. cit.
© “ 1 Another way of expressing the relation between the transmittance of the photographic
plate and the exposure (kindly suggested by one referee) is as follows: One may readily
realize an amplitude transmission #(x, y) of a photographic emulsion proportional to the
exposure E(x, y) by suitable processing. The exposure is proportional to the intensity:

I=(E(x, y, t). E¥x, v, ©)).
In the linear range of the Hurter and Driffield curve, where the slope is tan=! y and where
we have the equation log (1/T)=1y log E(x, ¥) the intensity transmission is
T(x, y)=const. I~
and the amplitude transmission: '
t(x, ¥)=[T(x, ¥)]*”*=const. I-1/2¥

and by making y= —2 the amplitude transmission #(x, ¥) becomes proportional to E.
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and the transmission of this positive (P)is:

Ep=[g(x,9) 75172 =g(x,9), [sye=2] o (3)
if the condition of equation (11) is satisfied. ' ‘
Finally, as we recall below, with particular reference to this work, it is now
well known (see, e.g. [8]), that the three angularly separated waves, produced by
holograms, have electric field-vector amplitudes which can readily be made to be
independent of the photographic recording and processing conditions under some
specified conditions. For instance, let £ (u, v) describe the field produced by the
‘object’ field in the plane (u, ) of the hologram, and let Ey (4, v) be the field
similarly produced by the ‘reference’ source in the hologram plane. The
exposure of the hologram is (with the time-averaging understood):

I(1,v) = (Eo+ Eg)(Eo+ Er)*, | (14)
i.e. in the well-known form: ‘
‘ I(u,0)=[| Eol?+ | Eg 2]+ [EoEr*] + [Eo* Eg], S(15)

where the three separated waves have been separately bracketed. Tlhe electric
field vector distribution of the field transmitted through the hologram, processed
with a y, may be made to be proportional to I(u,v), with the y appearing only as a
scale factor, provided only that one respects the simple condition:

|Exl*> [ Eof. (16)
In practice, the condition > may mean approximately : o
| Ex? = (4 to 10)| EoP,
as an example. Indeed, if we write equation (15) in the form:

E.2 E, Es*
[Eol*  Eo  Eo*
|Erl*  Er  Eg*
and if we recall that the electric field transmitted through the hologram (negative!)
is (upon illumination with a wave of unit amplitude):

I(u, )= |ER|2{1 + 17)

Ep=1I(u, v)=x2, . (18)

we readily see, by a binomial expansion of equation (18), that the form (1 +¢), with
e small, of equation (17) gives:

Bt [ v |Bol  Eo  Eo*y
BBl 1= o+ 5o+ e ) -9
ie.
Epx|Eg|—7~—2 I:IER|2" %\: IEOP:I ‘
- % |Eg|-"x—2[Eq Er*]

— ’Y_ZN [ER‘-’VN"z [EO* ER] . (20)
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This equation must be carefully considered for the purposes of this paper. First,
we may note that the field Ey, transmitted through the hologram (upon illumina-
tion with a wave of unit amplitude) will indeed have its imaging waves proportional

to [EoBp*] and [Eo*Eg], ie.
— T |Enl 752 [EoBx*] o EoEr* (21)
and
— DBl [Bo*Ex] o Eg* B, (22)

to the extent that the amplitude |E (1, v)| of the reference wave may be considered
as constant in the hologram plane. The condition [| Ex| = const.] may, in practice
be readily realized for a number of unfocused waves. This will be the case for a
plane wave (originating from a point source ‘at infinity *), a spherical wave (e.g.
as originating from a point source near the object). In fact, as may be readily
verified by experiment, most fields in which the object is not focused on the plate
encountered in optics (as distinguished from a field near a source, in a ‘focused’
image region, in shadows, etc.) happens to have an amplitude which is uniform,
i.e. constant, over very extended regions! In particular, the far-field region of an
‘extended ’ reference source, as we useitin holography, as well as the field produced
by it by Fourier transformation, both have amplitudes which may be considered
as constant, within the requirements of equations (21) and (22). Under these
conditions, we may henceforth write that the field transmitted by the hologram of
equation (15) uponillumination with a wave Ey. (4, v) is:

Er (u,v) oc Eg. (u,0) I (u, ), (23)
ie.
Ep(u,v)ocEg. [|Eo 2+ | E|?] (24)
+EoEp*Ey.
+E0* ERE ‘e

Because of the Fourier-transforming property of lenses, as expressed in
equation (4) and because of the possibilities of obtaining linear relations between
the fields transmitted by a photographic transparency and its exposure (equation
(13)) on the one hand, and on the other, between the field transmitted by a holo-
gram and its exposure (equation (24)), we shall show that Fourier-transform
holography [9], and notably ‘extended-source Fourier-transform holography’
[11, 12] offer a particularly straight-forward solution to the ‘inversion’ of the
integral equation (1).

