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Recently Kleban' and Kleban and Lange2 have shown the way in which the

B6~oliubov inequal ity, used with certain other relations including the vlrlal

theorem, leads to inequalities for the in1"ernal energy per particle u and the

Helmholtz t~ee energy per particle f. The systems considered In refs. [IJ and

[2J have. a pa I r potenti a I of the Lennard-Jones form

V'{r) == )) (r --N.- + (mISt r -~ ) ( I )

and of a generalized Coulomb form (between particles of species I and J)

A/;~(r) = e;e' !:__-n
';! J t/ ...

In this note we extend the work of Klebanl ,and of Kleban and Lan~e2 bv showlnq..., .~

(2)

the way in which a somewhat different use of essentially the same ineauallty and/or

the v:f.rlal theorem leads to additional bounds, some of which are stronqer than,

those of refs. [IJ and [2J. Elsewhere3 we have shown the way in which sti I I another

application of the inequality leads to upper bounds on f In terms of hard-sphere

quantities.

In the interest of brevety we shal I simply take over the more-or-Iess standard

'notation of refs. [IJ and [2J with one minor change. In that notation, the vlrlal

theorem can be written

-IT = ;ek,,,- z~ J#r(r) U-rJj-'lTrfJd"r (3)

for a mixture of species (as wel I as for the single-species system) In the absence

of an externa I fie Id, where pis the pressure, fJ the tota I . number dens i tv,

dimensionality, eklYt. the average total kinetic energy

d the

total pair correla~!~n. (distribution) function. We shal I write 9T(r)

however, to conform to widely used notation in which g(r) represents a dlmenslon1es~

per particle, and 0~(r) aI

..
as fq(r)
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function. In a single-component, sln~~le-phase fluid, g(r) Is then just the well-

known radial distribution function that goes to I as r~OI>. For the ~enerallzed

Coulomb potential given by (2), Eq. (3) l~medi~tely impl ies that

fa = .<.:(n e kl?'t -;- ::;-.<.1-

Y ~ 7- tl for ?t~;z; '; ~ 7 U. -fdr n~;G..)

which Is one of our s+artlng poln+s. Since' ~ "f"(~i =r'~i where

entropy per particle and T the temperature, we have for 'X ~ a J

so

(4 )

s is the

(J'u._ \
.AJ (J~ -,;A.

")1.-
~ c{4, (5)

and since f==A-U)Eq.(4) and the Inequality.d.~Ofurther 1mpl~ for' ?t~2.:~hat

;O (fl ) .

~ ~ f _

d;4 r cJ{

(6)

(We note that the postulate.~~ois only applicable to a quantum mechanical system .)

If we follow ref.CIJ and [2J In further postulating that there exists a tO~

,such thatu~A-)~Ofo~j~and aft) such thatf~i)~(}forf~~o' then from (5) and (6)

we conclude that

[
f'lf./el

] nlci L

fA.(f/A) ~ M((jA.-) IV r' T(>T ~~ (~~/
(7)

and

f (fl.JT) ~ 7fI/ti. ~/e( . /)

[ -f(rr T ) / r J;<7 {OJ' f"i> ("r 0 '

(8)

These results are stronger than Eqs. (25) and (33)of ref.[2].

""'...,.
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Our second set of inequalities are bounds for classical systems based upon

the Gibbs-BogoliWbov inequal ity4 plus certain scaling properties5,6 that hold

when (I) or (2) are satisfied if the system under consideration is a classical

one. For simplicity we shal I consider only the sinqle-species case, for which

Ea. (2) can be written

'f.j- ( r) ~ /1 r - ?'t
(9)

so that l/kT times the average potential energy per part~cle, epot;/i?T; becomes a

function E(f~) of the single variable (1--:: (J (,1 /~T) din)

epot / kT =(AfJ1.2/~r)~4()) r -?l.~~J' =-E ( (1*) . (10)

We shall find it useful to introduce the function T(~./()where J? =~( .~T) -£(.~,'(hr~"(

by wri ti ng J ( /\~ 'R.)=0/~. h T)19(1).,. -~ltfr so that

E (~.fo) ::: A :T( /)~ R ) ~

. Let Ao and Ro be such that /10 "In. Ro =-;a if ::=/\..~/n R. . 'tIe have

.r (/) 0/ R0 ) = (A J:,\ Q) T ( /)~ R ) · ( I I )

The formof the Gibbs-Boqoli"bov inequality which we shall use in this note involves

~ and 3{ r) for a potent Ia I 1.7(r) .: "t.~(>') + Vi ( r )

for the potenti a I v0 (r) at the same ;c and T .
wrt tten

in a comparison with f and qU)

In obvious notation, it can be

fv;, of- -krOf!jjr) V;(I)cP{ d.r ~ Iv-. 1-:1;oljilO(I) tl;{J) ",It

<12)

.~-.



