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ABSTRACT

Various lower and upper bounds are derived for the energy, free energy~

and pressure of particles interacting via an r-n pair potential in v

dimensions. The results include (i) lower bounds for mixtures ~itb n < 2

f h f 1+2/v. . h . . 11 . h 10 t e orm const p as p lncreaseselt er lsentroplca y or lS0t ermal y,

complimenting a recently d~rived upper bound of Kleban and Puff of the same

form in the isentropic case, (ii) upper and lower bounds for the case n > v ~

. 1+n/v
n > 2, WhlCh for the pressure are both of the form const p as p

increases isentropically.

We derive various upper and lower bounds for the energy, free energy,

and pressure of a system of a species of particles (including the a = 1 case)

such that the interaction potential for a pair of particles of species i and

. . /
n

hJ 1S e.e. r , were
1 J

r is their -separation and n is a positive constant.
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for n < 2, our lower bounds are complimentary to the recently derived

upper bounds of Kleban and Puff,l and when combined with their bounds, show

that if n < 2, the pressure p behaves under isentropic compression like

1+2/v
f 2 d l

'
k l+n/v f 2 h

.
h d

.
dP or n < an 1 e p or n > , were p 1S t e ens1ty an v

the dimensionality. The case n = 1, v = 3 describes "real" charged matter

(which we shall treat nonrelativistically) and is thus of special interest.

In particular, our large-p results in this case are relevant to ste11~r

matter. To insure the existence of thermodynamic functions,2 a charge-

neutrality condition, E.e.p. = O\must be assumed3 in the n = 1, v = 3, case111 -

(and perhaps for all n < v, although existence proofs are currently lacking

except for n = 1, v = 3), where p. is the density of the ith species; Ep. = p.
1 1

For n > v, on the other hand, one expects the existence of thermodynamic

functions only if e > 0 for all i. .
i -

Our starting point is a form of the virial theorem4

n 2 n
L := - u. + - (u-u . )
p. v kln v kln (1)

where u is the total expected energy per particle, and ukin the mean

kinetic energy per particle. In classical mechanics, Uk
' is
ln

~ vkT.
2

In

quantum mechanics we do not know Uk ' but we do have the lower bound1n

ukin ~ g(p) (2)

where g(p) is the energy per particle for the corresponding ideal gas in its

ground state, which for Fermi statistics has the form5

g(p) = A p2/vv (3)

with A = A (~, m.) independent ofv v 1

We distinguish various cases, according to the value of

p.

n.



Case I:1 - n = 2.

Here (1) reduces to

p = p(3u) = 2u
p 3p vs

where is the entropy per particle. The general solution of this differentials

equation has the form

u = p2/V h(s)

where is nondecreasing since (3u/3s) = T is non-negative, givingp
h

-2/v
s = functionof up

or equivalently

f = p2/v k(Tp-2/V)

where is the Helmholtz free energy per particle and must be a non-f k

increasing function in the quantum-mechanical case since (3f/3T) = ~ sp

negat i ve . Thus the equation of state has the form

1+2/v . -2/v
p = p x functlonofTp .

In particular, these functional relations apply to the ideal Fermi, Bose,

and classical gases, where e. == 0 for all
1

i.

.. Case '-1~ Here Eqs. (1) and (2) implyn < 2.

n 2-n
( )

n
L > - g p + - u,p - v v

i.e.

( -n/~) 2-n -l-nlv
( )ouP >-p gp,- v

so that

u = pn/v [2~n f~ ~-l-n/v g(~) d~ + h(p,s)]

3

(4)

(5)

(6)

(7)

is

(8)

(9)

(10)
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where h is a nondecreasing function of p at fixed s. It is also a non-

decreasing function of s at fixed p. For Fermi statistics (10) reduces,

by (3), to

2/v n/v
u = A p + p h(p,s)v (11)

To obtain the corresponding result for f we consider it as a function of

p and T = TP-n/v and note (af/ap)~ = (df/3p)T + (vf/aT)p(aT/ap)T=
2 ~~ ~~~

pIp -nsT/vp. Thus (9)canbe written(afp /ap)T~ (2-n)p g(p)/v,

and it follows that

f n/v[
2-n fp ~-l-n/v (

~
)d
~

k( T -n/v
)]= p v 0 p g p p + p, p

(12)

where k is a nondecreasing function of p at fixed TP-n/v. In the quantum-

h .
al k . ..

fu
.

f T -n/v f.
dmec an1C case 1S also a nonlncreaslng nctlon 0 p at lxe p;

k is then also a nondecreasing function of p at fixed T. For Fermi statistics,

(12) reduces to

f - A 2/v n/v k( T -n/v
)- p + P p, P .v (13)

A lower bound for the pressure can be obtained by substituting (10) into (9).