Indeed, if we write the integral equation (1) in the symbolic form:

g(x’y)=f(x’y)®h(x7y)a (25)

where ® indicates a spatial convolution [8], and if we recall the Fourier-transform
equivalent of equation (25):

G(u,v)=F(u,v) H(u,v), (2)
+ The notation used is that introduced by:

BraceweLL, R. N., 1965, The Fourier Transform and its Applications (New York:
McGraw-Hill Book Company). See also [8].
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then it should be clear that the desired image f (x,y) may be extracted from the
photograph g(x,y), provided that we can ‘ extract’ the function F(u, v) from the
function G(u,v), and take the Fourier transform of F(u,v), for instance with
another lens. That this should be possible, in principle, was first suggested by
Maréchal and Croce [12] in 1953, and again, at that time for the purposes of
improving on the spectra produced by insufficiently perfect diffraction gratings, by
the author [7] in 1955, who also proposed a solution in the form of a Fourier-
transform ‘division’ as we discuss below. However, it was only when we
realized [1] that holograms, as first described by Gabor [13-15] in 1948, could be
readily used to help in the realization (materialization) of the required spatially-
complex filters, that the practical solutions, such as those which we present with
new theoretical and experimental detail below, became possiblet.

In brief, two methods permit one to extract the function F(u,v) from the
function G(u, v) of equation (2), and from it, by a second Fourier transformation,
the desired image function f(x,y).

One method [1] consists in dividing G(u,v) by the function H(u,v), i.e. by
performing the operation:

GH'=F (26)

This method, as may be readily shown, is quite general, and permits one to retrieve
the desired function to the limit of diffraction’ of the original focusing system,
already in the first step. The method does require, however, considerable care
in the photographic steps involved, as we show below.

Another method, recently originated by the author [5, 6] appears to be much
more powerful, as well as considerably simpler. Its application to the special
case of image ‘deblurring’, for images formed by initially ‘well-corrected’
systems, which were out-of-focus or moved during the exposure, is less general
than the Fourier-transform division method, but much simpler to implement, at
the present stage of development. Moreover, we show below that the second
method has already formed the basis for the design of a new class of optical systems
which, by themselves are, paradoxically, rather poor (deliberately poor) image-
forming systems, as far as the formation of the first-step photograph g(x,y)is
concerned. This second method of image deconvolution (decoding) consists, in
one form, of multiplying the function G(u, v) by the complex conjugate H*(u, v) of
the function H(u, v), where we recall that H(u, v) is the spatial Fourier transform of
the spread function A(x,y), according to equation (3). The second method of
image deconvolution is described by the equation [5, 6]:

GH*=FHH*=F, (27 a)
if
HA*=1. (27 &)
According to a well-known theorem (see, e.g. [8]), the ‘decoding’ condition :
HH*=1, (27 b)
may be written in the (x,y) domain in the form :
fermh(x,y)h*(x+x’,y+y')dxdy=8(x’,y’), (28)

+ In this work, the Fourier-transform holograms have been recorded with rather
than without the use of a lens [9 a].
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where (x, ') is the Dirac delta function. We may write equation (28) in the
equivalent symbolic form (see [8]):

BXh® =5 (29)

where the symbol 3¢ indicates (here) the spatial autocorrelation operation de'scribed
by equation (28). The conditions (275) and (29) which must be satlsﬁe_d in order
that the operation GH* may indeed yield F as desired, according to equation (27 a),
may be formally related by the Fourier-transform theorem:

AH* < h¥% k¥, (30)

referred to-above, where the symbol = indicates ‘ by Fourier transformation’. It
may be helpful to recall that the ¢ decoding ’ conditions HH * =1 (equation (27 a)),
i.e: h¥ h* =38 (equation (29))are in fact extensions of the method of ‘extended-
source Fourier-transform holography’, (see [10, 11] and [8, pp. 127-137]).
A particularly remarkable example of a function described by equation (29),
suggested by Gabor [40], is that of a simple diffusing (ground) glass. Thisis
further illustrated in figure 3.

In the sections which follow, we continue to present, as above, only such new
aspects of our work which we have not extensively presented elsewhere. Further
details with regard to the second method, which we may call the ‘correlative
holographic decoding method’, appear in [5, 6, 16].  Similarly, we may call the
first method the ‘holographic Fourier-transform division method’, for short.
Before proceeding to the discussion of these methods, with their experimental
illustrations, it may be in order to make some reference to the advantages in speed
which these optical computing methods have in comparison with digital-computer
solutions of the deconvolution problem, e.g. as demonstrated by Harris [17] since
1966. According to Ansley [18], the Fourier-transform deconvolution of an
aerial photograph, 4x4in. square, with a resolution of 150lines/mm (i.e.
2:25 x 108 bits) would require 15 hours of computing time, on the fastest presently
available computer, IBM 360 Model 67 (having a 6 usec multiply +add time),
even with the use of the powerful Cooley-Tukey algorithm [19], which reduces the
computational time required to Fourier transform an 7z x m matrix from n2m? to
nlog,mxmlog,m. This is to be compared to minutes required for the same
operation when it is performed holographically. In fact, at present it seems that a
maximum of 250 x 250 lines (i.e. image portions of about 2-5 x 2-5 mm with 100
lines/mm resolution) may be reasonably processed with current methods. How-
ever, when successful, the computer-decoded images may in the end present a
perfection which may be in many ways more readily superior to that obtained by
our first method. Accordingly, it may well be that the holographic deconvolution
methods may serve as powerful first-step search methods, for the improvement
of images, to determine the image or image sets for which further digital computer
processing for image refinement may be justified. However, it appears very
likely that our second ‘ correlative holographic decoding method ’ may well remain
as the superior method, when it is applicable! It may also be of some interest
to note analogies between these methods and some of the forms of apodization [20],
and other forms of non-holographic coding and decoding, e.g. as used in spectro-
scopy [21-23] as well as image-sharpening methods of purely electronic nature,
e.g. as used in television [24, 25], to which we have made extensive reference in the
past. We also recall that optical filtering methods using filters generated by
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vacuum-evaporation of dielectric films or filters generated in part in this manner
and in part photographically have been described by a number of authors, notably
first by Tsujiuchi [26].

