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Abstract. Two forms of holographic spatial filtering may be used for the 
deconvolution of accidentally blurred images and of images deliberately 
' coded ' for aperture-synthesis purposes. The first is generally applicable and 
uses a Fourier-transform division filter realized by holography from the 
instrumental ' spread function ' of the system. The second, even more straight- 
forward, is particularly suited for the special case when the autocorrelation 
function of the spread function is or may suitably be made to be sharply peaked. 
This form should permit one to realize a new class of optical systems in cases 
where conventional (lens and mirror) systems may not be readily realized 
(e.g. for x-ray and ultrasonic imaging, for space astronomy and photography, 
among others). Previously unpublished, new theoretical and experimental 
results are given. Applications to the possibilities of achieving ' super- 
resolutions ' and for solving the ' phase problem ' in x-ray crystallography 
are also briefly mentioned. 

1. Introduction 
Recent work has demonstrated that it is possible to extract greatly sharpened 

' deblurred ' images from photographs which have been blurred by accident or 
deliberately coded, for instance in view of 'aperture synthesis' applications 
11-81. T h e  blurring or coding of the blurred photographg(x,y) may be expressed 
as the spatial convolution : 

g(Xf,Yf)=JSCmf - m (X,Y)h (x'-x,yf - y )  dxdy, (1) 

between the desired image f (x,y) and the instrumental impulse response function 
(spread function, i.e. image of a point) h (x, y). It is well known that equation (1) 
takes on the form of the product: 

in the spatial Fourier-transform domainf, where we have: 

E(U, v) = r f C  * (x,Y) exp [2lii(ux+ vy)]  dxdy (3) 
J J - m  

and similarly for C: and R, with suitable normalizationt. I t  is also well known 
that a Fourier-transform relation such as that of equation (3) exists between the 

-t Presented on 24 September 1968, by invitation, at the International Commission for 
Optics Symposium on Applications of Coherent Light, in Florence, Italy. 

$ For a general background, notations and approximations used see, e.g. 
STROKE, G. W., 1966, An Introduction to Coherent Optics and Holography (New York: 

Academic Press); second, revised and enlarged edition, December 1968. 
STROKE, G. W., 1967, Handbuch dm Physik, Vol. 29, edited by S. Fliigge (Berlin: Springer 

Verlag), pp. 426-754, notably pp. 504--570. 
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and the transmission of this positive (P) is : 

-&r= [ g ( x , ~ ) - ~ ~ l - ~ p ' ~ = g ( ~ , ~ )  , [YNYP =21 (13) 

if the condition of equation (11) is satisfied. 
Finally, as we recall below, with particular reference to this work, it is now 

well known (see, e.g. [8]), that the three angularly separated waves, produced by 
holograms, have electric field-vector amplitudes which can readily be made to be 
independent of the photographic recording and processing conditions under some 
specified conditions. For instance, let E,(u, v) describe the field produced by the 
' object ' field in the plane (u, v) of the hologram, and let ER (u, v) be the field 
similarly produced by the 'reference' source in the hologram plane. The 
exposure of the hologram is (with the time-averaging understood) : 

i.e. in the well-known form: 

') = [I '0 l2 + I + rEOER*1 + [EO* , (15) 
where the three separated waves have been separately bracketed.  lie electric 
field vector distribution of the field transmitted through the hologram, processed 
with a y, may be made to be proportional to I(u, v), with they  appearing only as a 
scale factor, provided only that one respects the simple condition : 

I ERI2 I E0I2. (16) 
I n  practice, the condition 9 may mean approximately : 

\&I2  E (4 to 10)IEo12, 

as an example. Indeed, if we write equation (15) in the form : 

and if we recall that the electric field transmitted through the hologram (negative!) 
is (upon illumination with a wave of unit amplitude) : 

we readily see, by a binomial expansion of equation (IS), that the form (1 + e ) ,  with 
E small, of equation (17) gives: 
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spatial part of the complex electric field amplitude E(x,y) in the pupil of a per- 
fectly corrected (ideal) lens system and the field E(u, v )  in the image plane (u, v ) t ,  
i.e. 

~ ( u ,  a )  = JJ' E(x,y) exp [2ni(ux + ey)] dx dy. 
- m  

(4) 

I t  is also known that one may readily realize by transmission through a photo- 
graphic transparency an electric field vector distribution ET(x, y )  equal to the 
exposure g(x, y)  of a photographic transparency, i.e. . 

