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ABSTRACT

We develop a new theory of transport for dilute suspensions

and solutions in which the dynamics of the solute-solvent (i.e.,

tagged particle-fluid particle) collision is treated on a level of

the Euskog approximation, appropriately modified by the presence of

the solvent sea, which is described hydrodynamically. The treatment

of the solvent as a continuum gives rise to an effective solute-

solvent collision radius as well as an effective reduced mass. In

this paper, we consider translational diffusion of the solute particle

of arbitrary size and mass. We derive an analytically simple expres-

sion for the coefficient of diffusion, which yields the correct

hydrodynamic limit (Stokes-Einstein law). Our expression for self-

diffusion (diffusion of a tagged particle in a fluid of identical

particles) is in excellent agreement with molecular-dynamical results,

showing both an increase over the Enskog value at low fluid density

as well as a quite precipitous drop at liquid densities (the caging

effect). The caging effect in our theory follows directly from an

effective solute-solvent collision radius that is greater than the

bare radius.



1. INTRODUCTION

In the studyof the transrort processes in a suspension of

particles, there are two approaches which represent opposite extremes.

These are the Enskog kinetic theory and the hydrodynamic description,
J

which, respectively, neglect the collective d)~amic effects and the

molecular-collisional details. The status of the solvent is entirely

different in the two approaches: in the kinetic theory the solvent

particles are considered as a component of a molecular binary mixture

while hydrodynamics treats the solvent as a continuum.

It was Einsteinl who first gave a hydrodynamic description for

the dilute suspension in his theory of Brownian motion. The size of

the solute particle is assumed to be sufficiently large to permit the

treatment of the solvent as a homogeneous continuum. Among others,

his formulae for the diffusion (Stokes-Einstein relation) and the

in1;jrinsic shear viscosity are of interest to us here.

Enskog theory represents the best currently available microscopic

theory capable of yielding analytic expressions for the transport

coefficients of hard-sphere dense fluid. l~len applied to a test par-

ticle of diameter °22 in a fluid of particles of diameter °11' however,

this theory is found to yield translational diffusivity of a drastically

different limiting behavior in the limit °22/°11 + ro from that of

~~ ~~d~~~yn~~~~_~~~~__~~e~ expects - ~~-_~~~~~er for_!ini te - s~l_,!~nt---~_e!1:>_~9'

nl fixed). The former yields a diffusivity that depends linearly on

°22-2, the latter on °22-1. This is due to the assumption of the "velocity
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chaos" in the Enskog theory, Le., an absence of velocity correlation

between two particles about to collide. This assumption breaks down

badly for collision between the large solute and small solvent particles

at high solvent density. To develop an improved microscopic theory

in a way that yields the correct hydrodynamic behavior in the limit

a22/all + 00, one might follow one of the several approaches.

consistent kinetic theory (renormalized kinetic theory) represents one

such approach, but the results2,3,4 obtained from it as yet suggest

A self-

that this approach is likely to yield the correct limiting behavior

only when brought to a high enough level of approximation to be too

complicated to be analytically manageable for arb~trary a2/all'

alternative approach has recently been suggested by Hynes and his

An

co-workers,6,7 who have introduced the idea of describing only the

the binary interaction of the test particle with a colliding solvent

particle on a detailed molecular level, treating the effect of all

collisions among solvent particles in a hydro dynamical way. Technically,

the treatment matches the collision dynamics to the hydrodynamics by

using the conservation of momentum. Conceptually, the treatment is

closely analogous to the Bethe8 or quasichemical approximation for

spin systems, in which only the interaction between a central spin

and its immediate neighbors is treated in microscopic detail, with

the effect of all the more distant neighbors upon the central spin

being treated only through a mean field.

In its original version, the treatment of Hynes, et al.6 has a

shortcoming: Though it yields a correct hydrodynamic limit when
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°22/°11 + 00 (nl fixed) for the translational diffusion, it fails to describe

adequately the diffusivity of a small solute particle. Here, we

discover through more detailed analysis of collisional dynamics that

the idea of app~oximating ~he_solvent as a continuum can be optimized

by . introducing a renormalized or modified contact distance and

reduced mass of the solute and solvent particle. Our modification

improves .the result of [6] for the translational diffusion in a signif~cant

way, yielding excellent agreement with the result of molecular dynamics

for self-diffusion at high solvent density.

Throughout this work, we shall confine ourselves to the smooth-

sphere model which does not allow the exchange of the angular momentum

by collision. Thus, the corresponding hydrodynamic limit of the

translational diffusion_will be wha~ one usu~lly obtains for the_hydro-

dynamics of slip boundary condition. We also assume the uniformity

of temperature without loss of generality.

Our presentation of this work is as follows: In Sec. II, the

force per unit area acting on the solute particle by the solvent

molecule is evaluated from the revised Enskog theory by using the

Chapman-Enskog solution method. In Sec. III, we will discuss the

matching of two dynamics, and match the force considered in Sec. II to the

hydrodynamic one at the surface of contact, r = °, around the solute

particle, which yields the "generalized boundary condition".
The

matching of two dynamics in the level of thermodynamics necessitates

an introduction 0f an effective solvent-solute collision diameter.

~



This will prove to be an important ingredient in the subsequent

developments. In Sec. IV, we discuss the (microscopic) hydrodynamic
. ,

disturbances around the solute particle due to the generalized

boundary condition which includes the collisional detail. In Sec. V,

we apply the results of the foregoing sections to evaluate transla-

tional diffusion. Here the effective reduced mass for the binary

collision is introduced to make the theory fit to Enskog theory in

the low-density limit.

4
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II. THE AVERAGE FORCE ACTING ON A PARTICLE THROUGHMOLECULAR

COLLISION: REVISED ENSKOGTHEORY

We begin with the kinetic equations for the probability distri-

bution functions (DFs) for a binary mixture of the hard-sphere

molecules:

(
a I

~ t
+ V.oV

Rjf.(R,V.,t) = L J..
0 -1 1 - -1 .- 1 2 lJ- J- ,

- 2
JJ.. = 0. . dV.d0 (00V. . ) e (00V. . )lJ lJ -J - - -J1 - -J1

[F.. (R,V. ';R+0. .0,V. ';t)
lJ - -1 - lJ__J

- F. .(R,V.;R-0. .0,V.;t)]lJ - -1- lJ--J (2.1)

Here f., F.. are one and two particle DFs respectively with i,j1 lJ

(= 1,2) being the species indices, 0.. is the contact distance be-
lJ

tween the centers of i and j, v.. = V. - V., the primes on the
-Jl -J -1

velocities denotes the post-collisional value, ~ unit vector along

the apse line, the Heaviside step function G(0°V..) imposes the
- -Jl

condition of the collision.