2. Holographic Fourier-transform division method
Our method [1] consists in recognizing that the equation:

gy)=f(%y)@h(xy), - (25)
i.e. its equivalent Fourier-transform equation :
G(u,v)=F(u,v) H(u,v), (2)
may be readily solved by the Fourier-transform division :
GH-1=F, (26)

provided that the required Fourier-transform division filter can indeed be realized.
We showed in [1, 3] that such a filter could indeed be realized, notably in the form
of a two-part ‘sandwich’
H* '
= s, 31

Each of the two filter components, H* and | H |2 can be separately realized, both
from the Fourier-transform H(u, v) of the spread function A(x,y), i.e. of the image
of a point, as formed by the system under the conditions of use. It may be of
some interest to note, for instance in connection with the diffraction patterns
formed by imperfect gratings (see, e.g. [7]), that the spread function A(x, y) may in
factalso bereadily obtained by computation (e.g. using a digital computer), when a
direct measurement with adequate precision may not be readily achieved. The
computation of A(x, y) is based on the fact that

h(x’y)=EH(x’y) EH(x’y)*: : (32)

where Ey(x,y) is the spatial Fourier transform of the electric field ‘amplitude’
E;(u, v) in the wavefront, when the system is illuminated by a wave from a point
in the object domain. The wavefront Ey (1, v) may be readily measured inter-
ferometrically, or indeed holographically. In general, however, for most
image-forming applications, the function %(x,y) may in fact be determined with
adequate precision simply from its photograph.

To realize, in the focal plane of a Fourier-transforming lens the field H(x, v),
we must produce in the pupil of the lens the field A4(x,y). This may be readily
achieved according to the steps involved in the negative-positive procedure
leading to equation (13). Using the field H(x, v), we obtain the A* component
of the filter simply by recording the corresponding hologram, i.e. by making the
H(u, v) interfere with a suitable reference field, e.g. a plane wave. We obtain a
hologram in the form:

I(u,v)=1+|HP+H+H*. (33)
Under the conditions discussed in the first section, notably in equations (15) to (24),

illumination of this hologram with a wave of unit amplitude will indeed produce an
imaging wave H* as desired.
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The | A |-2 may be obtained as follows. We first record the exposure | H |?
produced by the field H(u,v). If we now process the photographic negative with
a y equal to 2, the field transmitted through the negative will indeed be equal to
| H |2 We have for this field (with y =2):

Ep=[|HP]~"2=(H])~ (34)
Accordingly, if this field, produced by this component of the ‘sandwich’ filter
is used to illuminate the hologram component, described by equation (33), the
field transmitted in the imaging-wave side band will be:
— H*

—2 ¥ = e

upon illumination with a unit-amplitude wave. It follows immediately that
illumination of the sandwich filter with the field G(u, v) will produce an imaging
wave equal to:
¥
i
as desired. We now distinguish between the field Fyy, actually obtained by this
filtering within the spatial bandwidth in which the spatial frequencies are being
filtered, on the one hand, and on the other, the field F which would, correspond
to a field which, by Fourier transformation would give a ‘ super-resolved’ image
f(x%, ), i.e. an image without any limitations such as that which would characterize
even a perfectly corrected lens system, notably the °diffraction’ limitations.
It may be shown [27, 28], at least mathematically, that the filtering step of equation
(36) may in fact be considered as a possible first step in obtaining a certain amount
of ‘super-resolution’ improvement, notably in cases when a suitable absence of
image-degrading noise might be experimentally achievable. We hasten to note,
in this context, that the situation for obtaining super-resolution’ in such two-
step (a posteriori) filtering appears theoretically more favourable than the situation
which exists in the methods used for obtaining ‘super-resolution’ in one-step
imaging, e.g. in radar and radio-astronomy [29, 30]. The possibility of thus
investigating ‘super-resolution’ by two-step imaging, using holographic pro-
cessing, as an example, may be of particular interest also in further progress in the
application of holographic image-computing methods to the solution of the ‘ phase
problem’ in X-ray crystallography [8, 31, 32]. These preliminary considerations
may be further clarified as follows. It can be shown that the Fourier-transform -
division indicated in equation (36) permits one to restore essentially all the spatial
frequencies within the bandwidth corresponding to the image-forming aperture
used to record g(x, y), respectively A(x, v). This is true, except for the isolated