ET(x, Y) = d x ,  Y) (5) 
by suitable processing of the photographic negative exposed to the ' intensity ' b 

g(x, y), where we have * 
g(x, y )  = <-@(x, Y, t)  -@*(., Y, t) ) (6) T 

under the usual assumptions [see Stroke, loc. cit. 1966,1967,1968), and similarly 
for the spread function h(x, y). For instance, in the linear range of the Hurter 
and Driffield curve, where the slope is tan-1 yN, and where we have 

the ' amplitude ' transmission of the negative exposed tog(x, y )  is 

I ET I=~(X,Y)-YS/~, (8) 
By taking suitable care, it is possible to make the phase transmission of the negative 
to be a constant, so that we may write : 

ET (x,Y) = ~ ( X , Y ) - Y S ~ ~ .  (9) 
It should be clear (as first pointed out by Gabor [14]) that we may make 

E T ( x , ~ > = g ( x , ~ >  [YN= -21 ( l o )  
with the condition y,= - 21. In practice [I] this condition may be realized by 
making a contact print of the negative (N), and by processing this positive (P) in 
such a way that the condition: 

YNYP =2, 
be satisfied. In other words, the exposure of the positive P is: 

[ ~ ( X , Y ) - Y S / ~ ] ~  =~(x,Y)-YN 

$ For a general background, notations and approximations used see, e.g., G. W. Stroke 
(1966, 1967), op. cit. 

" 3 Another way of expressing the relation between the transmittance of the photographic 
plate and the exposure (kindly suggested by one referee) is as follows: One may readily 
realize an amplitude transmission t(x, y) of a photographic emulsion prpportional to the 
exposure E(x, y) by suitable processing. The exposure is proportional to the intensity: 

I= (E(x, Y ,  t)  E"(x, Y ,  t)). 
In the linear range of the Hurter and Driffield curve, where the slope is tan-I y and where 
we have the equation log (1/T) = y log E(x, y)  the intensity transmission is 

T(x, y) =const. I-' 
and the amplitude transmission: 

t(x, y) = [T(x, y)I1l2 = const. I-112y 
and by making y = -2 the amplitude transmission t(x, y) becomes proportional to E. 
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and the transmission of this positive (P) is : 

ET = [ g ( x , ~ ) - ~ ~ l - ~ ~ ' ~  =g(x, Y )  r.yNyp= 2l (13) 

if the condition of equation (11) is satisfied. 
Finally, as we recall below, with particular reference to this work, it is now 

well known (see, e.g. [S]), that the three angularly separated waves, produced by 
holograms, have electric field-vector amplitudes which can readily be made to be 
independent of the photographic recording and processing conditions under some 
specified conditions. For instance, let Eo(u, v) describe the field produced by the 
' object ' field in the plane (u, v) of the hologram, and let ER (u, v) be the field 
similarly produced by the 'reference' source in the hologram plane. The 
exposure of the hologram is (with the time-averaging understood) : 

I(% v) = (20 + ER) ($0 + ER)* (14) 
i.e. in the well-known form: 

I(',w)= [IE0l2+ IE~l21 + TEoER*] + IE0* ER] y (15) 
where the three separated waves have been separately bracketed.   he electric 
field vector distribution of the field transmitted through the hologram, processed 
with a y, may be made to be proportional to I(u, v), with the y appearing bnly as a 
scale factor, provided only that one respects the simple condition : 

1 E ~ l "  I I0 12- (16) 
I n  practice, the condition 4 may mean approximately : 

as an example. Indeed, if we write equation (15) in the form : 

and if we recall that the electric field transmitted through the hologram (negative !) 
is (upon illumination with a wave of unit amplitude): 

we readily see, by a binomial expansion of equation (1 8), that the form (1 + E ) ,  with 
E small, of equation (17) gives : 
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This equation must be carefully considered for the purposes of this paper. First, 
we may note that the field ET transmitted through the hologram (upon illumina- 
tion with a wave of unit amplitude) will indeed have its imaging waves proportional 
to [EoER*] and [E0*ER], i.e. 