Our interest here is the force transferred to the solute particle

2 in the solvent-solute collision.
Multiplying m2Y2 the equation

(2.1) (with i = 2) and integrating with respect to Y2 yields the

equation for the average velocity of the particle 2, Y2' enabling

us to identify

21

Jn2~ = m2Y2J(f2fl)dY2 (2.2)
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as the force per unit volume of the species 2, n2 being its number

density. Here, ~12, an average force, is an appropriate one to

consider for a single particle on the molecular level.

P2l = - a2l2 f dadV dV m 2V2(aeV12)e(2e~12)n - -1 -2 - --2

[P12(~ + a122'~1';~ ~2';t)

- P12(~ - a12~'~1;~ ~2;t)] (2.3)

This can be put as

a 2

fp2l = - ~~ d~d~ld~2(2eY12)e(~e~12)(m2~2' - m2~2)

P12(~ - a12~'~1;~ ~2;t) (2.4)

by noting that d~l Id~2' = d~ld~2' 2e~12 = -~e~12' in the first term

of the integral in (2.3).

~a' the force per unit ~ on the surface of r = a12 around

the particle 2 is defined through the relation

p2l = f ~aa122d~
(2.5)

Then,

21112

f

2
F = - a dV1dV2(aeV12) e(aeV12)
-a n2 - - - - - - -

P12(~ - a12~'~1;~'~2;t) (2.6)

where the substitutionm2(~2' - ~2) = 21112(~12e2)2 [with 1112 being
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the reduced mass ~12 = (mlm2)/(ml+m2)] has been made.

In the Enskog theory, this is reduced to9,10

2~12

J

2

~cr = - -n;- g12(cr12)~ d~ld~2e(~.Y12)(~.Y12)

fl(~ - cr12~'Yl,t)f2(~'Y2,t) (2 . 7)

according to the approximation

F12(~ - cr12~'~1;~'~2;t) = g12(cr12)fl (~ - cr12~'~lt)f2(~'Y2,t)

(2.8)

Here g12(cr12) is the nonuniform equilibrium pair DF at contact that depends

functionally on the number density field n. (r,t).1. ... This dependence repre-

- ---5-entsthedi££erence that distinguishes--the revised Enskog-the()1")" (RRT) 1°-

from the standard Enskog theory (SET)9,12 which replaces g12(cr12)by

Y12(cr12)' the equilibrium pair DF evaluated as a function of the local

d .. R 1
ensltles at r = - - 2 cr12~.

The RET overcomes a number of inadequacies

and difficulties that SET has, especially when applied to the mixture.13

With regard to our final result for the usual binary diffusivity defined9
- - --- - - - -- - - -

directly in terms of the diffusing force (2.14), howevxr, we shall not

see any difference between the two theories.

To evaluate (2.7), we follow the Chapman-Enskog procedure of normal

solution,9 which establishes the direct connection with the hydrody-

namics. The C-E expansion14 through 1st order is
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0

f.(r.,V.,t) = f. (r.,V.,t)[l + ~.(r.,V.,t)]1 -1 -1 1 -1 -1 1 -1 -1

~. = -A. (C.)C.-VlnT(r.,t) - B. (C.)CoC:Vou(r.,t)1 1 1 -1 -1 1 1 - - - - -1

+ H. (C.W-u(r. ,t) - D.(C.)C. -d.1 1 - - -1 1 1 -1 -1 (2.9)

Here, the hydrodynamic or thermodynamic Jariab1es are given as follows:

the number density:

n = f d~lf1 + f d~2f2 = nl + n2
(2.10)

the mass density:

p = f d~lmlfl + f d~2m2f2 = nlml + n2m2
(2.11)

the hydrodynamic velocity:

~ = ~ U d~lml~l fl + f d~2m2Y2f2]
(2.12)

the temperature:

3 f
1 2 f 1 2

2 nkT = dYl 2 m1Yl dYl + dY2 2 m2Y2d~2 (2.13)

the diffusion driving force:

d = ni
{
..l. mi

-i n kT (V1-\)T - pkT VP + VlnT

(
47T 3 mj

) }
x 1 + -3 L:a.. Y.. n. ~1. lJ lJ J ('..

J lJ
(2.14)

where~. is the chemical potential, P pressure, M.. = m. + m..1 lJ 1 J

3/2 '

[
m. ) [

m. 2
Jfi 0 = n i 27T~TJ exp - 2k~ £i

(2.15)

is the local equilibrium DF, C. = V. - u being the peculiar velocity.1 ...1 ...
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The circle carried by a 2nd-order tensor refers to its symmetric

traceless part:

c.oc. =
[

c.c. -
3
1 C~I

)
-1 -1 -1-1 -1~ (2.16)

O-I

U

+ 2

]
V u = - Vu + (VU) - - V.ul2 -- -- 3 - -- (2 . 1 7)

We shall limit ourselves to the case VT = 0 throughout this

work.

With the hydrodynamic variables n. and u expanded up to the first-1 -

order gradient around E2 = ~, the center of the particle 2, we have

21112

f

2

~cr = - -n;- g12£ d~ld~2e(~.~12)(~.~12)

0 0 0 0

fl f2 [(1 - cr12~8VflIf2 )

+ (<Pl(~'Yl,t) + <P2(~'~2,t))] (2.18)

The integration is done in the center-of-mass frame where Z = ~2 - ~l =

~2 - ~l' ~ = ml~l + m2~2/ml + m2' giving the first part pertaining to

the local equilibrium as

0 21112

f

0 2 0 0

~cr = - -n;- g12£ d~ld~2e(~8Z) (~8Z) fl f2

{ [

ml~l

) }1 - cr12~. vRlnnl + -W- 8 VR~ .