By (3), this gives for Fermi systems

P 2 2/v n n/v ( )- > -A P + -p h p,s .

p - v v v
(14)

For quantum systems a lower bound on p in terms of T rather than s can

be obtained by using u - f = T& > 0 with (12) in (9). In the Fermi case,

from (3), this gives

n 2 A 2~ n. nN k(
.T -nN)

.

L>- +-p p,p .p v v v
(15)

Eq. (14) has the consequence that if at least one of the species present

obeys Fermi statistics and the system is compressed isentropically, then

2 1+2/v
P ~ - A p cannot decrease.v v Thus .p increases at least as fast as
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const pl+2/v On the othe~ hand Kleban and Puf~ show that p has an isentropic

1+2v -(2-n)!v
upper bound of the form p (const+ const p ). Thus p must behave

l
'
k 1+2/v . h h -1-2/v h . . d b d1 e p , ln t e sense t at p p as posltlveupper an lower oun s

as the system is compressed isentropically.

Case III, n > 2~

Here Eqs. (1) and (2) imply

p < ~ n-2
p - v u - V- g(p)

and the mettod previously used abov3 now gives upper rather than lower bounds.

For example, in place of (14) we now have, for all statistics

P $ ~ pn/v H(p,s)p v
.(16)

where H(p,s) is a nonincreasing function of p at fixed s. (We have left

out the term that comes from g(p) since it no longer dominates for large p,

the case of greatest interest.) Similarly, for the free energy we have.

f < pD/~K (p,T ~n/v)

where K is a nonincreasing function of p at fixed Tp-n/v.

Case IV, n > v

It is also possible to obtain lower bounds if n > v, where for simplicity

we consider only the single-species case, dropping the subscript 1 on el'

The method depends on a lower bound for the potential energy per particle

u
t

= U - Uk' . To obtain this lower bound, let w. denote the volume of
po ln 1.

the polyhedron comprising all points that are closer to the ith particle

than to any other. Then ifR. 1. denotes the distance from the ith particle

to its nearest-nei ghbor we have (ignoring surface effects) w. > K R.v1. - V 1

where the right-hand side is the volume of a v-dimensional sphere of diameter

R..
1. The potential energy N upot therefore satisfies
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2
2 K n/ve vN u > I: - > e 1:i (-)

pot - i Rin - OOi

l/p l/q
From Holder's inequality r IXiYil ~ (tlxiIP) (tIYi,q), (l/p + l/q = 1),

n/(n+v) . 2 n/v
with x. = w. , y. = l/x.~ p = (v+n)/n, we obta1n u t ~ e (K p) ,

1 1 1 1 po v

and so (1) gives

(17)

n/vp 2 n-2 2 n-2-=-u+-u >-u+-Bp
p v v pot v v v

(18)

. where B = e2 K n/~Jv v. Integrating by the same methods used on (10), we obtain

n/v 2/v '"
u = B p + p h(p,s)v

f - ~ n/v 2/" k
"'

( T -2/v)- D P + p 1',I'v

(19)

(20)

n n
B n/v 2 2/vh

"'

( )£:..> - p + - p,s
p - v v V.
n n

B nt" 2. 2/" "'
k( T -2/v)L.>- p +-p P PP - v v v '

(21)

(22)

where i'; and ~ have the samemonot0mlC propertiesas the hand k

in (10) and (12). froom these and upper bounds such as (16) we can estimate the

behavior of thermodynamic quantities as p is increased when n exceeds both

2 and v. For example (16) and (21) together imply that under isentropic

i . li-n/v -l-nN. icompresson p behaves l1ke p in the sense that PI' has pOS1t ve

upper and lower bounds.

Finally, in the case of classical mechanics with n > v we can obtain

similar results for p , u and f , the atrountsby which P, u, and f exceedex ex ex .

their ideal-gas values at a given density and temperature. The relevant form

of (1) is p II'= (n/v) u and by an analysis similar to that of Case I we find,ex . ex

for example,

f = n/" K (T -n/v)ex P ex P (23)

and consequently

Uex = pnt" L (Tp~n/") (24)

where
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L (x) = K (x) - x dK (x)/dx.ex ex (25)

Since the excess specific heat is non-negative, L is a nondecreasing function;

it follows by (25) that d2 L (x)/dx2$ 0, and consequently,sinceex

f IT + 0 as T + 00, that K is also a nondecreasing function.ex ex
Both Land

K are positive.ex Equs. (24) and (25) show, for example, that f and uex ex
. nlv dlncrease at most as fast as const P as P lncreases at ~lxe T. The

functional forms of the results (23) and (24) follow from general scaling

considerations, and have been discussed before~-8 while the nond~creasing

character of K (x) and L (x) can be obtainedfrom a straightforwarduse9ex

of the Gibbs-Bogoliubov inequality, lllstead of the arguments given above.

From (23) we have f ~ const pnlv as p increases isothermally, a result

that was also obtained previouslylO by one of us using different methods.

We are indebted to G.A. Baker. Jr., J. Groenevel~ S. Harris, and

J.L. Lebowitz for helpful discussions.
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