G Fg = F (36)

nulls of the H(u, ) function, for which the frequencies are not properly restored. o
Indeed by noting that .
h(%,y)=En(x,y) Bg(x, y)* (32)
and that ]
Ey(x,y)= Jf f " B(u,0) exp [2mi(ux +vy) du do, (37)

as we mentioned before, we immediately have (see, e.g. equation (30)):

H(u,v) = Eg(u,v) % Egq(u, v)*, (38)
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which we may also write (see, e.g. [8, chap. III, equation (235)]) in the form :
H(u,v)=Ey(u,v)® Eg*(—u, —v). (39)
The filter function H(u,v) is thus in effect nothing but the ‘ convolution of the
wavefront Ey(u, v) with itself, according to equation (39). Since the wavefronts
Ep(u, ), perfect, and Eg(u, v), imperfect (“blurred’) occupy the same aperture
both for the system ‘in focus’, as well as when the system is ‘out of focus’ (or
when it ‘ blurrs * the image by motion) we may conclude, at least to this approxima-
tion, that the blurred spread function k(x, y), as well as that Ap(x, y) which would
correspond to the system ‘in focus ’ contain spatial frequencies up to the same limit,
in the (u,v) domain. The difference between the function Hp(x, v), correspon-
ding to the ‘in focus’ system, and the function H(u, v), corresponding to the
‘blurred’ spread function 4(x,y), is that the spatial frequencies in H(u,v) are
generally smaller in amplitude, and shifted in phase, relative to the spatial fre-
quencies in Hy(x,v). It is in fact the restoration of the spatial frequencies
of H(u,v) to the values in Hp(u, v) which may be considered as the interpretation
of the ‘spatial filtering’ restoration process. In other words, an ‘in focus’
system, having a ‘ diffraction-limited * spread function %p(x, y) produces an image :

gI—'(x’y) =f(x,y)®hp(x,y) (40)

and also not a ‘super-resolved’ image f(x,y)! The field corresponding to the
‘in-focus’ image in the Fourier-transform domain is:

Gp(u, v)=F(u;v) Hp(u, v), (41)

which gives, by a second Fourier transformation (except for possible additional
diffraction limitations), the field gp(x,y), identical to that described by equation
(40), and again not a ‘super-resolved’ image f(x,y)! Naturally, all of our pre-
vious papers implicitly made this assumption, as we explicitly stated in [1]. By
comparing equations (41) and (2), it should indeed be clear that the image-
deconvolution methods aim, in this first approximation, in ‘restoring’ the function
Hp(u,v) from the function H(u,v). Because the filtering restoration methods
operate, in effect, on each spatial frequency separately, both in amplitude and in
phase, it should be clear that the existence of a number of isolated zeros in the
H(u,v) function, as used here for division, will not, in general, significantly affect
the success of the filteringt. The existence of a number of isolated zeros in the
function H(u, v), used for Fourier-transform division filtering, does not invalidate
the validity of equation (26), within the limitations discussed hereabove. Inother
words, even though some of the spatial frequencies may not be restored by means
of the Fourier-transform division methods, a noticeable improvement in the
‘deblurred’ image will in general be observed, provided that a significant part
of the spatial frequency function Hp(, v) is indeed properly restored, in amplitude
and in phase, especially, in many practical cases, in the lower frequency regions,
inasmuch as the higher frequency regions are in general already quite attenuated
in amplitude, even in perfectly corrected image-forming systems. For instance,
in a perfectly corrected image forming system, using a rectangular aperture, the
spatial frequency amplitudes decrease linearly from the lowest to the highest
frequency transmitted, along a direction parallel to a side of the aperture. The

+ This is essentially true in cases where there are a limited number of zero’s in H(u, v),

and to the extent that corresponding ¢ Gibbs ’-like effects may be neglected in the first
approximation.
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‘super-resolutions ’ which we mention above, could conceivably be obtained in a
number of ways from the function Hp(x,v). One form of ‘super-resolution’
which may be readily achieved, and which appears to involve few conceptual
difficulties or objections, would simply consist in raising the spatial frequency
amplitudes above the line of linear decrease, discussed above. Clearly, we
may add, the preceding discussion refers to the formation of images, and to the
recording of g(x, v) in incoherent light, while the spatial filtering operations are, on
the contrary, carried out in coherent light. It may be shown (see, e.g., [8]) that
the spatial frequency response function, analogous to the Hp(u,v) functions
discussed above, for perfectly-corrected systems operating in coherent light are
perfectly flat in amplitude up to a frequency equal to one-half of the cut-off
frequency of incoherent-light imaging systems: at that frequency, the spatial
frequency response of the coherent-light imaging systems abruptly drops to zero.
It should be clear, also, that the functions H(x, v), Hp(u, v) are nothing but the
‘spatial frequency response functions’ of the optical systems, in analogy with the
terminology used for temporal frequency response functions in electrical circuit
theory and in electronics, among others (for a general background, see, e.g.,
[8, Chap. III]).