(

2kT11l21 1/2

]+ kT<Z8VRni + 2nl 1T J cr12£~:VR~= -g12£[-nl kT

(2.19)

The part of deviation from local equilibrium is
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1
~cr = ~cr(y~) + Fcr(~)

21112

J
2 0 0

~cr(~~) = -n;- g12~ d~ld~2e(~.~) (~.~) f1 f2

{ 0 0 0

-[B1 (C1)~1 fl + B2(C2)~2 f2]:~ ~

+ [Hl(Cl) + H2(C2)]Y.~}
(2.20)

21112

J
2 0 0

~cr(~) = -n;- g12~ d~ld~2e(~.~)(~.~) fl f2

(-Dlfl.~l - D2~2.~2) (2.21)

Because C.oC., a traceless tensor, vanishes upon integration, in (2.20),-~ -~

only the term involving V.~ survives. Substitution of the lowest-

order Sonine polynomial approximation for H.,15~

- (i) (i) [mi 2)Hi - hI Sl/2 2kT Ci

- (i) [3 mi 2

)- hI '2 - 2kT Ci ' (2.22)

yields

- 1 (1) (2)
~cr(V~) - 2 nlkTg12~(1l2hl + lllhl )Y.~

( ffi2 il2 )= n kTg 1 - - - hcr cr(V.u)
1 12 ffil ill 12- - -

(2.23)

where

2 3 TIM
ffil (2) 1 f (ffi11 Yu ffi1 fll1 } 12

h = M12 hI = I2\. M12J - 2Y12 M12 lcr12J (21TkTll12)1/2

+ O(n2) .
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Here Y.. is the equilibrium pair DF at contact, evaluated as a function1J

of the local density at~. Since m2n2 « mInI' we find

~a(V~)

n g

{(

m

)

2

= 1 12 (2n~ kT)1/2 ~
24 12 m2

x a~22(Y.~)} .

Y11 m1

(

all

)

3

- 2Y12 ].112a12

(2.24)

£a(~)' the force driven by diffusion is calculated by employing

the lowest-order Sonine approximation for D., 9 Le.,1

i (0)
Di = do S3/2 = constant.

(2.25)

We find

d 2 ].112

~a = n2 M12 g12n1n2~~.(m2D1~1- m1D2~2) ,
(2.26)

where ~1' ~2 are identified by writing the mass flux

- i
f

n.m.C. = JM = dC.m.C.f.
1 1 1 .. .1 -1 1-1 1

=

f
dC. m. C . f. 0 <p .
-1 1..1 1 1

= -n.kTD.d. ,
1 1-1

(2.27)

Then,

2kT].1 1/2
d

(

12\ - -
~a = 2g12n1 n J (~1 - ~2) . aa .

(2028)

Summing up the contributions to ~a' we get
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0 u d
F = F + F ~ + F~ ~0 ~0 -0

= g12,?:[nlkT - kT012,?:.Y'Rnl

211 kT 1/2

- 2( ~J nl{0l2~~:Y'R~

+ 0. (C - C) - A0 Y' .u}]- -2 ~l 12 R- R
(2.29)

where

IT

{ [
illl ) 2 1 ill 1 YII f 1113}A = 48 ill2} -"2 1112Y12lcr12} . (2.30)

Here n., C., u and the gradients are evaluated at r = R, i.e., at the1 1 - - ~

center of the particle 2.

It is desire able, however, to express quantities of interest at

the center of the parti cl e 0 f species to which the indi ces refer.

Noting that

(~2 - ~ 1) R = ~ 2 - ~1 + 0l2'?:. Y'R~

nl (~) = nl - 012~.Y'Rnl

we finally get, up through 1st order in gradients

211 kT 1/2

~0 = ,?:g12[nlkT - 2[ 1; j nl{(Y2- Yl).,?: - A0l2Y'.~}]
(2.31)

where n., V. are evaluated at the position of the particles at con-1 -1

tact. Equation (2.31) can be written as

r 3SE((j12) {
. - -

}]~0 = ~Lg12nlkT - 4 2 '?:.(~2 - ~l) - A0l2Y.~
IT0l2

(2 . 32)
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where ~E(a12) is the friction coefficient given by

- kT - 8 . 1/2 2
~E(a12) - D (a ) - 3(2TIk~12) nla12 g12(a12)E 12

(2.33)

Here, DE(a12) is the coefficient of binary diffusion evaluated9 in

the first-order Sonine polynomial approximation (2.25). This approxi-

mation is found to be exact in the limit m/ml + 00, the "quasi-Lorentz"

limit~6,2lInclusion of the higher-order Sonine polynomial yields a

. .
f. . 9,21 ( 20 )

.
h 1'"slgm. lcant correctlon 1:3. "0 larger .In t e Lorentz lmlt, l.e.,

m2/ml + 0, but only a negligible correction9 (1.9%) in the case

ml = m2' all = a22.

in which

Since we shall confine ourselves to the mixture

m
0<..1..< 1,m -

2

a
0<.Jd.<1a-'22

(2.34)

(2.33) is regarded as sufficient to serve our purpose.

What we have derived here is the result of C-E solution procedure

with the local-equilibrium distribution as the lowest order. But our

interest in the subsequent sections will be in the system that deviates

infini tes imally from absolute equilibrium. Then (2.32) will be

formally unchanged except that g12 (a12)' the nonuniform equilibrium

'DF (~~d hence localequflibrium DF) is repl~ced by Ylz(aiz)' the

absolute equilibrium DF. The first term in (2.3 ) is the contribution

fr~m absol?te equilibrium and the velocities ~l' ~2' ~ then are to be

understood as the deviation from their equilibrium values, which

vanishes.



Utilizing the relations (2.11) and (2.12) with the condition

nlml » n2m2' we find ~ ~ Yl.

~ = -~, (2.32) is rewritten as

With changes of notation Y2 = ~,

[

31;E(cr12)

{ }]£cr = ~ -Y12(cr12)nlkT - 4~cr 2 ~.(~-~) + Acr12V.~

12 (2.35)

wherein ~ is now to be understood as the hydrodynamic velocity of

the solvent at r = cr12' not of the mixture (2.12). Equation (2.35)

is now in a form that will enable us to make contact with the hydro-

dynamic considerations of later sections. This has two additional

-- u- - - - - -- -- - u_-_u -----

terms which were not considered in the original work of Hynes and

his collaborators.6 One is an equilibrium contribution, the other

being_~e term.Jhat involve~ V~u_. -- ------- -_-_n- ----

14
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III. ~~TCHING OF TWO DYNAMICS - GENERALIZED BOUNDARY CONDITION

The collisional force derived in the foregoing section follows

from the assumption of uncorrelated precollisional velocities. This

assumption is known to be rigorously correct only for short time

and short distance. We shall now utilize this assumption in a

context in which it can most appropriately be used, rather than to

take it as the sole basis of a theory that attempts to predict kinetic

behavior over all times and distances. We do this by using RET expres-

sions only for the dynamics of collision between the solute and solvent

particles, while treating the solvent as a continuum. Here, we essen-

tially follow Hynes and his coworkers.6,7 We depart from their

treatment, however, by acknowledging that the dynamics of the solvent-

solute collisions in the presence of the rest of the solvent particles,

___n_~ _M- U -. --' .u.---. - M.- .---. MM' u

treated as a continuum, will not necessarily be best described by the

"bare" solvent-solute parameters. Instead we seek to find the appropriate

effective contact distance a between the solute and solvent particle

centers and the effective reduced mass ~, which will depart from their

true values

1
a12 = 2 (all + a22) ,

(3.1)

