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ABSTRACT

The exact asymptotic behavior of the particle-particle direct correlation function for dis-

sociative dipolar dumbbells is discussed and used to motivate an extended mean spherical

approximation (EMSA). The structure of a model liquid of symmetric dissociative dipolar

dumbbells with two centers (each bearing a point charge of opposite sign) a distance L

apart is investigated analytically for u /3 ::; L ::; u /2 under the EMSA, where u is the

diameter of the spheres that consistute the dumbbells. This study extends earlier analyt-

ical work for L = u/n,n = 1,2,3,4,5 for the same model. The analytical expressionsfor

the Born solvation free energy of a symmetric dipolar dumbbell in a symmetric dipolar
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dumbbell solvent and in a dipolar hard-sphere solvent are also obtained. Such expressions

can be expected to be useful in investigating intramolecular electron-transfer reactions.

Results for (J'/2 ::; L ::; (J'that have a somewhat different conceptual status are obtained as

well. They suggest a new interpretation of the Percus- Yevick solution to the sticky-sphere

model considered by Baxter.
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I. INTRODUCTION

In an earlier paper, 1 an extend~d mean-spherical approximation (EMSA) was de-

veloped for obtaining the site-site (or atom-atom) pair correlation function in interaction-

site models of liquids such as the hard-dumbbell and the dipolar-dumbbell liquid. Our

analytical solution given there was restricted to the case L = u/n,n = 1,2,3,4,5. Here

and below, L denotes the bond length of a dumbbell and u is hard-core diameter. The

results were used as input to investigate ionic solvation,2 the Born solvation free energy

for two ions at a fixed distance apart,3,4 and solvation dynamics.5 The purpose of this

paper is twofold: to illuminate the conceptual status of the approximation off the full-

association limit by noting a number of exact asymptotic results and also to extend the

earlier analytical work under the EMSA for a dissociating dumbbell fluid and for a dipolar

dumbbell in a dipolar solvent. Our discussion of the first point extends the results that

we have already given in our series of papers on simple models of association6; this paper

can be regarded as our latest contribution to that series as well as to the series on our

analytic approach to molecular liquids.1-4

In Section II, the model is given and discussed. In Section III the general equations

are reviewed. Then, the analytical solution for (J/3 ~ L ~ (J /2 is given in Section IV

for a dipolar dumbbell fluid consisting of pairs of fused oppositely charged hard-sphere

atoms. In Section V we use the same set of integral equations to obtain a solution for

(J/2 ~ L ~ (J. As we discuss at the end of Section II, the conceptual status of the

equations is different when L ~ (J/2. In particular, they no longer represent our EMSA

for dipolar dumbbells. If one consider a single "solute" dipolar dumbbell in a dipolar

dumbbell (or dipolar hard-sphere) solvent, however,one can consider L ~ (J/2 for the

solute dumbbell without conceptual difficulties in our approximation scheme, even in the

case of an "extended" dipole,3,4 i.e., a pair of oppositely charged hard spheres a fixed
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distance apart with a gap between them (i.e. L > a). Analytical expressions for the Born

solvation free energy for a "solute" symmetric dipolar dumbbell in a symmetric dipolar

dumbbell solvent or a dipolar hard-sphere solvent are obtained in Section VI. Further

discussion and a summary are given in Section VII.

II. THE MODEL

In the dissociative dipolar dumbbell model described in detail in an earlier paper

by usl , a particle-particle pair correlation Hij (r) between a charged hard-sphere of species

i and a charged hard-sphere of species j is given inside a core region byl-9

Hij(r) = -1 + .\(1 - 8ij)L8(r - L)/12, r < a, (2.1)

where), is the mean dissociation parameter, 8ij is a Kronecker delta, 8( r - L) is a delta

function and a is the hard-core diameter. We have two species, indexed by 1 and 2,

which can be identified as positively and negatively charged respectively. [When the

charge is zero, equation (2.1) still differentiates between two species-like species do not

have the associating term 8(r - L) as part of Hii(r))]. For completely associated dumb-

bell ), = 1/[17(L/a)3]. For a system of partly dissociated dumbbells), < 1/[17(L/a)3].

The dependence of .\ upon P and /3 has been discussed in our earlier work on chemical

association6 and we shall not repeat it here, where it will not be explicitly needed in our

analysis. Here and below, 17= 7rpa3/3 with 2p the total number density of particles and

T( = 1/ kB/3) the temperature.

The Ornstein-Zernike (OZ) equation defines the particle-particle direct correlation

function Cij(r)

Hij = Cij + L PkHik * Ckj
k
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where * denotes a convolution and Pk is the number density for species k. Here, we have

PI = P2= p. For ,\ = 1/[1](L/0")3],the extended MSA closes this OZ equation with the

large-r form of Gij used for all r ~ 0", to givel

Gij = (-I)i+j+lr r' r ~ 0" , (2.3a)

where

r = fj3q2
f-l (2.3b)

for a pure dipolar dumbbell fluid with the dielectric constant f.