and 

to the extent that the amplitude IER(u, v)l of the reference wave may be considered 
as constant in the hologram plane. The condition [I ERI = const.] may, in practice 
be readily realized for a number of unfocused waves. This will be the case for a 
plane wave (originating from a point source ' at infinity '), a spherical wave (e-g. 
as originating from a point source near the object). I n  fact, as may be readily 
verified by experiment, most fields in which the object is not focused on the plate 
encountered in optics (as distinguished from a field near a source, in a ' focused ' 
image region, in shadows, etc.) happens to have an amplitude which is uniform, 
i.e. constant, over very extended regions ! In particular, the far-field region of an 
' extended ' reference source, as we useit in holography, as well as the field produced 
by it by Fourier transformation, both have amplitudes which may be considered 
as constant, within the requirements of equations (21) and (22). Under these 
conditions, we may henceforth write that the field transmitted by the hologram of 
equation (15) uponillumination with a wave ER, (u, v) is : 

Because of the Fourier-transforming property of lenses, as expressed in 
equation (4) and because of the possibilities of obtaining linear relations between 
the fields transmitted by a photographic transparency and its exposure (equation 
(13)) on the one hand, and on the other, between the field transmitted by a holo- 
gram and its exposure (equation (24)), we shall show that Fourier-transform 
holography [9], and notably 'extended-source Fourier-transform holography' 
[ll, 121 offer a particularly straight-forward solution to the 'inversion' of the 
integral equation (1). 

Indeed, if we write the integral equation (1) in the symbolic form?: 

g(x,y) =f (x,y)@h(x,y)7 (25) 
where @ indicates a spatial convolution [a], and if we recall the Fourier-transform 
equivalent of equation (25) : 

t The notation used is that introduced by: 
BRACEWELL, R. N., 1965, The Fourier Transform and its Applications (New York: 

McGraw-Hill Book Company). See also [8]. 
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then it should be clear that the desired image f (x,y) may be extracted from the 
photograph g(x, y), provided that we can ' extract ' the function E(u, v) from the 
function €(u, v), and take the Fourier transform of R(u,v), for instance with 
another lens. That this should be possible, in principle, was first suggested by 
MarCchal and Croce [12] in 1953, and again, at that time for the purposes of 
improving on the spectra produced by insufficiently perfect diffraction gratings, by 
the author [7] in 1955, who also proposed a solution in the form of a Fourier- 
transform ' division' as we discuss below. However, it was only when we 
realized [I] that holograms, as first described by Gabor [13-151 in 1948, could be 
readily used to help in the realization (materialization) of the required spatially- 
complex filters, that the practical solutions, such as those which we present with 
new theoretical and experimental detail below, became possiblet. 

z In brief, two methods permit one to extract the function Pf(u,v) from the 
.. function G(u, v) of equation (2), and from it, by a second Fourier transformation, 

the desired image function f (x,y). 
One method [I] consists in dividing G(u, v) by the function R(u, v), i.e. by 

performing the operation : 

This method, as may be readily shown, is quite general, and permits one to retrieve 
the desired function to the limit of ' diffraction ' of the original focusing system, 
already in the first step. The method does require, however, considerable care 
in the photographic steps involved, as we show below. 

Another method, recently originated by the author [ 5 ,  61 appears to be much 
more powerful, as well as considerably simpler. Its application to the special 
case of image ' deblurring ', for images formed by initially ' well-corrected ' 
systems, which were out-of-focus or moved during the exposure, is less general 
than the Fourier-transform division method, but much simpler to implement, at 
the present stage of development. Moreover, we show below that the second 
method has already formed the basis for the design of a new class of optical systems 
which, by themselves are, paradoxically, rather poor (deliberately poor) image- 
forming systems, as far as the formation of the first-step photograph g(x,y) is 
concerned. This second method of image deconvolution (decoding) consists, in 
one form, of multiplying the function G(u, v) by the complex conjugate R*(u, v )  of 
the function R(u, v), where we recall that R(u,  v )  is the spatial Fourier transform of 

i the spread function h(x,y), according to equation (3). The second method of 
image deconvolution is described by the equation [S, 61 : 

€IT* = FRR* = F, (27 a) 

According to a well-known theorem (see, e.g. [8]), the ' decoding ' condition : 
RR*=l, (27 b )  

may be written in the (x, y )  domain in the form : 

.f. In this work, the Fourier-transform holograms have been recorded with rather 
than without the use of a lens [9 a]. 
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where (x f ,  y') is the Dirac delta function. We may write equation (28) in the 
equivalent symbolic form (see [8]) : 

hsh* = 6 (29) 

where the symbol* indicates (here) the spatial autocorrelation operation described 
by equation (28). The conditions (27 b) and (29) which must be satisfied in order 
that the operation Gg* may indeed yield E as desired, according to equation (27 a), 
may be formally related by the Fourier-transform theorem : 

19R*+h*h*, (30) 

referred to above, where the symbol + indicates ' by Fourier transformation '. I t  
may be helpful to recall that the ' decoding ' conditions ng* = 1 (equation (27 a)), 
i.e: h*hQ = 6 (equation (29)) are in fact extensions of the method of ' extended- r .  

source Fourier-transform holography', (see [lo, 111 and [8, PP. 127-1371). 
A particularly remarkable example of a function described by equation (29), 
suggested by Gabor [40], is that of a simple diffusing (ground) glass. This is 
further illustrated in figure 3. 