~12 = mlm2/ml+m2
(3.2)

as a result of the presence of the solvent sea, which we are treating

15
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hydrodynamically. What we are doing can be described by saying that

we are introducing nonadditive solvent-solute collisional diameters

and masses to accommodate our "mean field" (i.e., hydrodynamic)

treatment of the solvent. These effective parameters compensate for

our neglect of the detailed microscopic structure that exists around

the solute particle. One aspect of this is the presence of a micro-

scopic boundary layer about a solute particle extending over several

mean free paths, inside which the hydrodyhamic description compatible

to a Chapman-Enskog solution procedure breaks down. Another aspect

is the short-range order of YI2(r), which oscillates over several all

at all but very low solvent densities.
Only when all/a22 and ~/a22

are both small, where ~ = mean free path (as is the case for a22/all + 00,

fixed solvent density nl' i.e., the hydrodynamic limit) can these two

aspects be neglected; in our treatment they are incorporated into the

a and ]J we use.
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We use the conservation of momentum, as described below, to

match the collisional dynamics and the hydrodynamics via the momentum

flux across the surface of solute-solvent contact defined by r = 0.

In considering such an approach, it is important to keep in mind that

in practice the specific expressions that one obtains for o, ~ are

inevitably dictated by the details of all the approximations one uses

to describe the solvent-solute and solvent-solvent dynamics, as well

as the thermodynamics. (In the limit °22/°11 + 00, nl fixed, however, one

expects to have ~-= ~12~ ° = °-12-in~ependent of approximation, since hydro-

dynamics becomes exact in this case.) We make no claims as to finding

the best possible prescriptions for ° and ~ in the following treatment,

but our procedure seems to us natural to use in the context of an

Enskog-like description of the solvent-solute collision.

In spite of the different descriptions~ we have a unifying law~

the conservation of momentum. This dictates that the momentum flux

in the two descriptions be matched at r = 0. For a steady state,

n-F =-(n-7T-n)- -o - :::- °
(3.3)

0 = (nx7T-n)
- :::: - °

(3.4)

where 7Tis the hydrodynamic momentum tensor in the solvent fluid:...
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TI = puu + PI - 2nd - 3KVI
~ -- ~ ~ ~ (3.5)

0 1 + 2
g = v ~ = 2[V~ + (V~) - 3 V.~~J

1
1:1 = - V'U

3 -
(3.6)

(3.7)

Here the pressure P is given via the exact virial theorem

(
2TI 3

)P = nlkT 1 + :3 nlall Yll (3.8)

where ~l is the local volume fraction of the solvent: ~l = ~ nlal13

and the shear and bulk viscosities of the solvent are expressed by

11 = Cnl1E

l1E = An(~l)nB

1
(

8
)

2 -1 768 2

An(~l) = Yll 1 + 5 ~lYll + (1.016) x 25TI ~i Yll
(3.9)

K = CKKE

KE = AK(~l)nB

A (~ ) = (1.016)-1 x 256 ~ 2yK 1. 5TI 1 11 (3.10)

where nB = 1.016 x {6 (mlkT)1/2 (1/crl12) is the shear viscosity from the

Boltzmann theory and C ,C are the correction factors to the Enskog11 K

values l1E' KE' given by the molecular dynamics (MD).17

The relations (3.3), (3.4) are regarded as the boundary conditions:

one is for the normal force and the velocity, the other for the tangen-

tial velocity (so-called slip B.C.). Substituting (2.35) and (3.5)

into (3.3), we find
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[ 3sE

]-Y12n1kT- 4 2 ~ . (~ - ~ + 3Aa12~~)TIa a

= [-P - op + 2nd:nn + 3K~]e ::: a (3.11)

where op is the deviation from absolute equilibrium pressure. This

condition has the proper hydrodynamic limit. Let us take a 1imi~

a12/a11 + 00 with n1 fixed; correspondingly sE + 00, A + O. Since the

RHS of (3.11), upon integration over the surface 4TIa122 (+ 00) remains

finite (being the hydrodynamic force) while LHS goes to infinity, we

have

n . (D - u) /2
= 0 .

, a22
(3.12)

This is the usual hydrodynamic B.C. based on the kinematic considera-

tion that the fluid is impenetrable to the particle.

When the system relaxes into absolute equilibrium, Eq. (3.11) is

reduced to

Y12(a)n1kT = n1kT(1 + 4~lY11) . (3.13)

This is indeed an exact relation in the limit in which the solvent

can be exactly treated hydrodynamically (i.e., in the limit a11/a22 + 0,

n1 fixed~,~~~n-whichthe-ns6Tute particle becomes a inacropartic1e with a
- - .. - ..~ -- ~ 1;) -~-

radiuS~of-c1.lrva.tiire-thatls zero on the mo1e.cu1ar scale).

Development of our formalism matching hydrodynamics and collision

dynamics via (3.3) and (3.11) dictates the use of (3.13) for arbitrary

all/a22' We shall use it as a means of finding a, the effective
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solvent-solute contact distance. We can equivalently speak of the

effective radius °11*/2 of the solvent particle whenever it collides

with a solute particle, defined by the relation

- 1 ( * )° - 2 °11 + °22 . (3.14)

The °11* is often more convenient to describe and visualize than °

itself, when we contemplate the limit °22 + co for fixed °11' in

which 0+ cobut °11* remains finite.

for us in this limit.)

(As we shall see, °11* + °11

With our modified o, we rewrite (3.11) for the deviation from

equilibrium

3~E(0) .
[u - U + 3A0~]0n -2 - -

4TI0

= [_OP + 2nd:nn + 3K~]
~ -- ° (3.15)

where

8 1/2 2
~E(0) = 3 (2TI~12kT) n10 Y12(0)

8 1/2 2
= 3 (2TI~12kT) n10 (1 + 4~lYll)

A(0) = ~
{

(~12

)

2 - 1. ~12 Yll
(

01li3
}48 lm2 2 m2 Y12(o) 0)

(3.16)

(3.17)

Equation (3.15) is the key relation of this work. Its main difference

from the assumption of Hynes and his colleagues is the introduction of

the effective size o, in addition to the term involving the velocity

divergence, which has only slight numerical consequences in our calcu-

lations. As we shall find in Sec. V, ° is generally larger than
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the "bare" °12' especially when the diameters of the solvent and

solute particles ar~ fomparab1e. This accounts beautifully for the

"caging effect" that leads to a drop in the self-diffusion coefficient

D below its Enskog value DE when °11 = °22' ml = m2 at higher density.