One knows (2.3) to give the correct large-r form for Gij in the complete-association

limit. That is, one has

. . 1r
Gij -+ (-I)z+;+ - for r -+ 00r (2.4)

Moreover, we concluded in ref [1] that one can expect (2.3) to be an adequate liquid-state

approximation for all r greater than 2L, i.e., when L ::; 0"/2.

As one leaves the complete-association limit, ,\ = 1/['7(L/0")3],one expects (for the

reason discussed below) the functional form of Gij to be different for I\,r< < 1 and I\,r> >

1, where I\, is a characteristic correlation length related to the dissociation parameter '\,

1\,2= 3[1 - (,\')2]
(,\/)2L2 '

,\' = '\'7(L/0")3 . (2.5)

For I\,r >> 1, one expects

Gij ~ (-I)i+j+l (j3q2)r (2.6)

while for r > 0",I\,r« 1, one expects (2.3) to provide a good approximation. The source

of these expectations is the change in the functional form, as one leaves the complete-

association limit, of CJ.)ij,the "intramolecular" part of the Hij of (2.1),

CJ.)ij(r) = p'\(1 - fiij)Lfi(r - L)/12 (2.7)
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The"" matrix with elements ""ij(r) is reflected in the direct-correlation matrix via the OZ

equation through [",,-1]ij, the inverse-matrix elements, which, from (2.7), can easily be

shown to have the large-r form

3 -Kr

[",,-l(r)]ii- eL2 forr - 0047r r (2.8a)

-3),' e-Kr
[",,-1(r)h2- L2 forr - 0047r r (2.8b)

At the complete-associationlimit). = l/[1](L/oi], at which )., = 1 and n = 0, we

already know that for r >> 0', we can expect

pGij ~ -p(3q2/r - B[",,-l(r)]ij, (2.9)

with B = 3Y/(E-1) and y = 47r(3p(qL)2/9. [This is simply another way of writing (2.4).]

For). « 1/[1](L/0')3], the ",,-1 terms in (2.9) are negligible for Kr » 1, yielding,

for r - 00,

Gij - (-1)i+j+1 (3q2r (2.10)

which is what one expects (off singular states such as a critical point) as a special case of

the relation

Gij - -(3uij(r) (2.11)

where Uij is the pair potential. We see then that the complete-association limit, in which

(2.11) does not hold, represents a singular state in much the same sense that a liquid-gas

critical point does, with a correlation length K-1 that goes to infinity as one approaches

the singular state, just as in the case of a critical point.

For r » 0', but Kr « 1, (2.8) and (2.9) suggest a Gij(r) that differs little from

the). = 1/[1](L/0')3] case. The precise form hinges upon the value of the coefficient B of

(2.9). A plausible form is

B = 3yv
E(Pv, (3) - 1

(2.12)
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where Yv = 47r(3Pv(qL)2/9, with Pv the number density of the fully assodated dipolar

dumbb~lls, which can be thought of as the dipolar solvent for the dissodated ions. Here

f(Pv,(3) is the dielectric constant of that (pure) solvent at density pv and temperature)

given by (3.

Issues such as the precise form of B require further investigation. There is one

case in which one can already proceed with some confidence, however, and that is when

one is at p and (3 such that f(p, (3) > > 1. Then the difference between f/ (f - 1) and 1

is small enough so that the difference between the two asymptotic forms (2.4) and (2.10)

is small. One can then continue to use (2.3b) with little error or, alternatively, replace it

with r = (3q2.

In the complete-association limit, our EMSA, eq.(2.3) was obtained in ref [1] for

the case 2L ~ (J by using (2.9) for all l' ;::: (J along with the observation that at full

association, the asymptotic form (2.8) gives "",-1(1')with good quantitative accuracy for

all l' ;:::2L. At l' = 2L, ""'ii1has a jump discontinuity of magnitude (167rL3)-I, so that

"",-1(1') is no longer well approximated by (2.3) for all l' > (J when 2L > (J. For this

reason, as soon as 2L > (J, we no longer regard (2.3) as a likely candidate for the role

of an approximation that embodies the MSA idea of using a large-1' result that stands a

good chance of being adequate all the way down to l' = (J. The approxmation

pCij = -p(3q2/1'- B["",-I(1')]ij, r>(J (2.13)

does still embody this idea (at least in the full-association limit) but loses the useful

property of yielding equations that have solutions expressible in terms of elementary

functions. We intend to investigate (2.13) numerically, but will not do so in this paper.