Experimental verifications of the holographic Fourier-transform division
method of [1] were first described by Lohmann and Werlich [2] for the decon-
volution of a badly blurred image of a single ‘black-on-white’ point, as well as
for an equally badly blurred ‘black-on-white’ letter ‘T’. We have ourselves
[3,4] given the first experimental verifications for a ‘continuous-tone’ three-
dimensional macroscopic object, using the theory given above. Further
refinements of these methods will be given in a future publication, following
completion of experiments now under way [44]. The complexity of the problem
of ‘realizing’ (i.e. of synthesizing) such optical filters as the A~ filter, equal to
H*||H]2, as discussed above, may perhaps be illustrated by, to some extent,
comparing it to the mathematical difficulty of synthesizing electrical filters, even
passive, in electronics, even when the frequency-transfer function is known. For
instance, systematic methods for synthesizing RLC filters (R=resistant,
L=inductance, C=capacitance), are still not known in a general way!
Similarly, many years sometimes elapse before a method, such as that which we
describe, is discovered in electronics for systematically synthesizing certain
filter types, e.g. RL, RC or IL.C, especially if constraints such as ‘equal values ’ for
all resistances and all capacitances in a ladder-network may be desirable, as one
example. In addition to the comparable theoretical difficulties in optics, there
exists the additional difficulty resulting from the need of actually ‘ manufacturing’
(photographically and holographically) the individual filter components, with
exacting precisions, and for maintaining critical alignments of the optical-system
components in the processing, as we discuss in the next section.

3. Correlative holographic decoding (deconvolution) method

It may be of interest to stress again the generality and power of the basic
equations of holography first introduced by Gabor [13-15]. All the various
forms of imaging and image processing, using holograms, may be shown to make
use of the same fundamental ‘Gabor’ equations (see, e.g. [8]). However,
there exists a basic difference between the image decorrelation (image decon-
volution) methods, which we describe here, and which result in a decoded
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(deblurred) image, on the one hand, and on the other, the image correlation methods,
first introduced by Vander Lugt [41], and which result in a coded pattern, for
instance a bright dot or a cross, indicating the location of the centre of gravity of
the correlation of the area [41] or of the contour [42][43], of the ‘known’ pattern
with the areas or contours of the patterns in the image. The Vander Lugt
‘matched’ filtering methods consists in correlating a function f,(x,y) with the
best possible ‘in focus’ image function f(x,y). The correlation may be carried
out in the spatial-frequency Fourier-transform domain with the aid of a Fourier-
transform hologram [1+ |F; |2+ F, + F *] of the coding function f;. When the
image function f(x,y) is illuminated by a plane wave of coherent light, the spatial
Fourier transform of f(x, y) obtained in the focal plane of a lens is F(u, v) and the
field transmitted through the hologram is F[1+ |F,[2+ F; + F;*]. One of the
holographic ‘side-band ’ waves is FF;* and its Fourier transform is thus equal to
the correlation ff*, rather than to the decorrelation, as it is being sought in the
image-deblurring methods! In this sense, it may be said that the image-
deblurring methods aim at achieving the solution of an integral equation (e.g. the
solution of equation (1) above), while the ‘ matched’ filtering pattern-recognition
methods aim at realizing the (in practice) much more straightforward correlation
integral

[[fenptessyry)aedy=pes,

For further details, see also, e.g. [8], notably also for diagrams and photographs of
experimental arrangements required to materialize equations given in this paper
and in references cited.

The basic principles of our new methods [5, 6] were given above in equations
(27) to (30). The realization of equation (27) may be accomplished by means
of two holographic schemes.

Let g(x, y) be the ¢ blurred’ photograph, such that

&(x,9) =f(%, ) ® h(x,3), (25)

with the special requirement that the autocorrelation function of the spread
function h(x, y) be sharply < peaked’, i.e. that we have

h% h*=38. (29)
To this corresponds the equivalent condition: :
HO*=1 (27 a)
and we recall that
h*h*<=HO*. (30)

3.1. Extended-source holographic scheme A

Let us record the Fourier-transform hologram [8] of the function g(x,y),
using the photographic precautions discussed in the Introduction. The
hologram is:

I(u,2)=1+|G]2+ G+ G*. (42)

By recalling the equation:

G(u,v) = F(u,v)H(u, ), (2)
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we may write equation (42) in the form:

I(u,v)=1+ G2+ FH+ F*H*. 43)
If we now replace the hologram into its recording position and illuminate it by
the wave H, originating from a suitably realized copy (see Introduction) of a
photograph of the spread function k(x, ), placed into the position of the point
source, used to record the Fourier-transform hologram of equation (42) then the
wave transmitted in the last imaging term of equation (43) (see figure 1) will be
equal to

F*A*H=F* (if HA*=1). (44)

"LENSLESS" FOURIER-TRANSFORM

HOLOGRAM OF BLURRED PHOTO
! =

—<<[pg]]] =

d ) SHARPENED (DEBLURRED) IMAGE
XY
“BLURRED PHOTO OF A SINGLE POINT

—— =y,

h — R[1+[GI%+ FA+FFA] — f

Figure 1. Arrangement used for the deconvolution of the Fourier-transform hologram
of the °blurred’ photograph g(x,y), for the case when the hologram was
recorded with a point-source reference.