In  the sections which follow, we continue to present, as above, only such new 
aspects of our work which we have not extensively presented elsewhere. Further 
details with regard to the second method, which we may call the ' correlative 
holographic decoding method', appear in [5, 6, 161. Similarly, we may call the 
first method the ' holographic Fourier-transform division method ', for short. 
Before proceeding to the discussion of these methods, with their experimental 
illustrations, it may be in order to make some reference to the advantages in speed 
which these optical computing methods have in comparison with digital-computer 
solutions of the deconvolution problem, e.g. as demonstrated by Harris [17] since 
1966. According to Ansley [18], the Fourier-transform deconvolution of an 
aerial photograph, 4x4in .  square, with a resolution of 150lines/mm (i.e. 
2-25 x 10s bits) would require 15 hours of computing time, on the fastest presently 
available computer, IBM 360 Model 67 (having a 6 pet multiply + add time), 
even with the use of the powerful Cooley-Tukey algorithm [19], which reduces the 
computational time required to Fourier transform an n x m matrix from n2m2 to 
n log, m x m log, n. This is to be compared to minutes required for the same 
operation when it is performed holographically. In fact, at present it seems that a 
maximum of 250 x 250 lines (i.e. image portions of about 2-5 x 2.5 mm with 100 
lines/mm resolution) may be reasonably processed with current methods. How- 
ever, when successful, the computer-decoded images may in the end present a 
perfection which may be in many ways more readily superior to that obtained by 
our first method. Accordingly, it may well be that the holographic deconvolution 
methods may serve as powerful first-step search methods, for the improvement 
of images, to determine the image or image sets for which further digital computer 
processing for image refinement may be justified. However, it appears very 
likely that our second ' correlative holographic decoding method ' may well remain 
as the superior method, when it is applicable ! It may also be of some interest 
to note analogies between these methods and some of the forms of apodization [20], 
and other forms of non-holographic coding and decoding, e.g. as used in spectro- 
scopy [21-231 as well as image-sharpening methods of purely electronic nature, 
e.g. as used in television [24,25], to which we have made extensive reference in the 
past. We also recall that optical filtering methods using filters generated by 
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vacuum-evaporation of dielectric films or filters generated in part in this manner 
and in part photographically have been described by a number of authors, notably 
first by Tsujiuchi [26]. 

2. Holographic Fourier-transform division method 
Our method [I] consists in recognizing that the equation : 

i.e. its equivalent Fourier-transform equation : 

G(u, v) =P(u, v) R(u, v), (2) 
I may be readily solved by the Fourier-transform division : 

provided that the required Fourier-transform division filter can indeed be realized. 
We showed in [I, 31 that'such a filter could indeed be realized, notably in the form 
of a two-part ' sandwich ' 

Each of the two filter components, R" and I R can be separately realized, both 
from the Fourier-transform R(u, v) of the spread function h(x,y), i.e. of the image 
of a point, as formed by the system under the conditions of use. It may be of 
some interest to note, for instance in connection with the diffraction patterns 
formed by imperfect gratings (see, e.g. [7]), that the spread function h(x, y) may in 
fact also be readily obtained by computation (e-g. using a digital computer), when a 
direct measurement with adequate precision may not be readily achieved. The 
computation of h(x,  y) is based on the fact that 

where EH(x,y) is the spatial Fourier transform of the electric field 'amplitude ' 
E,(zd, V) in the wavefront, when the system is illuminated by a wave from a point 
in the object domain. The wavefront &(u, v )  may be readily measured inter- 
ferometrically, or indeed holographically. I n  general, however, for most 

J image-forming applications, the function h(x,y) may in fact be determined with 
adequate precision simply from its photograph. 