An interesting question that remains is what meaning, if any, can be given to the

equations that result from retaining (2.3) when 2L > (J. This is an especially intriguing

question in light of the fact that when q = 0 (which leads to B = 1) and L = (J the
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equations have exactly the structure of the Percus-Yevick (PY) approximation as applied

to the model of a hard-sphere mixture of species 1 and 2 with a "sticky" attraction only

between unlike species. (This is a mixture version of Baxter's "sticky sphere" modellO).

For q ¥' 0 and L = u our equations have the same form as the hybrid PY /MSA

equations considered by Rasaiah and Lee8 in their investigation of the ionic version of the

same mixture model. We note however that our treatment of the p and f3 dependence of

). appearing in Eq. (2.1) is in general different from that which comes out of a PY /MSA

treatment.

In order to help illuminate the meaning of-(2.3) for 2L > u, it is worthwhile

considering briefly the expected behavior for L > u /2 of the ionic "shielded sticky-shell"

model that defines our dissociative dipolar dumbbell fluid when L ::; u /2. For L > u /2

the model remains well defined but no longer describes particles that can only associate

into dumbbells.

For all L, the model is defined by the pair potential

{
kTln[l + Iij(r)] ,r::; u

Uij(r) = (-1)(i+j+l)q2/r ,r > u
(2.14)

where

Iij(r) = jHS(r) + cS(r- L){)ij/127rL2T (2.15)

with

jHS(r) = {
-I for r ::; u
0 for r > 0 (2.16)

Here j HS (r) is the hard-sphere Mayer j -function that describes the repulsive core of the

interaction, the cS-function term of strength l/T describes the attractive "shielded sticky

shell" and the q2/r term describes the Coulombic interaction.

For L ::; u /2 the shielding of the repulsive core prevents any association except

dimerization between particles of species 1 and 2. In this regime, the "simple interpolation
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scheme" of ref. [6] appears to give a satisfactory description of the relation between the ,\

of Eq. (2.1) and the". of Eq. (2.15). From the earlier work of refs. [11] and [7] it is clear

that this is not true of the PY closure (for q = 0) or the PY/MSA closure (for q =f 0).

In particular, those closures violate the law of mass action at low densities. However, the

"simple interpolation scheme" developed in ref. 6 appears to give a satisfactory description

of the relation between ,\ and T in this regime. For L slightly larger than (7/2, the model

describes particles that can associate into chains of alternating species 1 and 2. As L /(7

further increases, a greater variety of branched chain configurations becomes possible. In

this regime spatial decay of [",,-l(r)]ij is no longer well approximated for small r by an

inverse -r falloff so that (2.3a) can no longer be expected to be a reasonable approximation

to (2.13). Moreover the relation between ,\ and T has not been investigated in this regime.

For L still larger, so that L / (7 is slightly less than 1, the system describes particles that

can freely vulcanize into a wide variety of clusters. Here (2.1) - (2.3a) may offer a useful

approximate description of the model.

When considering the general case of (2.14) in which q =f 0 it is natural to take

2r = j3q , (2.17)

instead of (2.3b) for L > (7/2, since the factor t/ (t - 1) of (2.3b) loses its relevance when

one loses the steric constraint that assures that association only produces dipolar dimers

for L ::; (7/2, while (2.3a) with (2.17) is consistent with (2.11).

With (2.17) and (2.3a) instead of (2.3b), one is back to the simple MSA closure

for r > (7. One must continue to choose a closure condition for r ::; (7 to determine the ,\

of (2.1) as a function of the T of (2.14). For L/(7 less than (and close to) unity, the PY

closure

Cij(r) = Jij(r)[hij(r) + l]![Jij(r) + 1] (2.18)

appears to remain sensible for r ::; (7.

9
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On the mathematical side, we can continue to solve the set of equations (2.1),

(2.2), a.nd(2.3a) for all (T/2 :::; L :::;(Tand for this range we give the solution in Section V.

In light of our discussion here, the solution appears likely to offer a useful approximate

description of the system defined by the pair potential of (2.14) only when L/(T is a bit

less than 1, although further work will be necessary to elucidate this question.

As L increases from (T/2, when it reaches the value (T, a new complication arises,

since all steric shielding effects of the hard core relative to the sticky shell at r = L are

lost. This permits unbridled clustering or vulcanization of such an extent that the system

will lose thermodynamic stability, as one of us has already discussed in detail elsewhere.12

We have two remarks in this connection. First, the PY /MSA approximation defined by

(2.1) - (2.3a) with (2.17) and (2.18) may remain a reasonable description of a system in

which the 8(r - L) of (2.14) is replaced by a narrow sharply peaked function of finite

height, reflecting a narrow well in the pair potential of finite depth. (This is the sense in

which the Baxter sticky-sphere model and its extensions are typically used.) Second, a

novel alternative way of giving thermodynamic meaning to the PY /MSA solution of the

model for L = (Tis to regard it as an approximation to the solution for L slightly less than

(T (given in Section V) where the model is free of the instability that sets in at L = (T.