In our theory the tagged (i.e., solute) particle collides with solvent

particles with a larger effective collisional distance ° than the

actual °12; at higher densities this tends to cage the tagged particle

and substantially lowers the diffusivity from its Enskog value.

For the effective reduced mass ~, we shall follow a somewhat

different rationale than for the effective radius 0. The ~. appropriate

-to---each transport process--wilf-b-e~de-:Hnecr -thr-ough -the--matchIng 0:( the----

hydrodynamic and molecular-collisional expressions for the relevant

trans~r~__co~:€Jic~e!lJ: ------- _nn-- -

,



IV. EXTENDED HYDRODYNAMICS OF THE FLOW AROUND A PARTICLE

Here Vie take a hydrodynamic viewpoint, considering the solute

particle as an impurity that causes disturbance in the flow fields

in the solvent continuum. In this description for r ~ 0, the inter-

action between the solvent and solute particle appears as the gener-

alized boundary condition derived in the foregoing section, which

the flow fields satisfy. This description, though fundamentally

hydrodynamic, will use microscopic input in the form of Eqs. (3.8)-(3.10)------- --------- -_u -- --- - - --_u -------

and shall be referred to as the Extended hydrodynamics. We will here derive

the flow fields around the solute particle under a general situation of the

---rlula---tila.i:-a--r-!TIws-n1JtOnTy the considerationof Lhe translationa1 .1:~~... : ..:I..

but also the extractions of the effective shear and bulk viscosities of the

whole suspension, which will be the topics of our subsequent paper (11).22

The Navier-Stokes equations for the mass density p(r,t) and the

velocity field ~(E,t) of the solvent continuum is

~ + V . pu = 0
at -

(4.la)

a

at p~ + V.:IT= 0- (4.lb)

where the momentum--t eHls or -fi~-given-by(3:5), witn the -molecl.ilar--expres-

sions for the pressure and viscosities (3.8), (3.9) and (3.10).

Considering a small deviation for the flow fields away from the

equilibriUm, the equations are linearized.
We have

acSp = -PeV.~at (4.2a)

22



23

au 2 1
P -- = -78P + n7 u + (- n + K)77.ue at - 3 (4 .2b)

for the deviations

op = P - Pe ' ou = u - u = u .- -e

Neglect of the nonlinear term ~.7~ that follows from the linearization

imposes the condition of the low Reynolds number flow, i.e.,

R = P aU/n « 1 .e (4.3)

In steady state, which is of our ultimate concern here, the

equations are considerably simplified:

7.u = a (4 .4a)

2
78P - n7 u = a . (4.4b)

We Sh01.ild note-here-the-conditioh (4.4a:) -ci.oes-no1: re:ter1:0 an in1:riItsic-

property of fluid but is instead to be regarded as an approximate descrip-

tion of the dynamic situation we consider: In a steady slow flow (4.4a)

is still relevant to a description of transport properties such as the

diffusion and shear viscosity of a suspension even for a fluid whose

thermodynam~c compress~b11~ty ~s not: low. However, for the bulk-vi~-

ity, which cannot be extracted without compression or expansion of the

fluid, we should start with (4.2a,b).
~ - ---
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To find the solution of (4.4a,b), we consider the unperturbed

flow field ~O, pO, which are the solutions of the equations when

the solute particle is absent. They are expanded in Taylor series

around ~, the center of the particle:

i
0 0 0 1 0

u = ~R + (~~ )R ' : + 2(~~ )R::: + ... (4.5)

0 0 0 1 0
p = P + V'P . r +-2(WP )R:rr + ...R - -- -- (4.6)

where the subscript R denotes the evaluation at R. For the present

purpose of evaluating the transport coefficients, it suffices to

have

0 0 0
u =~R + (~~ )R . r (4.7)

pO = p 0
R (4.8)

as a solution of (4.4a,b), the higher-order terms being neglected
,I

by considering only the situation that the flow fields vary slowly

over the size of the particle. This is very similar to the approxi-

mation imbedded in the first order Chapman-Enskog expansion in kinetic

theory.

Decomposing the tensor (V'~O)R into three irreducible components,

we have

0 0 0 0
(V'~)R = g + ~ + L ~

(4.9)

where
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0 - 1 0
d = - [Vu +
~ 2-- 0 + 2 0

(Vu) - - V-u I]-- 3 -- ~ R

0 +
(y~ ) JR

wO :: ! [VUO:;:: 2--

I:.0 :: ! (V-UO)3 - - R

The boundary conditions of the foregoing section (3.3) or (3.15)

and (3.4) are rewritten by noting that o~ = ~ = ~O+ ~', op = pO + p'

where the primed quantities are the perturbed flow fields, and from

(4.7), (4.8),

31;;E 0
2 [n-V + n-u' + crnn:d + 01:.(1-3A) - 3A01:.']

4TIcr - - - - --~ 0

0 0 0
= [-P - p' + 2~(d + d'):nn + 3K(1:. + 1:.')]:;:: :;:: -- 0 (4.10)

0
[n x n - (TI + TI')] = 0- - ~ ~ 0 (4.11)

where

v :: :!R° - u

In the reference frame of a particle that is moving with the

velocity U, (4.7) is rewritten as

0 000
u = V + (d + w + I:. I)r- :::: .. :;:: - (4.12)

We observe that the perturbed flow ~', P' now should be expressed

linearly in terms of the parameters of the unperturbed flow, by

virtue of the linearity in the governing equations (4.4a,b) and the

boundary conditions (4.10), (4.11).
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Taking a divergence of (4.4b), we find

V2p, = 0 .
(4.13)

The solution is the harmonic function that tend to vanish at infinity:

,

Y' = (MpO + DV-V + QdO:VV) !
::: -- r (4.14)

We observe here the constants M, D, Q represent respectively the

strength of the monopole, dipole, quadrupole disturbances in the

pressure, caused by the presence of the particle.

