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Recently Kleban‘ and Kleban and Langez have shown the way in which the
Bsﬂo“ukwv inequality, used with certaln cther relations including the virial
theorem, leads to inequalities for the internal energy per particle u and the
Heimholtz free energy per particle f. The systems considered in refs. [|] and
[2] have a pair potential of the iLennard-Jones form

vi(r) = AN(Fr "+ coast r-") i

and of a generalized Coulomb form (between particles of species | and j)
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In thisnote we extend the work of Kfeban!_and of Kleban and Lanqe2 by showing
the way in which a somewhat differeﬁ+ use of sssentially the same ineauality and/or
the virial theorem leads to additicnal bounds, some of which are stronger than
those of refs. L1] and [2]. Elsewher93 we have shown the way in which still another
application of the inequality leads to upper bounds on f in terms cf hard-sphera
quantities.

in the interest of brevety we shall simply take over the more-or-less standard

‘notation of refs, [!] and {2] with one minor change. In that notation, the virial

theorem can be written
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for a mixture of specles (as well as for the single-species system) in the absence

of an external field, where p is the pressure, {O the total number density, d the

dimensional ity, ekxn the average total kinetic enerqy per particle, and OT(r) 8

total pair corkela?ibn (distribution) function. We shall write gT{r) as,dﬁfr)

. ; . : i les:
however, to conform to widely used notation in which g(r) represents a dimenslonless



function. In a single-comporent, sincle-phase fluid, g{r) Is then just the well-
known radial distribution function that goes to | as r-—se ., For the qeneralized
Coulomb potential given by (2), Eq. (3) immediately implies that
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which is one of our starting points. Since “’g_ ‘—'/O(‘%%)‘L =/Oéi—§iwhere s s the

entropy per particle and T fthe fTemperature, we have for w1 & 3
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and since ‘f--,a-—?ﬁ..)Eq.(d) and the inequality £ >0 further imply for #s2 that

/Q@_f) > #L g (6
et LT

(We note that the postulate_s2¢gis only applicable to a quantum mechanica! system ,)
1f we follow ref.[!J and [2] in further postulating that there exists a /s

such that a(ﬁ,.,d.);o for“/o;{q, and a Po such ‘rha‘f‘fé@?")é&' for{o e/o, then from (5) and (6)

we conclude that
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These results are stronger than Egs. (25) and {33) of ref.[2] .
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Our second set of inequalities are bounds for classical systems based upon
the Gibbs-Bogoliubov iruaqt.u‘-a!H'y'4 plus certain scaling pronerTiesS’6 that hold
when (1) or (2) are satisfied 1f the system under consideration is a classical
one. For simplicity we shall consider only the single-species case, for which

Ea. (2) can be written

(r) = r- " (9)

so that | /KT Times the average potential energy per par‘ficie,epot/zg‘?’,‘ becomes a

)d’/n ,

function E[‘Ox) of the single variable (J*.‘:/o{-), //q"?' 3

€ ot /T =Moo /2 ke Z_)_I/f(f} =% = /—}"((;?'/3 X (10

We shall find 11 useful to introduce the function J?/)}/?)where X 'u*‘!ﬂ( 4{7‘) —dé{_?;o"‘,/,}’{/”‘
-
by writing J(/\,7{>*F"/2/?T) gf(’)f'yi—f’!! so that

E(po*) =A TC(NR) .
‘Let Mo and R_ be such that A, 47 R =¥ = AL/ R . Ve have

‘ an
Te, Re ) =D /Aa) TCLR) .

The form of the Gibbs-Bogoliubov inequality which we shall use in this note involves
‘F and j(r) for a potential 27°(r5)} = »Lr;(r} + fu;(;) in a comparison with f and a(r)
for the potential vo(r) at the same /O and T . In obvious notation, it can be

written

(12)
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Lot _‘z):')::/\e Y and 7 = A1) - /5 )?,.«7& Eq,(l?) directly Implies
that for Ao € A,

JCN K} & \T(/\DJ /?0) - (13

Egs. (10), (11), and (13) yield, for RER

»

(/{’//?u,) M/‘{’E{/{?oz ‘p/"") & = (/?/lj/ﬂ), (14)