III. GENERAL EQUATIONS

Eqs.(2.1), (2.2) and (2.3) can be decoupled into the sum and difference equations

hs == Cs + 2pcs* hs, (3.1)

)"L

hs(r) = -1 + "248(r - L),
r < (T, (3.2a)

cs(r) = 0, r> (T, (3.2b)

hd = Cd- 2pcd * hd, (3.3)
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>'L

hd(r) = 248(r - L), r < (7,
r

cd(r)= -, r > 0',r

with

h H12 + Hll C12+ Cll
s = 2 ' Cs = 2 '

hd = H12 - Hll, Cd = C12 - Cll2 2

Applying Baxter factorization 13, we have1,7-9

, fU
rhs(r) = -qs(r) + 47rpJo dtqs(t)(r - t)hs(lr - tl)

, fU ,
rcs(r) = -qs(r) + 47rpJr dtqs(t - r)qs(t)

rhd(r) = [q~(r)]' + 47rp1000dt[Ad + q~(t)](r- t)hd(lr - tl)

rc~(r) = [q~(r)]'+ 47rpAdq~(r)- 47rpiou dtq~(t)[q~(t+ r)]'

where we have defined

O
( ) ( )

r -zr
cd r = cd r - -e , Z -+ 0,r

q~(r) = qd(r) - Ade-zr, z -+ 0,

and we also have1,7-9

q~(r) = 0, qs(r) = 0, r ~ 0',

r 1/2
Ad = -( - ) .

27rp

(3.4a)

(3.4b)

(3.5a)

(3.5b)

(3.6a)

(3.6b)

(3.7a)

(3.7b)

(3.8a)

(3.8b)

(3.8e)

(3.9)

Substituting eqs.(3.2a) and (3.4a) into eqs. (3.6a) and (3.7a) respectively, we have, for

0 :5 r :5 0',

>.L2
[qs(r)]'+ lI[qs(r+ L) - qs(r - L)] = --8(r - L) + ar + b24

>.L2
[q~(r)]'+ 1I[q3(r- L) - q~(r+ L)] = -6(r - L) + H + lIAd[l- O(r- L)]24

11
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where

7rp'AL2
1/=

6

a = 1 - 47rp10(1qs(r)dr

b = 47rp10(1rqs(r)dr

(3.11 )

(3.12)

(3.13)

H = 47rpAdJd(CT) ,

Jd(r) = 100 rhd(r)dr ,

(3.~4)

(3.15)

and O(r) = 0, r < 0; = 1, r > O. Both qs(r) and q~(r) are continueous anywhere except

at r = L.

qs(L+) =qs(L-) - )'L224 .

q~(L+) = q~(L-) + )'L224 .

(3.16a)

(3.16b)

Integration of eq.(3.7a) yields

Jd(r) = -qd(r) + 47rp10(1dtq~(t)Jd(lr - tl) + 47rpAdfor Jd(y)dy + Ad/2 (3.17)

where the condition 87rpfOOJd(r)dr = 11-3,5 is used. At r = 0,we have [cf.(3.15), (3.4a)]

)'L2

~
L A

~
(1

Jd(CT) + - = -q~(O)+ 1/ dtq~(t) - --E.+ [47rp dtq~(t))Jd(CT).24 0 2 0 (3.18)

Eq. (2.14) has been analytically solved for qs(r) and qd(r) for the case L =

CTln,n = 1,2,3,4,5. Analytical solution for CTI3:S L :S CTis obtained in Sections IV and

V below.

Before closing this section, we point out that the parameter 1/ is closely related

to the average relative concentration of dumbbells (i.e. degree of dumbbell association),

which in fact is given by ).1 of our eq.(2.5):

7rp)'L3 = 21/L = ).'
3 (3.19)
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When 11 = 0, we have completely dissociated dumbbells (charged hard-sphere fluids).

When 11= 1/(2L),so that )..' = 1,we have the complete-association limit (dipolar dumb-

bell fluids).