Since F* is nothing but the complex conjugate of the imaging wave F, the corres-
ponding image, obtained by Fourier transformation in the focal plane of a lens
‘looking’ through the hologram is indeed equal to the desired image f(x,v),
upon processing of the photograph with ay equal to — 2, i.e. by printing the positive
according to the condition of equation (11)t.

3.2. Extended-source holographic scheme B

In this case, we record the Fourier-transform hologram of g(x,y) by using
h(x,y) as the ‘extended reference source’ (e.g. as in figure 27, Chap. VI of [8]).
The hologram is:

I(u,)=(G+H)(G+ H)*
=|G+ |H}+ GH* + G*H. (45)
By again recalling that G= FH, according to equation (2), we may write equation
(45) in the form: '

I(u,v)=|G2+|H + FHA* + F*H*H. (46)
B:cause we are considering, in particular, the case when HH* =1, we note that the

image-forming wave of interest, say
FHAA*=F (if HH*=1), (47)
is indeed equal to F'as desired. Accordingly, in this case it is sufficient to replace
the hologram into its recording position, and illuminate it with a wave of unit

+ In practice, this condition need not be necessarily more rigorously satisfied in this
last step than in direct photography of the image g(x, y), using a well-corrected system!
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if the recording and reconstructing sources are the same, and if their correlation
is equal to the Dirac delta, function, then equation (49) becomes:

T[E,]®8=T[E,), (50)

in agreement with the analysis of the preceding sections.

Let us now consider the simplest case of misalignment, namely the case
described by equation (48). This would also be the case of interest in which Eg
and Eg. are in fact produced by the same source, but when the source, in the
reconstruction, is misaligned, so that the phase ¢y is different from the phase ¢g,
in the plane of the hologram.

In this case the imaging term of interest becomes:

Eqexp (—igr) exp (igr-)=Eo exp [i(¢r-—$r)], (51)

from which we immediately recognize that the imaging wave is now not any more
the wave Eg), but rather a wave having a possibly very considerable wavefront
aberration (¢g-—¢g). We may recall (see, e.g. [7]) that wavefront aberrations as
small as one-tenth of a wavelength (i.e. 27/10radians~6/10radians) become
noticeable for high-resolution imaging, when the aberration extends smoothly
over large regions of the wavefront. The tolerances for more localized aberrations
is about ten times smaller still, and their effect is proportional to the area of the
wavefront ‘covered’ by the aberrations! Aberrations of several radians cer-
tainly lead to intolerably large image degradation, in the case of the ‘extended’
aberrations.

It is possible to assess the magnitude of the misalignment phase errors for the
two types of holographic experiments discussed in the previous section.

Let us consider, for simplicity, the case of the ‘lensless Fourier-transform
hologram’ [8, pp. 127-137], Let one of the waves from the reference source,
~ located in the x plane, produce a field: ‘

Erwh=esp (i 3) @

in the hologram u plane, located at a distance f from the x plane, and parallel to
it. We are assuming that the x extent of the source is small compared to the
extent of the hologram. Now let the corresponding wave from the source in
the reconstruction originate from a position of the source displaced by a small
distance x, from the position used in the recording. The reconstructing wave
may then be written in the form:

[Ep ()], = exp <z—2)\1 (1‘%0)2> : (53)

Since we are interested in the product Eg*Ey., and because x, is small compared
to u, we may write: ' ‘

27 u? 2 u? .27 2ux,
*Fo. —r == — —l— )
E*Eq __exp( i 2f>exp(z T Zf)exp< IS 2f> (54)

We may conclude that the corresponding wavefront aberration is: *

21 ux,

(¢R'~¢R)1:77- | - (55)
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In particular, equation (55) gives the aberration at the outer ‘edge’ of the
hologram (or of the part of the hologram used in the reconstruction).

As an example, we may consider the magnitudes involved in the experiment
illustrated in figure 3.

The wavelength A used, 6328 A is about 1/40000in. The distance f used was
about 33in. 'The images were reconstructed using an aperture having a diameter