The perturbed velocity is expressed as

u' = u ' + U ' + U '
- -~ -S -E

0
u ' = ~(r)P r
-~ -

(4.15)

(4.l5a)

~S' = Sl(r)~ + S2(r)(~-E)E

° °

~E' = El(r)g -E + E2(r)(g :EE)E

(4.l5b)

(4.l5c)

~-which -represents-- the onfy linearcomblnatfon o:Crelevant parameters to
--------

form a polar vector- Here ~S' and ~E' are the generalized "Stokes

flo~" due to p1irticle translation and "Einstein flow" due to pure

straining, respectively.

Substituting (4.14) and (4.15) into (4.4) and collectingterms

of the same tensorial character~- which can be varied-independently,

we obtain two sets of equations:
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3~(r) + ~'(r)r = 0

-1
SI'(r)r

-1
El'(r)r

(4 . 16a)

+ S2'(r)r + 4S2(r) = 0

+ E2'(r)r + 5E2(r) = 0

(4.16b)

( 4 . 16c )

M = 0 (4.17a)

DS fer) - rS (r) - - -2 - 01 2 Tlr- (4.17b)

2E 2 (r ) El'(r)r-l - 3Q -5Tl r = 0 (4.17c)

where the primes denote differentiation with respect to r. The solu-

tions that vanish at r = 00 are found to be

~(r) = 1fJ0[~J3
(4.18a)

Sl (r) = sr-3 - !Q r-12 Tl

S2(r) = -3sr-5 - ~ ~ r-3
(4.18b)

E 1 (r) = er - 5

E2(r) = - ~ er-7 + 3Q -52 2Tlr
(4.18c)

The constants ~ , s, e, D, Q are readily determined by the two B.C.s.0

From the slip B.C. (4.11), we find

[S ' + S r] = 01 2 0

[r2(E1'r-l+ 2E2) + 4]0 = 0

(4.19a)

(4.19b)

The normal velocity B.C. (4.9), after lengthy, but straightforward

calculations, yields
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3SE
1 + 4n W + ---~ = 00 4TI0 0

[ -2 3SE
4nS2r - Dr + ~ (1 + Sl4TI0

r 2-3
L-2n(1 + El - 2E2r ) + 3Qr

(4.20a)

+ S2r2)]0 = 0

3sE
+ --- (14TI0

(4.20b)

+ El + E2r2)0] = 0

(4.20c)

Then, we find

(

S

)
E s = 0

D = n0 sE + sH '
1ST"" 40S

H)

3 o"'E

Q = - ~ n0 [lSSE + 24~H

S

[

l6sH

)e = 0 24sE + ISsH

1
[

sH
J~0 = - n 4sw + 3s~

(4.2la,b)

(4.2lc)

(4.2ld)

(4.2le)

with

SH(0) == 4TIn0

8 1/2 2 .
sE(0) = 3 (2~12kT) n10 Y12(0)

8 1/2 2
= 3 (2TI~12kT) n10 (1 + 4~lYll) (4.22)

The simple dependences of the various amplitudes on sE' sH are

striking. In this way, our hydrodynamic description displays the

microscopic collision dynamics. However, in the limit 022/011 + 00,

,
i.e., H ==sE/sH + 00, we recover the results of the conventional

hydrodynamics. The amplitude ~ , a creation of our microscopic con-0

sideratio~vanishes in this limit as it should, since it does not

exist in the context of the conventional hydrodynamic boundary condition.
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Let us return to (4.2a,b) to investigate the flow fields arising

from an infinitesimal time-dependent compression or expansion. Taking

Fourier transforms of the time-dependent fields, e.g.,

J

-iwt
u(r,t) = u (r,t)e dw-w - (4.23)

we have"

iwop = p V'uw e-w (4.24a)

-iwp u = -Vop + 11V2u + (31 11 + K) VV'Ue-w w -w -w (4.24b)

By virtue of the relation

Vop =
(
d: el Vop

w apJT w

[(dPe/dP)T]1/2 = C is the

( 4. 25 )

where velocity of sowld in the solvent

evaluated at equilibrium, we can close the equations:" Substituting

(4.24a) into (4.24b), we obtain

-iwp u = -C2(p /iw)VV'u + nV2u + (-31 11 + K)VV'Ue-w e -w -w -w (4.26)

From (4.24a) we also find for the unperturbed fields

A ° - 1 . PO/C
2

u - - J.W Pw 3 e (4.27)

Let us seek the solution of the perturbed flow up to linear

order in !::.°.w The perturbed velocity can be put as

°
u' =!::. 4>(r)r-w l0 -

(4.28)
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Substitution of this term into (4.26)yields

-1 2
<pI!+ 4r CP + k <p = 0 (4.29)

where

k2 == u? 0
/ [

1 - iWll 0
)C2 C2

Pe

0 = [1 - Pi~2 [~ + KJre
(4.30)

Assuming a solution of the type <p = r-YJ(r), we find for Y = 3/2

-1

[(
3

)

2_2 2

JJ" + r JI + - 2 r + k J = 0 (4.31)

The solution of J satisfying the desired behavior at infinity is

found to be a Bessel function J-3/2(kr).
Thus

-3/2
<p = constant r J-3/2(kr)

(4.32)

In a steady state limit, which is our ultimate concern,

<p w-+O) <po-(o-/r)3 + 0 (w2) (4.33)

It is found that u' in (4.28) naturally vanishes, in this limit.- w

However, our trick is to retain ~ 0 and the other terms up to thew

first order in w, in order to extract the bulk viscosity. By expanding

(4.32) in small k or wand utilizing (4.27), (4.24), we find

0 . 3
(4 .34 )V.u' . = (3<p+ <plr) O(w )- w w

2
C Pe 0 2

(4.35)pI = (3<P + <plr) O(w ) ,W J.W W



which are negligible.

Substituting all these results into B.C. (4.10), we get

3SE
2 [~ a + a(1-3A)] = 3K - 4n~

4 a a
7W

(1-3A)SE ~ Kin SH

~a = - sE + 4/3 sH

31

(4.36)

(4.37)



V. TPANSLATIONAL DIFFUSION

To identify the friction coefficient in a translational motion

of the particle, the hydrodynamic force acting on the surface r = a

is to be calculated:

This is

E =-J ~-~-~~dA
Acr

identical to ~12, the

(5.1)

molecular collisional force of Sec. II,

via the relation (3.3). From (2.35), (4.10) and (4.21a,b), we find

3SE(a)

J
F = (n-V + n-u')ndA

4
2 - - --

TIa

= s(a)V

0
= -s(a)(U - u )-R (5.2)

where sea), the friction coefficient, is given by

-1 -1 -1
s (a) = sE (a) + sH (a)

(5.3)

This has the correct hydrodynamic behavior in the limit q = a11/a22 + 0;

H = sE/sH + 00, 2a22/a + 1, and (5.3) yields the exact Stoke's law,

ra 22
)sea) + sHea) = 4TIna+ Ss = 4TInl-:Z- . (5.4)

In the low-density limit, n1 + 0,

sea) + sE(a) + sB(a)
(5.5)

Thus, because a ~ a12' this does not lead to the exact low-density (Boltzmann)

32
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difficulty.