IV. SOLUTIONS FOR a/3 ~ L ~ a/2

A. The Difference Equation

The mathematical method for solving eq.(3.10) for arbitrary L can be found in

ref. 13 and is similar to the one used for the case of L = a/no For a/3 ~ L ~ a/2, we

needs to divide the hard-core region (0,1) into the five intervals (0,1-2L), (1-2L,L), (L,l-

L), (1-L,2L), and (2L,1). Here and below, we shall use a = 1 for convenience. Following

the method in ref. 13, the solution of eq.(3.10b) is

q~(r) = Alsin( V211r)+ A2COS(V211r) + (H + ~Ad)r + A3, 0 ~ r ~ 1 - 2L,

= Blsin[1I(r-1 + 2L)] + B2cos[1I(r-1 + 2L)]+ H, 1 - 2L ~ r ~ L,11

= V2AICos[V211(r- L)] - V2A2sin[V211(r - L)] - ~d, L ~ r ~ 1 - L,

= Blcos[1I(r-1 + L)] - B2sin[1I(r-1 + L)] - H - Ad, 1 - L < r ~ 2L,11

= -Alsin[V211(r - 2L)] - A2Cos[V211(r- 2L)] + (H + ~Ad)(r - 2L) + A3 - H,2 11

2L ~ r ~ 1,
(4.1)

Coefficients AI, A2, A3, B}, and B2 can be obtained from eq.(3.16b) and the continuity

condition of q~(r) at r = 1 - 2L, 1 - L, 2L, and 1. After some algebra, we obtain

1 H
Al = A {-;[-1 + 3c2 - SI + V2S1S2 + 3S1C2+ V2S2c} - 2C}C2-11(1 - 2L)(V2s1S2 - 2C}C2)]

+ ~d[-l + 3c2 -sl +3C2S1 + V2S2c} +2V2s1S2 -4c}C2 -1I(1-2L)(v2s1S2 - 2c}C2)]

+ 1;1][-1 + C2+ 2C2S1+ v2S2c}]}

-'

(4.2)

13



1 H
A2 =A {-;[-v2 - 3S2 + v2Cl + 2S2Cl+ v2C2S1- 3S2S1 + v2C2Cl

+ v(l - 2L)( v2 - 2S2Cl - v2C2S1)]

+ ~d [-2v2 + v2Cl - 3S2 + 4S2Cl+ 2v2c2S1 - 3s2s1 + v2C2Cl

+ v(l - 2L)( v2 - 2s2Cl - v2C2S})]

- 1;1}[S2+ 2S2S1 - v2C2Cl]}

1 H
A3 =A{-;[-3v2 - S2 + v2Cl+ v2ClC2- S1S2 + 3v2c2S1 + 4S2Cl

+ v(l - 2L)(3v2 - 3v2c2S1 - 4s2q)]

+ ~d[-S2 + v2q - 2v2c2 + 2v2sl - S1S2+v2qc2 + v(l - 2L)(3v2 - 3v2c2S1 - 4S2C})]

+ ~(-S2 + v2q)}
127]

(4.3)

(4.4)
1 2H

Bl =A {7[S2 + v2Sl - v2q + v2C2S1+ s2q - v(l - 2L)(S2- v2q)]

+ Ad[2s2+ v2Sl - 2v2Cl + v2C2S1+ S2Cl- v(l - 2L)(S2 - v2c})]

V2v
+ 121}[1 - c2 + 2S1]}

1 2H
B2 =-{-[-S2 - v2C2+ v2S1 + v2q + v2qc2 - s1s2 -v(l - 2L)(v2s1 - v2C2)]A v

+ Ad[-S2 + 2v2sl + v2q - 2v2c2 - SIS2+ v2q C2- v(l - 2L)(v2Sl - v2C2)]

+ ~[-S2 + v2q]}
61}

(4.5)

(4.6)

where

A = -3v2 + v2C2- v2Sl + 3v2c2S1+ 4s2q (4.7)

q = cos[v(3L -1)], sl = sin[v(3L -1)] (4.8)

C2= cos[v2v(l - 2L)], S2= sin[v2v(l - 2L)] (4.9)

7rp
1}= 3 (4.10)
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Substituting eqs.(4.1), (4.2), (4.3), (4.4) (4.5) and (4.6) into eq.(3.18) we can solve

for 1/ [ei. (3.14)]

al + aa2 + ..jay + 2aa3H=
24a4TJ

(4.11)

with a = -471"pAd and

al = -6v2-282+2v2c2-4v281 +2v2q +6q82+4v281C2+(282-2v2q)Y (4.12)

Ji
a2 = - -[-8+ 6q - 4c2 - 3v282 + 6qc2 + 481C2+ 4v2q82 - 3v28182

11

+ (9 - 4q - 381 + 3C2+ 2v282- 4qc2 - 981C2 - 6v2q82 + 2v2sP2)Y (4.13)