T o  realize, in the focal plane of a Fourier-transforming lens the field R(u, v), 
we must produce in the pupil of the lens the field h(x,y). This may be readily . achieved according to the steps involved in the negative-positive procedure 
leading to equation (13). Using the field H(u, v), we obtain the R* component 
of the filter simply by recording the corresponding hologram, i.e. by making the 
R(u, V) interfere with a suitable reference field, e.g. a plane wave. We obtain a 
hologram in the form : 

Under the conditions discussed in the first section, notably in equations (15) to (24), 
illumination of this hologram with a wave of unit amplitude will indeed produce an 
imaging wave H* as desired. 
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The I H I-2 may be obtained as follows. We first record the exposure I R l2 
produced by the field H(u, v). If we now process the ~hotographic negative with 
a y equal to 2, the field transmitted through the negative will indeed be equal to 
I R We have for this field (with y = 2) : 

I?* = [ I  H (21 - ~ ' 2  = (1 R 12)-1. (34) 
Accordingly, if this field, produced by this component of the ' sandwich ' filter 
is used to illuminate the hologram component, described by equation (33), the 
field transmitted in the imaging-wave side band will be: 

R* 
lRl-"* = - 

IRI2 ' (35) 

upon illumination with a unit-amplitude wave. I t  follows immediately that 
illumination of the sandwich filter with the field €(u, v) will produce an imaging 
wave equal to : 

as desired. We now distinguish between the field PBL actually obtained by this 
filtering within the spatial bandwidth in which the spatial frequencies are being 
filtered, on the one hand, and on the other, the field P which would, correspond 
to a field which, by Fourier transformation would give a ' super-resolved ' image 
f (x, y), i.e. an image without any limitations such as that which would characterize 
even a perfectly corrected lens system, notably the 'diffraction' limitations. 
It may be shown [27,28], at least mathematically, that the filtering step of equation 
(3 6 )  may in fact be considered as a possible first step in obtaining a certain amount 
of ' super-resolution ' improvement, notably in cases when a suitable absence of 
image-degrading noise might be experimentally achievable. We hasten to note, 
in this context, that the situation for obtaining 'super-resolution ' in such two- 
step (aposterion') filtering appears theoretically more favourable than the situation 
which exists in the methods used for obtaining ' super-resolution ' in one-step 
imaging, e.g. in radar and radio-astronomy [29, 301. The possibility of thus 
investigating ' super-resolution ' by two-step imaging, using holographic pro- 
cessing, as an example, may be of particular interest also in further progress in the 
application of holographic image-computing methods to the solution of the ' phase 
problem ' in x-ray crystallography [8, 31, 321. These preliminary considerations 
may be further clarified as follows. I t  can be shown that the Fourier-transform 
division indicated in equation (36) permits one to restore essentially all the spatial 
frequencies within the bandwidth corresponding to the image-forming aperture 
used to record g(x, y), respectively h(x, y).  This is true, except for the isolated 
nulls of the R(u, v) function, for which the frequencies are not properly restored. 

Indeed by noting that 

k(x,y)=E,(x,y) E,,(x,Y)* (32) 
and that 

EH(u, V) exp [ ~ T ~ ( u x  + vy) du dv, 
- m 

as we mentioned before, we immediately have (see, e.g. equation (30)): 
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which we may also write (see, e.g. [8, chap. 111, equation (23 b ) ] )  in the form : 

R(u,v)=EH(u,v)@EH*(-u, -v). (39) 
The filter function R(u, v) is thus in effect nothing but the ' convolution of the 
wavefront EH(u, V) with itself, according to equation (39). Since the wavefronts 
&(u, v ) ,  perfect, and E H ( ~ ,  v), imperfect (' blurred ') occupy the same aperture 
both for the system ' in focus ', as well as when the system is ' out of focus ' (or 
when it ' blurrs ' the image by motion) we may conclude, at least to this approxima- 

- tion, that the blurred spread function h(x,y), as well as that hp(x,y) which would 
correspond to the system 'in focus ' contain spatial frequencies up to the same limit, 
in the (u, v) domain- The difference between the function Rp(u, v), correspon- 
ding to the 'in focus ' system, and the function R(u, v), corresponding to the 

\ 
J 'blurred ' spread function Zz(x,y), is that the spatiaI frequencies in R(u,v) are 

generally smaller in amplitude, and shifted in phase, relative to the spatial fre- 
quencies in R,(u,v). I t  is in fact the restoration of the spatial frequencies 
of R(u, v) to the values in Rp(u, v) which may be considered as the interpretation 
of the ' spatial filtering ' restoration process. I n  other words, an ' in focus ' 
system, having a ' diffraction-limited ' spread function hp(x, y) produces an image : 

gr(x,y) =f (x,y)@h,(x,y) (40) 
and also not a ' super-resolved' image f (x,y) ! The field corresponding to the 
' in-focus ' image in the Fourier-transform domain is : 

