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ABSTRACT

The zeroth order (hydrostatic) nonlocal integral-equation approximation is applied

here to Lennard-Jones (LJ) fluids. Systems of homogeneous LJ fluids are investi-

gated, as well as LJ fluids near a hard wall, a model CO2 wall, and inside two model

CO2 walls. The hydrostatic hypernetted chain (HHNC) approximation is shown to

be better than both the Percus- Yevick and the hypernetted chain approximations

when compared with computer simulations. The phenomena of solid wetting by

liquid, solid wetting by gas, and capillary condensation are predicted by the HHNC

approximation.
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I. INTRODUCTION

The wetting transition for a solid-gas interface is a transition from partial

wetting to complete wetting of the solid surface by a liquid.l The capability of pre-

dicting this phenomena has been a crucial test for various theories of inhomogeneous

systems. Commonly used integral equations, such as the hypernetted-chain (HNC)

approximation and the Percus-Yevick (PY) approximation, seem to fail this test.2

Although attempts have been made to account for the wetting phenomena by using

improved integral equations,S until now one has had to rely mainly on density func-

tional theories applied to free-energy functionals.4-5 Since there is little knowledge

concerning exact free-energy functionals for realistic pair potentials, the construc-

tion of approximate free-energy functionals has been typically based on hard-sphere

free energy functionals with mean-field approximations for the attractive-potential

contribution6-9 or has been restricted to hard-sphere systems.lO The former theo-

ries are hampered by a treatment of attractive forces that is lacking in quantitative

accuracy as well as having some other drawbacks.ll,l2 In our treatment here, the

attractive forces are not separated from the repulsive ones-they are treated on the

same level of approximation. The treatment is initiated on the level of a two-point

description rather than a thermodynamic one, so there is no need to make an 8.

priori guess as to the functional form of the free-energy functional. Instead one

truncates a systematic density-functional expansion of the direct correlation func-

tion. Compared with free-energy functionals, direct correlation functions reflect the

structure of a molecular system in a much more detailed way. As a result, a density-

functional expansion of direct correlation functionslS-l9 seems to be a promising

new approach.

In a previous paper20 introducing nonlocal corrections to standard integral-

equation approximations (e.g. HNC and PY),lS-l9 we formulated a hydrostatic

Percus- Yevick (HPY) approximation and a hydrostatfC"hypernetted chain (HHNC)

approximation, which are zeroth-order nonlocal density-functional theories. Using

a simple step weight function, we applied these hydrostatic approximations to the
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homogeneoushard-sphere fluid,hard spheres near a wall, and to hard spheres inside

a slit pore.20The HHNC approximation was shown t-u"bean improvement over the

HNC approximation in all the cases we considered. We also showed that the new

approximations are capable of accounting for wetting transitions in a sense that the

standard HNC and PY approximation are not.20

The purpose of this paper is to apply the HHNC approximation to a Lennard-

Jones (LJ) fluid. (The HPY will not be used here since it was found to overcorrect

the PY approximation in preliminary computations done by us.20) Homogeneous

LJ fluids and LJ fluids near a wall are investigated in Section II and in Section

III, respectively. Both the phenomena of a CO2 solid wetting by liquid and a hard

wall wetting by gas are found. In Section IV, we investigate LJ fluids inside two

model CO2 walls. The capillary condensation is predicted by the HHNC approxi-

mation. All results appear to be in good agreement with computer-simulation data.

However, our current techniques for numerically solving our equations do not yield

the wetting temperature and surface critical temperature with high precision. The

extent to which precision can be improved by the use of more accurate algorithms

is not yet clear to us, and we regard our results as exploratory. In this paper, we

heavily lean on the development and notation already introduced in ref.20, which

is the first paper of this series.

TI. THE HOMOGENEOUS LENNARD-JONES FLUID

For an one-component homogeneous system, we have the Ornstein-Zernike

(OZ) equation

h - c =ph * c (2.1)

with the HHNC closure20 [(2.16a) of ref.20]

g(r) =exp[-,8u(r) + h(r) - c(r) - b(r)] (2.2)

8p,ez
b(r) = ,8[p,ezlp.(r) - p,ez - ph*(r)ap]

(2.3)
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where h(r) and c(r) are the pair correlation function and direct pair correlation func-

tion respectively, * denotes a three dimensional convolution integral, T = 1/ /3kB is

the temperature, u(r) is the pair potential, b(r) is an approximate bridge function,

p,ex =p, - p,id is the part of the chemical potential excess to the ideal gas chemical

potential, and p*(r) is a weighted nonlocal density, p*(r) = p[h*(r) + 1]. Here, the

weighted pair correlation function, h*(r), is given by

h*(r) = f h(r')w(lr - r'Ddr' . (2.4)

The w(r) is a weight function which satisfies the normalization condition

f w(r)dr = 1 (2.5)

For a Lennard-Jones fluid, we have the pair potential

/3u(r) =4[(u /r)12 - (u/r)6]fT* (2.6)

with the reduced temperature

T* = kBT/E (2.7)

where Eand u are parameters in units of energy and distance respectively.