0.003
inch

Figure 3. Experimental results showing the high degree of alignment accuracy required
in the holographic image-deconvolution work (see text). The four figures, top to
bottom, show the images of a test-bar target reconstructed from a hologram of the
target. The hologram was recorded with an ‘ extended reference source’ A(x, y)
consisting of a simple ground glass (according to a private suggestion of Gabor [40],
who noted that a simple ground glass should also have the desired peaked auto-
correlation function according to equation (29) in the text). The values of Ax
shown refer to different positions of the hologram relative to its recording position,
orthogonally to the optical z axis, at a distance of approximately 33 in. from the
‘ extended source’ A(x,y) used to illuminate it in the reconstruction, according
to figure 1. The tolerances shown may also be taken to indicate the degree of
similarity in the disposition of the °centres of gravity’ in the corresponding
points of the spread function /(x, ¥) and that g(x, y) formed by convolution in the
imaging (see text).
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about lin. (giving #=1 at the edge). With a displacement x,=0-0011n., the
aberration is:
27 uxgy s 1 1 1
sl g =X e X om 56
X7 =27 x40 x 108 x 3% TFE X (56)
ie.
¢p-—dgr = 4 radians

or about two-thirds of a wavelength. By recalling the Rayleigh tolerance of about
one-quarter of awavelength for ‘perfect’ imaging, we should expect a displacement
as small as x;=0-0011in. at a distance f=33in. to produce a very noticeable
deterioration in the image. This has in fact been fully borne out by our experi-
ments, illustrated in figure 3. These results also help in explaining the results
obtained in [33] carried out to verify our original method of [10,11].

5. Image deblurring experiments using correlative holographic deconvolution

In view of verifying the theory given above, we have actually carried out a
deconvolution experiment, according to scheme B (equations (45) to (47),
using for the object g(x,v) a computer-generated convolution (of the letter ‘H’)
and for the spread function A(x,y) a computer generated random array of 9000
pinholes (0-046 mm diameter) randomly disposed in a 17 x 17mm area. The
image g(x,y) had its 9000 ‘ images’ disposed in the same area, and an attempt was
made to have the two arrays as similar as possible, according to the tolerances of
the previous section. This work, carried out in view of achieving a new method
of X-ray imaging, using a multiple-pinhole camera, according to a suggestion by
Dicke [34] is fully described in our ref. [16]. We did in fact obtain a perfectly
convincing deconvolution of the hologram, using the method illustrated in
figure 1. However, because the computer has so far not generated the functions
2(x,v) and k(x, y) with the required alignment precision, according to our analysis,
as given abovet, and because actual deconvolution experiments of this type may in
fact be carried out, with the small pinholes used, best at the x-ray wavelengths, for
which they are designed, it appeared of interest to verify the principle of schemes
A and B by holographic simulation, as follows.

We recorded in place of the hologram of the convolution

8(2,y)=f(x,7)®h(x,y),
according to equation (42) the ‘equivalent’ hologram:

I(u,0)=|Fpp+ |Hp+FA* + F*A. (58)

This is achieved by using the function A(x,y) (in this case the 9000 multiple-
pinhole random array mentioned above) as the ‘extended ’ reference source in the
recording of the hologram of the function f(x,) (in this case the test-bar chart,
see [8, 127-137]).

By now replacing the hologram into its recording position, and by illuminating
it with the wave H obtained from the ‘extended’ source A(x,y), and by noting
that this source has indeed a very sharply peaked autocorrelation function

+ Note added in proof (21 Fune 1969):" We have now successfully performed the direct
verification of our theory, using a new computer-generated pair of such functions. The
photographic results fully verify the theory.

S
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(consisting of a sharp spike on a very small background, see [34], and [16], we
find that the imaging wave of interest is given by the equation:
FHA*=F (if HA*=1, ie.if h¥k*=3§) (59)

The imaging wave is indeed equal to F, giving, by Fourier transformation, the
desired ‘deconvolved ’ image f(x,y), provided that the autocorrelation function
for A(x, y) is satisfied, according to equation (29). The results of this experiment
shown in figure 4 have fully borne out the predicted result.

E':'.':'
mii

Tmm

(a) (®)

Figure 4. Results of the simulation of the  correlative holographic deconvolution method’
discussed in the text. The blurred image shown in (@) was reconstructed by
point-source illumination of the hologram formed by interference with the test-bar
target function f(x, y), and the ‘ extended-source ’ spread function x(x, V) (see text).
The deconvolved ‘synthesized’ image shown in (b) was reconstructed from the
hologram by carefully replacing it into its recording position, according to figure 1,

to the accuracy indicated in figure 3, and by illuminating it with the wave H(u, v)
produced in its plane by the ¢ extended source’ i(x,y). The ‘ extended source’
h(x,y) used in this case was the 9000 point multiple-pinhole random array
discussed in the text (see also [6, 16]).

6. Compensation of recording-medium distortionst

Because of their direct relevance to the subject discussed here, we now give
some previously unpublished results of our work on three-dimensional imaging
through distorting media, using our method of ‘lensless Fourier-transform
holography’ [9]. This method (see also [8, pp. 127-137]) permits one to achieve
compensation for distortions when imaging through ‘turbulent’ and distorting
media, as was first demonstrated by Goodman et al. [35], and again verified by
Gaskill [36], in both cases for two-dimensional objects. Because of the approxi-
mations involved in the Fourier-transform compensation (see, e.g., equation (54)
above), it appeared necessary to verify to which extent tolerances, such as those
corresponding to our equations (55) to (57) could be achieved in the imaging of
three-dimensional objects through a ‘ distorting ’ medium. 'The experiments and
theory are thus immediately applicable to assessing the effects of ‘ distortions ’ or
deformations in the holograms, or corresponding misalignments, in terms of the
applications considered here.