+ (-3 + SI - C2+ 381C2+ 2v2q82)y2]

a3 = -2.{[(481 - 24cy)s~+ (-24sy - 4sdc~ - 34v2qs2s1c2 - 6v2qc2s2 + 6v2qsls211

+ 34v2qs2 + 16sYC2+ 48s1c2+ 8cYC2-1281 - 24]Y

+ [(-12q - 4)SI + 24cy- 12q]8~ + [24sy+ 16cPl + 4S1+ 8q]c~

+ [(34v2q - 16v2)SI + 12v2cy - 8v28Y+ 6v2q - 8v2]C2S2

+ 8v2s1s2+ 16v2s1S2- 6v2qsls2 + 12V2c1s2- 34V2q82+ 8V2s2

- 168YC2+ 8qslc2 - 4881c2 - 8cYC2 - 8qc2 + 12s1- 8q81 -16q + 24}
(4.14)

1
a4 = 2{(3V2 - V2S1 + V2C2 - 3V2s1C2 - 4qs2)y211

[-6V2 + 4V2q + 2v2s1 - 2v2c2 - 482+ 4v2qc2 + 6v281C2+ 8qs2 - 4S1S2]Y

+ (481 - 4q + 4)82+ (-v2S1 - 4v2q + 3v2)C2+ v2S1 - 4v2q + 5v2}
(4.15)

where Y = 11(1 - 2L). It worth noting that the excess energy satisfies {3Eex = aH /2.7

(H used here is equal to -H used in refs.7-9).

B. The Sum Equation
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The sum equation (3.10a) can be solved in a similar way. Results are shown below.

1 2 a ~
qs(r) ~ "2ar + [b- 2)1-2vL)]r+c+vsin(V2vr)+ucos(hvr), 0:5 r :51-2L,

1 b a .
= --a(r - L) - - + ::2(1 - 2vL) + qsm[v(r - 1 + 2L)] + pcos[v(r - 1 + 2L)],v v v

1 - 2L :5r :5L,

= 2:2(1 - 2vL) - v2vcos[v2v(r - L)]+ v2usin[v2v(r - L)], L:5 r:5 1- L,

= ~(r + L) + ~+ ~(1 - 2vL) - qcos[v(r-1 + L)] + psin[v(r -1 + L)],v v v

1 - L :5 r :5 2L,

= ~ar2 + [b+ ~(1 - 2vL)]r+ (1 - 2vL)~ + c - vsin[v2v(r - 2L)] - ucos[v2v(r - 2L)],2 2v v

2L :5 r :5 1,
(4.16)

The coefficients a, b, c, u, v, p, and q can be obtained from eq.(3.16a), the continuity

condition of q(r) at r = 1 - L, 1 - 2L, 2L, 1, and equations (3.12) and (3.13).

1 1-2vL 1-2vL
(- + )a + (1 + )b + c - c2u - s2v = 02 2v v

a
2 - c + u + SIP - qq = 0v

1 - 2vL 1 b J;;. J;;.

[ 22 +-]a+--v2s2U+v2c2v-q=0v v v

(1 - 2vL) b >.L2
2 2 a - - + v2v + qp + SI q =_2v v 4

1 1 1 1
(- - L + - - 2)a + (1 - 2L + -)b + c + C2U+ S2V- P = 02 2v v v

37]2
- 2"""[(2L- 1)2v2 + 2L(1 - 2L)v + lOL- 3]av

+ {1 + 27][(8L3- 24L2+ 18L - 4)v - 6L2 + 6L - 3]}bv .

-127](1 - 2L)c - 6Z[-(2v2Lv - v2)S2 + (2L - 2)VC2+ 2Lv]uv

+ 6Z[-(2L - 2)VS2+ (-2v2Lv + v2)C2+ 2v2Lv - v2]vv
127]

- 2"""[(1 + LV)SI + (1 - 2Lv)q + (1 - L)v -l]pv
127]

+ 2"""[(2Lv- l)SI + (Lv + l)q + (2L - l)v -l]q = 0v

16

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



{I + 2~ [(8L3 - 6L + 2)v2 + (-18L2 + 6L)v + 30L - 9nav
12~ 12ry

+ -[2L -1)[(2L -1)v-l]b+ 24ry(l- 2L)c+ -(1- C2)Uv v
12ry 12ry 12ry

- -s2v + -(1 + sl - Cl)P+ -(1 - sl - q)q = 1v V v

Theses seven linear equations can be solved by using matrix transformation.

(4.23)

When L = 1/2, C2 = 1 and S2 =O. When L = 1/3, q = 1, SI = O. At these vaules

of L, all results presented here reduce correctly to results obtained in earlier work.7-9

v. SOLUTIONS FOR u/2 ::; L ::; u

When 1/2 ::; L ::; 1, the hard core region (0,1) is divided into (O,I-L), (I-L,L),and

(L,I). Analytical solution is shown below.

q~(r) = H + Blsin(vr) + B2cos(vr), 0 ::; r ::; 1 - L,v

= (H + vAd)(r - 1 + L) + AI, 1 - L ::;r ::;L,
H

= --; - Ad + Bl cos[v(r - L)] - B2sin[v(r - L)], L ::;r ::; 1,

(5.1)