For the diffusion coefficient, (5.3) with the Einstein relation

D = kT/1:: (5.6)

yields

D(0) = DE(0) + DH(0) (5.7)

where

DE(0) = kT/1::E(0) , DH(0) = kT/1::H(0)

respectively. This gives the limit D(0) + D8(0), D(0) + DB(0) corres-

ponding to (5.4), (5.5).

The correction factor to the Enskog value is

D(0)-

CD = DE(0l2)

1::E(012)

a == 1:: (0)E

= a [1 + H (0) ]

2
- 012 Y12 (012) - (1 + q) 2 Y 12 (012)

- 02y 12 (0) - (1 + Sq) 2 1 + 4t;1y 11

(5.8)

8 1/2 2
- 1::E(0) 3 (2~~12kT) n10 Y12(0)

H - -

- 1::H(0) - 4TIn0

32

[

2~12

)

1/2 -1 1 + 4t;1Y11
= - - ~ q (Sq + 1) .5~ m1 1 C

Tl Tl

where q = 011/022' S = 011*/011 and the relation (3.13), i.e.,

limit, 1::B(012)' except when 011/022 + 0, since 0 is generally dif-

ferent from the actual 012 in our theory. As shall be discussed

later, an effective reduced mass will be introduced to remedy this
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Y12(0) = 1 + 4~lYll' and (3.9) has been substituted.
The value of

6 is to be evaluated from (3.13), (3.14) using our improved version

of the Mansoori-Carnahan-Starling-Leland (MCSL) approximation19 for

Y.. (see appendix):
1J

1 + 4~lYll (~l) = Y12(~1*,q*)

1 + 4~1 *Y11 (~1 *)- YMCSL(~ * ,q*)

[ MCSL(q=O'~l *)- 12 1 Y12

{

I + 4~1*Y11 (~l*)

}

*

]
+ 1 - q

~~SL(q=O'~l *)

(5.9)

where

q* = 6q, ~ * = 63~1 1

For the self-diffusion (when q = 1, m1 = m2' Y12 = Yl1) Eq.

(5.8) is reduced to

S

[

2
)

[ Y11
[

2
)

64

JCD = 6+1 [1+4~lYll 6+1 + 51T~lY11/Al1Cl1
(5.10)

The result is shown in Table 1 as result A in comparison with

17
MD result of Alder, et al. For C the MD result is used.

11

It is remarkable that the effective diameter that is obtained

purely on thermodynamic grounds via (3.13), (5.9) shows a significant

departure from the results of HKW6in which CD = 1 : H(0l2) ~ 1. The

increased size of the effective solvent-solute collision radius proves

to yield an accurate description of the caging effect which lowers

CD below 1, as is shown by its excellent agreement with MD17 at high
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density.

However, in the low-density limit, our result A shows a nonnegli-

gible deviation from the exact value of CD' which is unity, as was

mentioned in discussin~ th~ friction coeffici~nt. - Thi?_~mpl~es_that

our description cannot be extended with precision to low density

without introducing an effective reduced mass ~ as well as an effective

collision radius.

Replacing ~12 by ~, in the expression of ~E(a) (3.16) we find

~E(a,~)
- 8 2
- 3 nla Y12(a)(2~kT)1/2

-
(

~ 11/2

- ~12J ~E(a)
(5.11)

The friction coefficient and diffusion coefficient are now given by

-1 -1 -1
~ (a,~) = ~E (a,~) + ~H (a,~)

( )

-1/2
-1 -1

= ~ ~E (a)+ ~H (a)~12
(5.12)

(

11/2
D(a,~) = ~~2J DE (a) + DH(a)

(5.13)

Thus, the correction factor to the Enskog value is, from (5.8),

-1 -1

CD = aa [1 + H(a,~)] = aa [1 + aRea)]
(5.14)

where

a = f-L
)

1!2

[~12
H(a,~) = aR(a) 0
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Demanding here that S, D approach their Enskog (Boltzmann) values

in the low-density limit, i.e., CD = 1, we find

)

2
- q + 1

a = aB = aB - [q8B + 1
(5.15)

the subscript B denoting the low-density (Boltzmann) limit. Then

a

CD = aB [1 + aBH(0)]

2

=

[

8Bq + 11 Y12(0l2)

8q + lj 1 + 4~lYll

1/2

+ ~
[

2~121 (1 + q)2 ~lY12(0l2)
5TI ml j q(l + Sq) C A

11 Tl

(5.16)

In self-diffusion where q = °11/°22 = 1,

2
S

(

SB + 1
)

Yll 128C = +- 1
D 8 + 1 1 + 4~1Y11 5TI (

p = ml/m2 = 1, we find

-1 ~lYll

+ S) rTlATl
(5.17)

< .This -result -is -also snoWnin Fig. 1 as result B. . ThTs.yields -tl1e-corre.ct - .

low-density limit, although it is no better than result A (in which

a = 1) in describing the caging effect. We should acknowledge here the

assumption that a is density independent has no obvious a priori

justification, and the good agreement we obtain through the use of

such simple approximatIons is remarkable. In fact thisagreement.wlth

MD is better than any results3,4of the renormalizedkinetic-theory

treatmen~s that involve the more rigorous and complicated analysis of

dynamic correlation.

In the following, we present a very general approximation scheme

for finding a better ~, which is applicable to all densities. We
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start it by writing CD as

CD = 1 + cH(cr,ll)

= 1 + bH(cr) (5.18)

From (5.11), we then have the relation

-1
a a[l + aH(cr)] = 1 + bH(cr) , (5.19)

which exhibits that we are correcting the hydrodynamic theory through

the LHS and the Enskog theory through the ffiiSsimultaneously by

determining the unknown parameters, a and b. In the low density

limit, i.e., H + 0, we recover (5.15) from (5.19)0 Equation (5.19)

will be transformed to the more convenient form:

y=Ga+F (5.20)

-1 -1
where y = ba, and F = H(cr) a G = a - H(cr) are known variables.