One choice of weight function, which was discussed earlier, 20,21 is

w(r) = f(r) (2.8)

where f is a Mayer-f function. This is appropriate to a hard-sphere fluid, but not

to a Lennard-Jones fluid, since in general one wants a weight function such that

w(r) ~ 0, in order to avoid the possibility of negative effective density p*(r) for

some r. Therefore, we use

w(r) = F(r) (2.9)

with

F(r) = e-PU(r) - 1

/3U(r) = 4[(u/r)12 - (u/r)6]fT* + l/T*,

= 0, r/u > 21/6

(2.10)

r/u < 21/6
(2.11)
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Although this weight function, which is associated with the repulsive part of the

LJ potential, is a natural one to use here, at this stage of our computations its use

is essentially exploratory. Other choices may well improve our quantitative results

and we intend to systematically pursue this point in future work. In this connection

we note that we have as yet made no attempt to introduce self-consistency into our

scheme in the sense of using a weight function such that the thermodynamics of

our system obtained from the g(r) of our integral equation matches our chemical-

potential input in a homogeneous system. Instead we simply input an accurate

expression for the chemical potential of an LJ fluid. Such an expression can be

obtained from the equation of state of Nicolas et. a1. (NGST),22 which fits computer

simulation data2S,24 very accurately. We use this equation of state as input here.

Detailed expressions can be found in Appendix A.

Eqs. (2.1-2.3) form a closed set of equations for the HHNC approximation,

which can be solved by a simple iterative method.18,19 One can also solve these

equations by combining Newton-Raphson and Picard methods. However, we find

that one such method developed by Lablk et. a1.25does not work very well for the

HHNC approximation at a high density or a low tempi'tature although it does work

better than simple iterative methods for the PY and HNC approximations.

In Fig.1 the radial distribution function obtained by the HHNC approximation

is compared with the PY approximation, the HNC approximation and a computer

simulation.24 Results show that the HHNC approximation are better than both the

PY and HNC approximations. In Fig.2 the cavity function y(r) = g(r)expCBu)

according to various approximations is also plotted.

ill. LENNARD-JONES FLUIDS NEAR A WALL

For a system of fluids near a planar wall, we have, in the HHNC

approximation,20

h(z) - c(z) =pB f cB(lr - r'Dh(z')dr'

= pB f hB (Ir - r'Dc(z')dr'
(3.1)
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lng(z) =-,8vezt(z) + h(z) - c(z) - b(z) . (3.2)

with the bridge function

. a ez

b(z) = ,8[jLezlp.(z) - jLez - pBh*(z) cf;B]
(3.3)

where a superscript B denotes the bulk homogeneous properties, c(z) is direct cor-

relation function, h(z) = g(z) - 1 =p(z)/pB -1 with the density profile p(z) and

bulk density pB, vezt(z) is the interaction potential between a fluid particle and

the wall, and p*(z) = pB[h*(z) + 1] with

h*(z) =f w(lr' - rDh(z')dr' . (3.4)

Both the weight function and chemical potential here are the same as those used in

the previous section.

For LJ fluids near a hard wall, we have

vezt(z) = 0, z>O
(3.5)

= 00, z<O

while for LJ fluids near a model CO2 solid wall, we use, following ref. 4

vezt(z) = VC02(Z) =41rEwPwu;,[f5(uw/z)9 - ~(uw/z)S], z>O
(3.6)

= 00, z<o

where Ew/kB = 153K, UW= 3.7271, and Pwu;, = 0.98.~..

Eqs.(3.1)-(3.3) can be solved by a simple iterative method which is described

elsewhere.19,20 A simple description is also given in Appendix B.