+ Parts of this work were first presented by the author, by invitation, on 23 May 1968
at the < Holography ’ Seminar of the Society of Photo-Optical Instrumentation Engineers
in San Francisco, California.

0O.A. 2F
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Figure 5 shows a diagram of the experimental arrangement used. Let
$p(u, v) be the distortion introduced onto a wave E(x,v) originating from a
point of the object, as shown, where (u, v) describes the hologram plane, as before.

HOLOGRAM

DISTORTING GLASS

Figure 5. Lensless Fourier-transform hologram recording arrangement [9] used for <
compensation of wavefront deformations arising by direct imaging through
¢ distorting > media. L =laser (He-Ne 6328 &), with shutter and spatial filtering
pinhole. Ly =Ilens used to form reference point according to [9 b], R=reference
point, O =three-dimensional object.

Let ¢p.(u,v) be the distortion introduced on the ‘reference’ wave originating
from the reference point R. The imaging components in the hologram recorded
according to this arrangement are thus:

EoiEr* exp [i(¢pi—$p)] (59)
for each point of the object! Comparable terms describe the imaging components
for the other (¢—1) points of the object. It should thus be clear that
‘compensation’ for the distortions introduced on each object wave, and equal
to exp [i¢p;], may be compensated by the distortion exp [ipy ] introduced on the
reference wave, provided that the value of the phase distortion of each wave, is
compensated to the degree discussed above, i.e. say

éni— ¢p- < Rayleigh limit (w/2 radians) (60)

or, more rigorously to the limits given by Maréchal [37], Toraldo di Francia [39],
as well as those of the author [7], mentioned above. In particular, the Maréchal
limit for good imaging would require:

épy— ¢p- < Maréchal limit (7/4 radians) (61)

throughout the entire wavefront (not just locally, as mentioned above).

It should be clear also, according to this analysis, that the image obtained
through the ‘compensated’ lensless Fourier-transform hologram will be a
considerably better image than that obtained by direct photography of the object,
as viewed through the distorting medium !

Our experiments, illustrated in figure 6 have fully borne out this prediction,
and indeed the orders of magnitude of distortion which may be compensated
according to equations (60) and (61). The uncompensated ‘distorted’ image,
obtained by direct photography through the distorting glass is shown in figure 6 ().
It shows the effects of a wavefront ‘distortion’ estimated to be about 4radians
in a direct (laser-light) photography of the object. 'The image may be compared
to the third image from the top in figure 3, which corresponds to a wavefront
¢ distortion’ of about 4 radians. ,

The remarkable improvement obtained by the method of holographic image
compensation is shown in figure 6 ().
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de diffraction (diffusion) qui charactérise le systéme optique. La deuxiéme méthode est
encore plus directe: elle est particuliérement utilisable pour le case spécial ou la fonction
d’auto-correlation de la figure de diffraction (diffusion) est particuliérement pointue, ou
peut &tre rendue particuliérement pointue. Cette derniére méthode doit permettre la
réalisation d’une nouvelle classe de systémes optiques pour les cas olt I'on ne peut pas
immédiatement réaliser de tels systémes par des méthodes usuelles (par exemple en vue
d’applications & I'imagerie en rayons X et en ultrasons, pour des applications d’astronomie et
photographie spatiales, entre autres). Des résultats nouveaux, theoriques et expérimen-
taux, qui n'ont pas encore fait le sujet de publications préalables, sont présentés. Il
est fait mention bréve également d’applications possibles & la realisation de ¢ super-
résolutions ’ et & ‘a solution du ‘ probléme de phase ’ en crystallographie avec des rayons X.

Die holographische Ortsfrequenzfilterung zur Riickgewinnung der Bilder aus zufilligen
Verschmierungen und absichtlichen Verschliisselungen zur Apertursynthese, ldsst sich
auf zwei Wegen erreichen. Bei dem ersten, allgemein gangbaren, benutzt man ein
Trennfilter des Fourierspektrums, indem man das Hologramm der instrumentellen
Streufunktion des Systems heranzieht. Der zweite, der sogar noch weiter fiihrt, ist
besonders fir den speziellen Fall geeignet, in welchem die Autokorrelationsfunktion zu
der Streufunktion ein scharfes Maximum besitzt oder leicht dazu gebracht werden kann.
Auf diesem Wege miisste es auch méglich sein, eine neue Art optischer Systeme
herzustellen, nimlich fiir solche Fille, in denen die konventionellen Systeme (Linsen und
Spiegel) nicht ausreichend hergestellt werden konnen (z.B. fiir Rontgen- und Ultra-
schallbilder, fiir Radioastronomie und Photographie und andere Zwecke). Die Arbeit
enthilt neue, bisher unversffentlichte, theoretische und experimentelle Ergebnisse.
Ferner wird auch kurz auf die Moglichkeiten eingegangen, eine ¢ Uberauflssung ”’ zu
erreichen und das Phasenproblem in der Réntgenstrahl-Kristallographie zu 3sen.
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