For arbi?rary'fixed density )( and fixed temperature 7,Eq. (14) provides a lower
bound on éjo,,gf(a,()when/o<?{dnd an upper bound when/a ;:?)m terms of f?ot ;{ /)
as well as a lower bound on ,F,acg,gz}when! 27 (and an upper bound when 76?’)

in terms of €, . (0,7 i F

The free energy is given bvf ff where '7': //QT— (/-7”() /:.?Y/"‘ R) 1/\

Here ‘)[g,, is the configurational free eneray and fi( the ideal-gas contribution,

Hence (11) and (13) yield the inequality, for Z& Ko » _
(/%)™ T (o, A¥) s T (RA4™) . (e

Eq. (15) provides upper and lower bounds on ;‘n; ‘GQJT) in terms of yf ['?(v) T)

and f((a,’f")correspondma to the bounds on £ (;a?’jlﬂ terms of & poe{(ﬂr)

bC’paé 6‘2»7) that are provided by (14). For example, for ‘7‘; g
5l | (16)
L. a7) 2 f, e,20).

In the case of a Lennard-Jones potential aiven by (1), Ea. (10) is no lonoer

true since €,,,. /w7 is a function of a second parameter, say A /47, in addition Jm/a

The parame‘rersTanci A are still found only in the combination A/ T however, and &s a
result our previous results still go through for fixed/o,' Thus Eq, (16) remains frue

for a classical system with V7r) gliven by (1), as does GM (F./ 7)2 @F“ {/J/ ’7') for T2
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Our third set of inecualities are upper bounds based on the use of (4).

If #22 in (%), we have, instead of (5),

p(BL), < (#) _

So if W,20 for/02 then inteqration of (17) yields

) s
Al a) < é-((?(;T),/J w/;(’/?(n/ﬁ fm‘/;:‘(g/,l, i e
1f ®=2, then (18) is a strict ecuality for all (Oaﬂd all’)-( . Eo. (18) compli-
ments Eq.(21) of ref.(1). When 222 we also have
(19)
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Let _4& =,¢€,+,4h£ where 774}‘(:/;7‘&/2-&. Here & ,1s the ldeai-gas contri-
bution to 4 for a given/o and 7 ; in the classical case & = L= Ald/z + ;._’j’,,/\/{,]

: 1 | 'es = /
where /A is a thermal wavelength. We also introduce é{c //‘,7' =.Agft’/1ﬂ" P

From Eq.(12), with ¢/; set eauai to zero, it follows that 45”{ Sé[ . Since

76;: “M“Z&“ » This means /(Lc,?éo, which implies
,ﬂ(r)'f/é/ﬂ)y—— $ (re/d)F + (22/)7%,4 . (20)

Let ;fvs ff-'f;cf é{ﬂ/,z)ﬁ?ﬂ *fhen (20) can be rewritten as ,o(,;;,?’/g/,)g (*){'/(C) ;E;

and Hf‘/azexisfs such that 1?13'0 for/oa/é‘z, it follows that

f(/zj, ) s 7?'/7()7')(0 "‘/‘{/4( "/‘f%—'/oz 7»% . en

This is a stronaer result than Eq. (27) of ref. [1] for/q_—gaa . In the classical
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case, for which 1(- f“ﬁ;:;{,ﬁ , iT reduces To a resuit for f

ex That is slightly

77
weaker than our Eao. (15) as,ﬂ—pwo , owing to the extra (é“yjﬁﬁ;@/vﬁ that is

present when (2]) is written in terms of f:’-;:

Finally, we note that if ©)7 is the Lennard-Jones potential given by (1),
with h>o » {‘g,,;g‘f(o ,;1>,ar{>¢‘2, and H_U;” is the repuisive power-law potential )-7'"",’
then (12) implies that any upper bound on ‘F for the repulsive power-law potential
is also an upper bound on '{for the Lennard-Jones potential at a given /a and T .
As reported by us e!sewhere3 Eo.(12) alsc directly provides upper bounds in the
Lennard-Jones case (as well as the power-law case) if one lets ¥ be a hard-

sphere potential.

We are indebted to G.A. Baker, Jr., and J. Groeneveld for helpful discussions,
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