In Fig.3 and Fig.4, it can be seen that the HHNC results are 'in a good

agreement with computer simulations for LJ fluids near the model CO2 wall.26

In Fig.5, density profiles for LJ fluids near the CO2 wall predicted by the HHNC

approximation are shown at various temperatures with a fixed bulk density pB u3 =
0.08. As the temperature decreases, a thick liquid film near the surface appears to be

built up. However, the figure suggests that the HHNC gives too strong oscillations

at temperatures near the coexistence temperature. The coverage r is defined as

r = pB 1000 h(z)dz . (3.7)
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When approaching the complete wetting transition at constant pressure, one has

r ~ IT - Tcoezl-,8.with {3(J= 0 for short-range potential (r ~ InlT - Tcoezl) and

{3(J=1/3 for a LJ fluid.27 Fig.6 shows the logarithm of coverage r predicted by the

HHNC approximation. (The range of T - Tcoez shown is too limited and too far

from T =Tcoez to permit a reliable estimate of (3(Jin our approximation). Here, in

obtaining the density profile near a CO2 wall, the bulk correlations for LJ gases are

obtained from the PY approximation.

It is difficult for us to precisely calculate the wetting temperature and surface

critical temperature using our current techniques because we can not be certain of

the cause of divergent numerical solutions. They can be due to transitions but are

also likely to arise from numerical problems. Calculating the density profile along

the coexistence curve for LJ gases near a model CO2 solid, we find a divergent

solution when T* ~ 1.0. For T* < 1.0,a finite value of r is obtained. (r = 0.466

when T* = 0.99,pBuS = 0.0258). Therefore, the wetting temperature T~ given by

the HHNC approximation appears to be 1.0 or more.

In Fig.7, the result for LJ liquids near a hard wall is shown. At the reduced

temperature T* = 1.25 and reduced density pBuS = 0.6 (the coexisting densities

at this temperature are pBuS = 0.56 for liquid and pBuS = 0.11 for gas), wetting

of the hard wall by gas is predicted by the HHNC approximation. Both the HNC

and PY approximations give very different results from the HHNC prediction. The

hard-wall wetting by gas has been observed in computer simulations28 and in a

density-functional theory7b for truncated LJ fluids. In Fig.8, the bridge function

for the above system is shown.

In obtaining the density profile near a hard wall, a CO2 wall, and in the

calculations below, the bulk correlation function for the LJ liquid is calculated from

the modified HNC (MHNC) approximation,29 except at gas densities, where we use

the PY approximation instead, because of its very high accuracy at such densities.
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IV. LENNARD-JONES FLUIDS INSIDE A SLIT PORE

For Huids inside a pore, it is appropriate to deal with the distribution function

g(r) and a function C(r) which differs from the direct correlation function c(r) by

a constant term19

C(r) =c(r) + ab a1 =1- pBcB(O) (4.1)

The OZ equation (3.1) then can be rewritten as

g - C = pBhB * C =pB cB * g . (4.2)

Eq.(3.2) can also be changed accordingly. Here the i.mlk Huid is taken to be the

homogeneous system that is found when the external force for maintaining the

inhomogeneity (Le. two walls) is turned off in a grand ensemble.19

For LJ Huids inside two CO2 walls, we have the external potential

vezt(z) =Vco2(L/2 + z) + Vco2(L/2 - z) (4.3)

where L is the distance between two walls. The origin of axes is chosen in the equal

distance to walls. As a result, one has g(z) = g(-z) and C(z) = C( -z).

The coverage r for a single wall is defined as

fL/2
r = pB 10 h(z)dz . (4.4)

The numerical algorithm for solving integral equations is presented in ap-

pendix B. Fig.9 shows that density profiles predicted by the HHNC approximation

at various separation of walls when the bulk Huid is an LJ gas. At a certain sepa-

ration (L/l1 ~ 5), the Lennard-Jones Huid seems to be crystallized. The coverage

is plotted as a function of separation of walls in Fig.10. The figure indicates that

there is a capillary condensationSO near L/l1 = 5.65 while the corresponding com-

puter simuiationS1 gives a capillary condensation near L/l1 ~ 5.25 (Fig.10). The

figure also shows that the HHNC approximation overestimates the coverage r, es-

pecially near transition regions. (This is not caused by the cutoff LJ interaction,

8
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Rc= 5.30', in the Monte-Carlo simulation,S! as we shall discuss in Section V be-

low.) The PY approximation result for the coverage r, also shown in Fig.lO, is

found to be accurate only at very small and very large separations of walls when

compared with simulations. In a small range of a certain separations near 5.650',

two convergent solutions are obtained for the HHNC approximation (Fig.H). This

phenomenon has previously been observed in computer simulations and density-

functional theories.32-33

V. DISCUSSION AND SUMMARY

In this paper, the HHNC approximation is applied to homogeneous and in-

homogeneous LJ fluids. It is shown that the HHNC approximation is capable of

accounting for both the wetting transition and capillary condensation. In contrast,

the PY approximation and HNC approximation, which are reasonably accurate for

hard-spheres near a hard-wall or inside a hard pore, both fail when applied to LJ

fluids, especially near transitions.