~ P ( u ,  v) = P(u, v )  RP(% v), (41 ) 
which gives, by a second Fourier transformation (except for possible additional 
diffraction limitations), the field g,(x,y), identical to that described by equation 
(40), and again not a ' super-resolved ' image f ( x , y )  ! Naturally, all of our pre- 
vious papers implicitly made this assumption, as we explicitly stated in [I]. By 
comparing equations (41) and (2), it should indeed be clear that the image- 
deconvolution methods aim, in this first approximation, in ' restoring ' the function 
Rp(u, v) from the function R(u, v). Because the filtering restoration methods 
operate, in effect, on each spatial frequency separately, both in amplitude and in  
phase, it should be clear that the existence of a number of isolated zeros in the 
R(u, V) function, as used here for division, will not, in general, significantly affect 
the success of the filteringt. The existence of a number of isolated zeros in the 
function R(u, v), used for Fourier-transform division filtering, does not invalidate 

3 the validity of equation (26), within the limitations discussed here above. In  other 
words, even though some of the spatial frequencies may not be restored by means 
of the Fourier-transform division methods, a noticeable improvement in the 
' deblurred ' image will in general be observed, provided that a significant part 

3 of the spatiaI frequency function RP(u, v) is indeed properly restored, in amplitude 
, and in phase, especially, in many practical cases, in the lower frequency regions, 

inasmuch as the higher frequency regions are in general already quite attenuated 
in amplitude, even in perfectly corrected image-forming systems. For instance, 
in a perfectly corrected image forming system, using a rectangular aperture, the 
spatial frequency amplitudes decrease linearly from the lowest to the highest 
frequency transmitted, along a direction parallel to a side of the aperture. The 

j- This is essentially true in cases where there are a limited number of zero's in B(u, v),  
and to the extent that corresponding ' Gibbs '-like effects may be neglected in the first 
approximation. 
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' super-resolutions ' which we mention above, could conceivably be obtained in a 
number of ways from the function Rp(u, v). One form of ' super-resolution' 
which may be readily achieved, and which appears to involve few conceptual 
difficulties or objections, would simply consist in raising the spatial frequency 
amplitudes above the line of linear decrease, discussed above. Clearly, we 
may add, the preceding discussion refers to the formation of images, and to the 
recording ofg(x,y) in incoherent light, while the spatial filtering operations are, on 
the contrary, carried out in coherent light. It may be shown (see, e.g., [8]) that 
the spatial frequency response function, analogous to the Rp(u, V) functions 

,. 
discussed above, for perfectly-corrected systems operating in coherent light are 
perfectly flat in amplitude up to a frequency equal to one-half of the cut-off 
frequency of incoherent-light imaging systems : at that frequency, the spatial 
frequency response of the coherent-light imaging systems abruptly drops to zero. *. 

I t  should be clear, also, that the functions R(u, v), Rp(u, v) are nothing but the 
' spatial frequency response functions ' of the optical systems, in analogy with the 
terminology used for temporal frequency response functions in electrical circuit 
theory and in electronics, among others (for a general background, see, e.g., 
r8, Chap. 1111). - 

~x~erirnen;al  verifications of the holographic Fourier-transform division 
method of [I] were first described by Lohmann and Werlich [2] for the decon- 
volution of a badly blurred image of a single ' black-on-white ' point, as well as 
for an equally badly blurred ' black-on-white ' letter ' T '. We have ourselves 
[3,4] given the first experimental verifications for a 'continuous-tone' three- 
dimensional macroscopic object, using the theory given above. Further 
refinements of these methods will be given in a future publication, following 
completion of experiments now under way [44]. The complexity of the problem 
of ' realizing ' (i.e. of synthesizing) such optical filters as the R-I filter, equal to 
R*/lR12, as discussed above, may perhaps be illustrated by, to some extent, 
comparing it to the mathematical difficulty of synthesizing electrical filters, even 
passive, in electronics, even when the frequency-transfer function is known. For 
instance, systematic methods for synthesizing RLC filters (R=resistant, 
L =  inductance, C=capacitance), are still not known in a general way! 
Similarly, many years sometimes elapse before a method, such as that which we 
describe, is discovered in electronics for systematically synthesizing certain 
filter types, e.g. RL, RC or LC, especially if constraints such as 'equal values ' for 
all resistances and all capacitances in a ladder-network may be desirable, as one (U 

example. In  addition to the comparable theoretical difficulties in optics, there 
exists the additional difficulty resulting from the need of actually ' manufacturing ' 
(photographically and holographically) the individual filter components, with 
exacting precisions, and for maintaining critical alignments of the optical-system w 

components in the processing, as we discuss in the next section. 