1 H v
Bl = {-[q - 2S1 - v(2L - 1)sIJ + Ad[cl - SI - v(2L - 1)SI] - -SI} (5.2)

1 - S1 v 12ry
1 H v

B2 = 1 {-[I-S1 -2q -v(2L -1)q]+Ad[I-SI -q-v(2L-l)q] - -q} (5.3)- SI v 12ry
1 H v

Al = {-[q - SI - 1 - v(2L - 1)]+ Ad[q - 1 - v(2L - 1)] - -}
1 - SI v 12ry

where q = cos[v(1 - L )], SI = sin[v(1 - L)], and v, Ad, and ry satisfy equations (3.11),

(5.4)

(3.9) and (4.10) respectively. Besides, H still satisfies eq.(4.11) but with

al ;= -2 + q - Y (5.5)

1 2
a2 = -[(1 + sdY - (3S1- 4q + 3)Y - 2S1- 6q + 6]v

1 2
a3 = --[-(qsl - q)Y + 2qsl - 4S1- 2cl - 2q + 4]v

(5.6)

(5.7)

1 2
a4 = 2v2 [(1 + SI)Y - (4S1 - 4q + 4)Y - 8q + 8]

(5.8)
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where Y = v(l - 2L).

For the sum equation, we have

a a b

qs(r) = --;;r + v2 [1 - vL] - -;;+ pcos(vr) + qsin(vr), 0 S; r S; 1 - L,
1

= "2ar2+ br + u, 1 - L S;r S;L,
a a b= -
v r + 2(1 - vL) + - + psin[v(r - L)] - qcos[v(r- L)], L S;r S;1,v v

(5.9)

where a, b,u, p, q satisfies 5 linear equations.

111
[- + 2(1 - vL)]a + -b + SIP- qq = 0V V v

1 L2 1 )"L2
[2 - -]a + (- - L)b - u - q =--v 2 v U

v - 1 (1 - L)2 1
[--r + 2 ]a+ [(1- L) + -]b + u - qp - slq = 0v v

37]
[(

3 2 2
- 2v2 4L - 6L + 4L - l)v - 8L + 8]a

+ {1 - 47][(2L3 - 3L2 + 3L - l)v - 3L2 + 3L]}bv
127]

+ 67][1- 2L]u - 2""" { -[(L -l)v -l]SI + (1 - v)q + Lv -1}pv
127]

- 2"""{[(L - l)v - l]q + (1 - V)SI+ l}q = O'v

{1 + 2~[(2L3- 3L2+ 3L - 1)v2+ 6L(L - l)v - 12L+ 12]}a+ 67](2L- l)b
v 12 12 (5.14)

+ 127][2L- l]u - ~[-SI + q - l]p + ~[-SI - q + l]q = 1v v

When L = 1, and L = 1/2, our results reduce to the results obtained in earlier

work.6,9,10

(5.10)

(5.11)

(5.12)

(5.13)

VI. THE BORN SOLVATION FREE ENERGY OF A DIPOLAR DUMB-

BELL IN A DIPOLAR SOLVENT

In earlier papers3,4, we obtained the Born solvation free energy (BSFE) of a

symmetric3 or an unsymmetric4 "extended" dipolar dumbbell in a symmetric dipolar

dumbbell solvent or a dipolar hard-sphere solvent. Here, the "extended" means that the

18



bonding length of the dUJ _11Li is larger than or equal to the contact distance of the

constituent ions of the dl .)bell (i.e. the fixed distance between the ion centers, Li, is

greater or equal to the i lie diameter). The BSFE has been very useful in furthering

an understanding of molecular solvent effects on electron-transfer reactions and solvation

dynamics.4,5 In this section, we shall obtain the BSFE for the symmetric dipolar dumbbell

in a dipolar solvent, which we hope will also prove be useful in understanding intramolec-

ular electron-transfer reactions and in determining equilibrium liquid-junction potentials

and the partitioning of the dumbbell species between two immiscible fluid phases.13

First, we consider the symmetric dipolar dumbbell in a dipolar dumbbell solvent.

The method for obtaining the BSFE is presented in detail in ref.3. It turns out that the

difference Baxter-q function between the solvent dumbbell and solute dumbbell satisfies

a equation similar to eq.(3.10b) but without the 8-function term. The equation can be

solved by dividing the region (Sdi, Rid) into intervals (Sdi, Rid - L), (Rid - L, Sdi + L),

and (Sdi + L, Rid) for Ri/2 ~ Li :S Ri, and dividing (Sdi, Rid) into (Sdi, Rid - 2Li),

(Rid - 2Li, Sdi + Li), (Sdi+ Li, Rid - Ld, (Rid - Li, Sdi + 2Ld, and (Sdi + 2Li,Rid)

for Ri/3 ~ Li ~ Ri/2. where Li is the bonding length of the solute dumbbell, Rid =

(Ri + Rd)/2, Sdi = (Rd - Ri)/2 with hard core diameters Rd for a solvent dumbbell and

Ri for a solute dumbbell.