We have repeated our calculations for a fluid of particles interacting with a

cut-off LJ potential with the NGST equation-of-state corrected for the cutoff as

described in ref 34. For a cutoff distance 5.30' we find that the difference between

our results for the full LJ potential and the cutoff LJ potential is negligible, so

we have not differentiated between these two potenttd:ls in discussing our results.

The difference between the simulation and integral-equation results shown in Fig.lO

is most likely mainly due to deficiencies in the HHNC approximation. (Here the

simulation results are for a cutoff at 5.30'.)

For a cutoff distance 2.50', the difference between the results for cutoff and

full LJ potentials becomes apparent in the HHNC approximation. For example, we

find a divergent solution when T* ~ 0.8 along the coexistence curve for the cutoff

LJ gases. (r = 0.33 when T* = 0.79 and pB0'3 = 0.00952). In comparison, the

simulation predicts the wetting temperature T: = 0.84. 34
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Some advantages of our approach were already noted in our Introduction.

In the version we present here there are some disadvantages, too. We have not

found a way to obtain surface tension as easily as in standard density function

theory based on explicit use of a free-energy functional. Thus we currently have

no convenient and accurate way of monitering that important quantity. (This adds

to the difficulty of locating the critical point.35) As has been shown elsewhere,

the HHNC approximation does not satisfy the contact theorem for hard-spheres

near a hard wall.20 For this reason, one would not eXpect to predict the solvation

force due to the walls very accurately from our approach in considering fluids in

slit pores. More generally, the version of our approach presented here lacks the

guarantee of self-consistency in all thermodynamic quantities that is bulit into a

direct approximation of the free energy. All in all, however, we find the exploratory

results of the paper extremely encouraging.
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APPENDIX A: THE EXCESS CHEMICAL POTENTIAL FOR A HO-

MOGENEOUS LJ FLUID

The chemical potential can be obtained from the thermodynamic relation

8p, 8P
p 8p = 8p

(A.I)

once the equation of state is known. We use the NGST equation of state for LJ

fluid,22 which fits computer-simulation data rather accurately. After a little algebra,
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we obtain

T*df3 ex 9 6

.:- = L nBn(p*)n-2+ e-,(p.)2 L Cm[(2m+ l)(p*)2m-l- 2,(p*)2m+I]
p n=2 m=l

(A.2)

(A.3)
9 6

T*f3p,ex= L n: 1Bn(p*)n-l + ~ L Cm1m
n=2 m=l

where

B2 = xIT* + x2(T*)1/2 + Xs+ x4(T*)-1 + xS(T*)-2

Bs = x6T* + X7+ xS(T*)-1 + xg(T*)-2

(AA)

(A.S)

B4 = xlQT* + X11+ X12(T*)-l

Bs =Xu

(A.6)

(A.7)

B6 = x14(T*)-1 + XIS(T*)-2

B7 =XI6(T*)-1

(A.S)

(A.9)

Bs = x17(T*)-1 + XlS(T*)-2

Bg = xIg(T*)-2

(A.I0)

(A.ll)

CI =X20(T*)-2 + x21(T*)-S

C2 = X22(T*)-2 + x2s(T*)-4

(A.12)

(A.13)

Cs = X24(T*)-2 + x2s(T*)-S

C4 = X26(T*)-2 + X27(T*)-4

(A.14)

(A.IS)

Cs =x2S(T*)-2 + x29(T*)-S

C6= xSO(T*)-2+ xS1(T*)-S+ xS2(T*)-4
(p.)2

1m= fa [(2m+ I)tm-l - 2,tm]e--rtdt

(A.16)

(A.17)

(A.IS)

where p* = pus, T* = kBT/e, , = 3.0and the parametersXi, i = 1- 32canbe
found in Table 4. of ref.22.
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APPENDIX B: THE NUMERICAL METHOD

The numerical algorithm for solving integral equations for the system of LJ

fluids inside a slit pore is as follows:

1. input the bulk direct correlation function cB and initial guesses for both

1'(O)(z)= g(z) - C(z) and g(O)(z).