4

Let ~ = Ao ..,,--x.-
and "V; ~:fr)-;\o) r.--"(. [9,(12) directly Implies

that for A() ~ ,1 )

J(~Ro) ~ :r(I\f)~ Ro)<
Eqs. (10), (I I ), and (13) y Ie Id, for R~ R ,o

(13)

( ~/ i?0) ~ I£. E ( R 0), ~/71-) ,< E ( R /} ce/71.) .
(t 4)

For arbltraryflxed density '( and fixed temperature 7';Eq. (14) provides a lower

bound on ~6"t (f'jT)whenftf (and an upper bound whenra ~'1)in terms of ef'ot (1.) T)
as' weI' as a lower bound on ep~0-7Jwhenr 7'7 (and an upper bound ",hen T ~ r)

In terms of eperl;(~..I1'") .

f f
.

f I -
)

ri1 -.., ~I

The free energy is given by' n/.+ e')( where ex/ kT::::; .1 (~ ".iQ .;T(~R) £1\ "

Here fe'¥- is the conf igurat Iona I free energy and 1;'1. the Idea I-gas contr Ibut Ion.

Hence (II) and (13) yield the inequality, for ~$ 7<0:-

(R/Ro) ~/.( I (Ro Jt £/'nI) ~ Z (R~ ~/n» ~'

Eq. (15) provides upper and lower bounds on ~;il' 0T) in terms of t;;c:{?(} r)
and ';;/r'/1-")cor~esPOndlng to the bounds onC;(.It~.q?Jlnterms Of~tn((./I) .and

'~ ''''1' ) that are provided by (14). For example, for ...,.. ~ '/'}
(. pO/:I(~

( 15)

~;r (;:>JT) 3- ~:r (p/ '7).
( 16)

In the case of a Lennard-Jones potential given by (I), Eq. (10) Is no lon~er

true since epec /kl is a function of a second parameter, say A/itr, in addition to~¥.

The parameters Tal1dA arE> still found only in the combination Ji/T however, and c!s i'J

result our previous results still go through forfTxedf" Thus Eq.. (16) remaIns true

for a classical system with tJ"'(r) given by (I), as does e (p r ) ~ e (A) 7 ) !c.r T~r~ I~J pUt (..I .

...,.{,;....

,,' ,'"
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Our third set of Ineaualitles are upper bounds based on the use of (4).

If x.~Z in (9), we have, Instead of (5),

~e;l ~ (;)~
( 17)

So if u,n> fort>~;o,' then I ntegration of (17) Vlel ds

-} -rl1J!./ nlJ? i

A..{ (~.4-) ~ U.('(.J T.J~ /'1. rot /' ~ '( ~~I '

Cl8)

If.Pt~, then (18) is a strict eouality for all fand all?'{ . Eq. (18) compli-
ments Eq. (21) of ref. ( I >. Nhen n,~~ \'Ie a Iso have

~(¥)r
.

~ 7 U == "r..f -t- ;1- T 4., ,

( 19)

Let.A- =.4e1f+~£.. where 1A;,{'=ItTcf/;? -I}£.. Here~lIf. is the ideal-gas contri-

bution to.4 for a given;o and T; In the classical case 4. -=A..~c= A[~llz '" I-..fx/ljc]

where.A is a' therma I wave length. We a Iso i ntroduce ~ ~ /h T =~/t~- / .....

From Eq. Cl2J, with V; set eauai to zero, it follows that ~ut ~fex . Since

~ =t<. -7::4- , this means ,4-' '0, which i""plles~t /Nt ~)( e1l'

;o(~-f/JfJ)/ ~ (~tl"-)..f -+ (?tIeR )r4,d( ~

(20)

Let
AJ "V

I:: f -~.Ic+(tI4)k7:'Tnen (20) can b~ rewritten as /J(~~/~)~(--x/£) f>
J IV

i f t~ ex i sts such that I- ~ 0 for fJ ~f'~' it fo II ows that
and

l(f7;TJ ~ 1r'>(,7 Jf' "/J'/"{ ,,/~ r ;O:«~~ (21)

'This is a stronger result than Eq. (27) of ref. [tJ forfJ-7r:>O.
In the c!asslc~1

.....;.'"
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case, for which f-f;A=ff'-% . it rf=>.ducesto a result for~::r that Is sliqhtlv

1. } "H 1.1.

weaker than our Eo. (15) aSfJ-7t;6 , ow1n9 to the extra (~ -fy~1t71(CJ/"I)that Is

present when. (21) is written in ti"'rms of fe-tt .
Finally, we note that if ~ is the Lennard-Jones potential given by (I),

with A >0, e()Ju;"{<b,;PPt>J., and if U-; is tha repulsive power-law potential Xr-~

then (12) implies that any upper bound on f for the repulsive power-law potential

Is a Iso an upper bound on f for the Lennard-Jones potent i a I at a given f and T .
As reported by us elsewhere3 Eo.(12) also directly provides upper bounds in the

Lennard-Jones case (as well as the power-law case) if one lets V; be a hard-

sphere potential.

We are indebted to G.A. Baker, Jr., and J. Groeneveld for helpful discussions.
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