3. Correlative holographic decoding (deconvolution) method 
It may be of interest to stress again the generality and power of the basic 

equations of holography first introduced by Gabor [13-151. All the various 
forms of imaging and image processing, using holograms, may be shown to make 
use of the same fundamental ' Gabor' equations (see, e.g. [8]). However, 
there exists a basic difference between the image decorrelation (image decon- 
volution) methods, which we describe here, and which result in a decoded 
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(deblurred) image, on the one hand, and on the other, the image correlation methods, 
first introduced by Vander Lugt [41], and which result in a coded pattern, for 
instance a bright dot or a cross, indicating the location of the centre of gravity of 
the  correlation of the area [41] or of the contour [42] [43], of the ' known ' pattern 
with the areas or contours of the patterns in the image. The Vander Lugt 
' matched ' filtering methods consists in correlating a function f,(x,y) with the 
best possible 'in focus ' image function f(x,y). The correlation may be carried 
out  in the spatial-frequency Fourier-transform domain with the aid of a Fourier- 
transform hologram [I + lP1 l2 + Fl + Fl*] of the coding function f,. When the 
image function f (x, y) is illuminated by a plane wave of coherent light, the spatial 
Fourier transform off(x,y) obtained in the focal plane of a lens is F(u, v )  and the 
field transmitted through the hologram is E[1+ lF'l(2 + Pl +PI*].  One of the 
holographic ' side-band ' waves is FPl* and its Fourier transform is thus equal to 
the  correlation f*fl*, rather than to the decorrelation, as it is being sought in the 
image-deblurring methods! I n  this sense, it may be said that the image- 
deblurring methods aim at achieving the solution of an integral equation (e.g. the 
solution of equation (1) above), while the ' matched ' filtering pattern-recognition 
methods aim at realizing the (in practice) much more straightforward correlation 
integral 

For  further details, see also, e.g. [8], notably also for diagrams and photographs of 
experimental arrangements required to materialize equations given in this paper 
and in references cited. 

T h e  basic principles of our new methods [5, 61 were given above in equations 
(27) to (30). The realization of equation (27) may be accomplished by means 
of two holographic schemes. 

Let g(x, y) be the blurred ' photograph, such that 

g(x ,Y) =f (x, Y @ h(x,y), (25) 
with the special requirement that the autocorrelation function of the spread 
function h(x, y) be sharply ' peaked ', i.e. that we have 

h*h*=8. (29) 

To this corresponds the equivalent condition: 

and we recall that 

h*h*+HR*. 

3.1. Extended-source holographic scheme A 
Let us record the Fourier-transform hologram [8] of the function g(x,y), 

using the photographic precautions discussed in the Introduction. The 
hologram is : 

I ( u , v ) = l +  1 € ) 2 + € + ( 3 * .  (42) 

By recalling the equation : 

G(u, V) = F(u, v)H(u, v), 
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we may write equation (42) in the form: 

I(u,v)= 1 i- G2+ER+F*H*. (43) 
If we now replace the hologram into its recording position and illuminate it by 
the wave n, originating from a suitably realized copy (see Introduction) of a 
photograph of the spread function h(x,y), placed into the position of the point 
source, used to record the Fourier-transform hologram of equation (42) then the 
wave transmitted in the last imaging term of equation (43) (see figure 1) will be 
equal to ?r 

E*R+R= F* (if HB* = I). (44) 

"LENSLESS" FOURIER-TRANSFORM 
.HOLOGRAM OF BLURRED PHOTO 

Figure 1. Arrangement used for the deconvolution of the Fourier-transform hologram 
of the ' blurred' photograph g(x, y), for the case when the hologram was 
recorded with a point-source reference. 

Since E* is nothing but the complex conjugate of the imaging wave F, the corres- 1 

ponding image, obtained by Fourier transformation in the focal plane of a lens 
-P 

i 
'looking' through the hologram is indeed equal to the desired image f(x,y),  
upon processing of the photograph with a y equal to - 2, i.e. by printing the positive 
according to  the condition of equation (1l)t. 