2. calculate g(n)(z) by using the equation

g(n)(z) =exp[-,BVext(z) + 1'(n-l) (z) - b(z) - 1 + al] (B.1)

with the help of eqs.(3.3), (4.1), (2.4), (2.9), (A.2) and (A.3), where b(z) is

calculated from g(n-l)(z).

3. mix g(n)(z) with g(n-l) (z)

g(n)(z) =ag(n)(z) + (1- a)g(n-l)(z) (B.2)

(Near a transition, a is usually chosen as small as 0.1.)

"4. calculate 1'(n)(z) from equation

1'(n)(z) = pB cB * g(n) (B.3)

by using the 1D fast Fourier transform technique.

5. go to step 2 if g(n)(z) - g(n-l) (z) is not small enough.

An alternative procedure is to use l' and C as intermediate iterative functions

and/or to mix 1'(z) instead of g(z). Our numerical calculations show that the region

in which one can obtain a convergent solution is significantly smaller if one uses such

alternative algorithms.

When the wall-wall separation, L, increases, we have the solution for LJ fluids

near a single wall. Our calculations shows that this algorithm gives better conver-

gence than a similar algorithm designed for a single wall problem (1" =h - c either

with c or h as intermediate iterative functions).
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FIGURE CAPTIONS

Fig.l The radial distribution function of the uniform LJ fluid at T* = 1.127 and

pus =0.85. The HHNC approximation (-), HNC approximation (- - -), PY

approximation(- - -), and computersimulationdata24(e).

Fig.2 The logarithm of cavity function y(r)[= g(r)exp(,Bu)] for the uniform LJ fluid.

Parameters and symbols as in Fig.1.

Fig.3 The density profile of a LJ fluid near a CO2 wall at T* = 0.9 and pB u3 =
0.0101. a) HHNC approximation (-), HNC approximation (- - -), PY approx-

imation (- - -). b) computer simulation.26For the HHNC approximation,

the bulk correlation functions are obtained in the PY approximation.

Fig.4 The density profile of a LJ fluid near a CO2 wall at T* = 1.1. For bottom

to top, pBu3 = 0.03, 0.04, 0.0465. a) HHNC approximation, b) computer

simulation.26 For the HHNC approximation, the bulk correlation functions

are obtained in the PY approximation. We do not show the HHNC results

for pB =0.0465 since we can not obtain a convergent solution.
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Fig.5 The density profile of a LJ fluid near a CO2 wall at pBuS = 0.08 obtained by

the HHNC approximation. From bottom to top T* = 1.5,1.4,1.3,1.25,1.23,

1.225, 1.22.

Fig.6 The logarithm of coverage lnr as a function of -In(T* - Tc*oez)at a constant

bulk density pBuS = 0.08. The HHNC approximation (e), the PY approxi-

mation (0). The coexistence temperature Tc*oezfor pBuS = 0.08 in the NGST

equation of state is 1.185

Fig.7 The density profile for a LJ liquid at T* = 1.25 and pB uS = 0.6 near a

hard wall. The bulk correlation function is obtained from the modified HNC

approximation with the adjustable parameter f1PY =0.28.29 The HHNC ap-

proximation (-), the HNC approximation (-- -)and the PY approximation

(- - -).

Fig.8 The bridge function obtained from the HHNC approximation for a LJ fluid

near a hard wall. All parameters and symbols as in Fig. 7.

Fig.9 The density profile inside two model CO2 walls obtained in the HHNC ap-

proximation for a LJ fluid at T* = 1.1 and pB uS = 0.03. The bulk cor-

relation function is obtained from the PY approximation. L/u = 2 (-),

L/sigma = 2.4,(-- -), L/u = 3.5(- - -), L/u = 3.9,(- - - -), L/u = 4.7,

(- - - - -), L/u = 6 (- - - - - -).

Fig.10 The reduced coverager* =ru2 for a LJ fluid inside a slit pore as a function of

the reduced wall separation L/u. Other parameters as in Fig.9. The HHNC

approximation (e), The PY approximation (o);-rhe Monte-Carlo simulation

(~).SO

Fig.ll The density profile inside two model CO2 walls. L /u =5.65 Other parameters

as in Fig.9. The HHNC approximation (-), The PY approximation (- - -).

There appears to be two solutions for the HHNC approximation, as shown.
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