The final result gives

FEarn = 2qt(1 -1/t)Xl
-2LiX2 + ~d '

(6.1)

with

Xl = 1 1 [(1+ so)(Ri)2 + 4(cO- so -1)Ri - 8co+ 8]- so

X2= 1 1 [(1+ sO)(Ri)2 + (-5s0 + 4co- 5)Ri + 2s0 - lOCO+ 10]- sO

(6.2)

(6.3)
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for Ri/2 :::;Li :::;Ri, and

Xl =2~ {[4q82 + (3V281- V2)C2+ V281- 3V2](Ri)2

+ [(481- 24q + 4)82+ (-lSV281 - 4V2q + 6V2]C2- 6V281- 4v2q + lSV2]Ri

+ (-1281 + 36q - 12)82+ (25V281+ 12V2q - 11V2)C2+ 7V281+ 12v2q - 29V2}
(6.4)

1
X2 =A {[4q82 + (3V281 - V2)C2 + v281 - 3V2)(Ri)2

+ [(481- 20q + 4)82+ (-15V281 - 4V2q + 5V2)C2- 5V281- 4V2q + 15v2]Ri

+ (-~081 + 24q - 10)82+ (16V281+ lOV2q - SV2)C2+ 4V281+ lOv2q - 20V2}
(6.5)

for Ri/3 :::;Li :::;Ri/2, where Ad = Rd - [1- 47rpMtddtq~d(t)]/(27rpAd),Ri = Ri/2Li,

80 = sin(Ri - 1/2), co = cos(Ri - 1/2), 81 = sin(3/2 - Ri), q = cos(3/2 - Ri),

82 = sin[V2(Ri -1)], C2= cos[V2(Ri -1)], A = -3V2+ V2C2- V281+3V2c281+482q,

f is the solvent dielectric constant, qi is the charge of the ion of the solute dumbbells, and

q~d(t) is the short-range part of the pure solvent-dumbbell difference Baxter-q function,

which is known from the analytical solution in previous sections as q~(t). It is easy to show

that for a dipolar hard-sphere solvent, the BSFE of the dipolar dumbbell also satisfies

eq.(6.1) but with

(1 - 20
Ad = Rd(1+40

(6.5)

The MSA solvent factor ~ is the solution of the equation14

(1+ 40: - (1 - 202 = 4; /3PdJi~
(6.6)

where Jid is the dipole moment of the solvent. The solvent dielectric constant f is related

to ~by the equation14

(1 + 402(1 + 04f=
(1 - 206

(6.7)
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Fig.! shows the Born solvation free energy of a dumbbell in a dipolar hard-sphere

solvent as a function of the bonding length Li at a constant dipole moment. For compar-

ison, the result for an extended dumbbell, Li > Ri, 3,4 and a dipolar hard-sphere, Li = 0

15 in a dipolar hard-sphere solvent under the MSA are also plotted.

Once the Born solvation free energy is known, we can investigate the solvation

dynamics5 of a single dumbbell in a dipolar solvent by following the method of Wolynes.18

In particular, the average relaxation time can be easily obtained analytically.4 The acti-

vation free energy and reorganization free energy for electron-transfer reactions, in which

an electron jumps from one of the dumbbell-constituent ions to the other, can also easily

be obtained.5 We shall defer a discussion of these results to a future article.

VII. DISCUSSION AND SUMMARY

In this paper we have obtained analytical solution for the case of u /3 ::; L ::; u

for the dissociative dipolar dumbbell model under the MSA. Analytical solution to other

regions u/(n + 1) ::; L ~ u/n, n ~ 3 can also be obtained by dividing the interval (0,1)

into 2n + 1 parts. This work provides solvent fluid structural properties over a continueous

range of L, which can be used to investigate ionic solvation, the Born solvation free energy

for two ions at a fixed distance apart, and solvation dynamics.2-5 We have also obtained

the BSFE of a dipolar dumbbell in a dipolar dumbbell solvent or a dipolar hard-sphere

solvent.
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FIGURE CAPTION

Fig.! The reduced BSFE, FBornR~/ Pi, as a function of the reduced solute-dumbbell

bonding length Ld Rd. Here Pi = qiLi is the dipole moment of a solute dumbbell.

The dashed line denotes the BSFE of the same dumbbell in the continuum-solvent

limit, Ad = O. The result of a dipolar hard-sphere in a dipolar hard-sphere solvent

is also shown by the dot (.) in the lower left-hand corner .15
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