3.2. Extended-source holographic scheme B 
In this case, we record the Fourier-transform hologram of g(.x,y) by using 

h(x ,y)  as the ' extended reference source ' (e.g. as in figure 27, Chap. VI of 181). / 

The hologram is : 

I(u, v) = (G + IT)(€ + R)* If 

= J€12 + (2712 + €R* + €*I?. (45) 

By again recalling that G = FR, according to equation (2), we may write equation 
(45) in the form: 

I(u, v) = (€12 + (HIz + ERR* + E*H*H. (46). 

B3:cause we are considering, in particular, the case when R R *  = 1, we note that the 
image-forming wave of interest, say 

PRH* = F (if HR* = I), (47). 

is indeed equal to E as desired. Accordingly, in this case it is sufficient to replace 
the hologram into its recording position, and illuminate it with a wave of unit 

-f In practice, this condition need not be necessarily more rigorously satisfied in this 
last step than in direct photography of the image g(x, y), using a well-corrected system! 
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if the recording and reconstructing sources are the same, and if their correlation 
is equal to the Dirac delta, function, then equation (49) becomes: 

T[E01@6 = TC201, (50) 

in agreement with the analysis of the preceding sections. 
Let us now consider the simplest case of misalignment, namely the case 

described by equation (48). This would also be the case of interest in which ER 
and ER, are in fact produced by the same source, but when the source, in the 
reconstruction, is misaligned, so that the phase $R, is different from the phase +R, 

in the plane of the hologram. 
In this case the imaging term of interest becomes: 

from which we immediately recognize that the imaging wave is now not any more 
the wave EoX, but rather a wave having a possibly very considerable wavefront 
aberration ($Rt-$R). We may recall (see, e.g. [ 7 ] )  that wavefront aberrations as 
small as one-tenth of a wavelength (i-e. 277/10 radians 2 6/10 radians) become 
noticeable for high-resolution imaging, when the aberration extends smoothly 
over large regions of the wavefront. The tolerances for more localized aberrations 
is about ten times smaller still, and their effect is proportional to the area of the 
wavefront 'covered' by the aberrations! Aberrations of several radians cer- 
tainly lead to intolerably large image degradation, in the case of the ' extended ' 
aberrations. 

I t  is possible to assess the magnitude of the misalignment phase errors for the 
two types of holographic experiments discussed in the previous section. 

Let us consider, for simplicity, the case of the 'lensless Fourier-transform 
hologram' [8, pp. 127-1371, Let one of the waves from the reference source, 
located in the x plane, produce a field: 

in the hologram u plane, located at a distance f from the x plane, and parallel to 
it. We are assuming that the x extent of the source is small compared to the u 
extent of the hologram. Now let the corresponding wave from the source in 
the reconstruction originate from a position of the source displaced by a small 
distance x, from the position used in the recording. The reconstructing wave 
may then be written in the form: 

Since we are interested in the product ER*ER,, and because xo is small compared 
to u, we may write: 

We may conclude that the corresponding wavefront aberration is : 
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I n  ~articular, equation (55) gives the aberration at the outer 'edge' of the 
hologram (or of the part of the hologram used in the reconstruction). 

As an example, we may consider the magnitudes involved in the experiment 
illustrated in figure 3. 

T h e  wavelength X used, 6325 A is about 1/40 000 in. The distance f used was 
about 33 in. The images were reconstructed using an aperture having a diameter 

Figure 3. Experimental results showing the high degree of alignment accuracy required 
in the holographic image-deconvolution work (see text). The four figures, top to 

-4 bottom, show the images of a test-bar target reconstructed from a hologram of the 
target. The hologram was recorded with an ' extended reference source ' h(x, y) - consisting of a simple ground glass (according to a private suggestion of Gabor [40], 
who noted that a simple ground glass should also have the desired peaked auto- 
correlation function according to equation (29) in the text). The values of A x  
shown refer to different positions of the hologram relative to its recording position, 
orthogonally to the optical z axis, at a distance of approximately 33 in. from the 
' extended source ' h(x, y) used to illuminate it in the reconstruction, according 
to figure 1. The tolerances shown may also be taken to indicate the degree of 
similarity in the disposition of the 'centres of gravity' in the corresponding 
points of the spread function k(x, y) and that g(x, y) formed by convolution in the 
imaging (see text). 