To simplify the problem we confine oursblves to the case p = qO

where p = ml/m2' With the assumption that a, yare analytic functions

of q, we may express them as Taylor series around the points q = ql

andq = q 2.
N N

- . - ~ 1 (k) k a 1 (t) t
a - a(Na) - k~O IT a (ql) (q-ql) = t~o IT a (q2) (q-q2)

N N
,r 1 (k). k Y 1. (t) t

Y = Y(N ) = l. kT y (ql ) (q-q l ) = I liT y (q 2) (q-q2)
y k=O' t=O Iv.

(5.21)

(5.22)

Here the integers N ,N are to be taken large enough to guaranteea y

good approximationsfor a and y. Since a(k)(ql)'a(1)(q2) [yCk)(ql)'
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y(£)(q2)] depend on each other linearly, it suffices to determine

a(k) (ql)' y(k) (ql).

Suppose we have v known conditions that 'enable us to relate

the coefficients:

0 =
(N )

fn[a(ql),a'(ql),a"(ql)...a a (ql);'

(N ,)

y(ql),Y'(ql)' y"(ql)."Y j (ql)]

l~n~v (5.23)

Taking derivatives (a/aq)n of (5.20) at q = ql successively starting

from n = 0 to n = Nl' we obtain the relations

0 = Pn[a(ql),a'(ql)...a(n)(ql);y(ql),Y'(ql)...y(n)(ql)]

0 ~ n ~ Nl (5.24)

A similar procedU!e at q = q2' yields

0 = Rn [a(q2) ,a' (qZ) . . .a (n) (qz); y (qZ), Y' (qZ) . . . Y (n) (qz)]

(Na) (Ny)

= Qn[a(ql),a'(ql)...a (ql);y(ql),Y'(ql)...Y (ql)]

0 ~ n ~ NZ (5.Z5)

where a substitution of (5.Z1), (5.Z2) is made. The integers Nl' NZ

are arbitrary except for the constraint

Nl + NZ = Na + Ny - v .

(5.Z6)
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If one is to predict CD for q around q = ql with high precision, one

might have to go to large Nl' The relations (5.23), (5.24) and (5.25)

constitute Na + Ny + 2 equations, whereby the unique solution of the

N + N + 2 coefficients are determined. This procedure is tantamounta y

to identifying the curve~, LHS and RHS of (5.20) or (5.19), by matching

their values, slopes, and curvatures, etc. at the points q = ql and

q = q2'

In practice, this matching procedure, although conceptually simple,

may turn out to be extremely complicated for large N , N. However,a y

if one assumes that a, y and the curves (5.20) vary weakly on q in the

region of our interest, one may try small N , N. This amounts toa y

the assumption that the curve is smooth enough to allow it to be

approximately defined by a small number of derivatives at q = ql and

q = q2' This is plausible since, in the relation (5.19), the relatively

strong dependence on q is absorbed in H(a), presumably leaving the other

parameters a, b or a, yfree of drastic change around q = O. This is

the significance of (5.19). The validity of this assumption can be

tested through comparison of the two curves -- both sides of (5.20), --

gotten by substituting (5.21), (5.22). If the two curves are suffi-

ciently close together over all regions of q of our interest, the

small N , N which we chose are accepted as appropriate.a y

criterion, however, is the result of MD.

The ultimate

Let us illustrate in a simple example, how the above scheme works

out.
Taking ql = 1, q2 = 0, we approximate a, y by

~
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a.(q) = a.2(q) = 0.(1) + a.' (1) (q-1) + ; 0."(2) (q-1)2

y(q) = Y2(q) = y(l) + y' (1) (q-1) + ; y"(2) (q-1)2 (5.27)

We can utilize the fact that 0.(0) = 1, on the grounds that the hydro-

dynamic theory is correct in the limit q + 0, without choosing the

effective parameters cr, ~. From (5.27)

0.(0) = 0.(1) - a.' (1) +.!..0."(2) = 1 .2 (5.28)

Evaluations of the value, slope and curvature of (5.20) at q = 1

give US the equations

G(1)0. (1) - Y(1) + F (1) = a (5.29 )

G' (1)0. (1) + G(1)0.' (1) - y' (1) + F' (1) = 0 (5.30 )

G"(l)a.(l) + 2G' (1)0.' (1) + G(l)a."(l) - y"(l) + F"(l) = a

(5. 31)

A similar procedure for the value and slope at q = a yields

G(O)a.(O) - y(O) + F(O) = a (5.32)

G' (0)0.(0) + G(O)a.' (0) - y' (0) + F(O) = 0 , (5.33)

which, by noting F(O) = 0, G(O) = a(O) = 1, are reduced to

0.(0) - y(O) = a (5 .34 )

0.'(0) + G'(O) - y'(O) = a (5.35)

Substituting (5.24), the above are written as
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a(1) - a'(l) + ; a"(l) - 1'(1) + 1"(2) - ; 1'''(1) = 0 (5.36)

a I (1) - a"(l) - 1"(1) + 1'''(1) + a' (0) = a (5.37)

Now the six linear equations (5.28), (5.29), (5.30), (5.31),

(5.36), (5.37) enable us to solve a(1), a'(l), a"(l), 1'(2), 1"(2),

1'''(2), i.e., the approximate a(q), y(q) and CD via (5.19). This

approximation is presumably best around q = 1, where three conditions

(5.29), (5.30), (5.31) are given.

It is straightforward to generalize this procedure to include

the dependence on the mass ratio, p. One can also extend this scheme

to the Lorentz limit in which p + 00, q + 00.

MCSL
Though Y. . has not been

1J

shown to be valid for large q, a and I' can compensate for its approxi-

mate nature.

We now go back to the binary case to assess the deviation of s

from the hydrodynamic limiting value, i.e., the Stokes law Ss = 2TIncr22'

Considering the effective mass given by (5.15), we have

,

(

2cr

)

-1

s/sS = cr22[1 + H (cr,~)]

m 1/2

[
5TI

(

1 I -1
= (1 + I3q) 1 + 32 2~12) ~l q (l3q + 1)

J
-1

C A I3Bq+ 1

x 1 + 41~ 11 [ q + 1 )
(5.38)

The numerical results are presented in Figs. 2, 3 for the solvent

volume fractions ~l = 0.4, 0.1 respectively.
We also for convenience
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restrict ourselves to the cases p = ml/m2 = qO (0 = 0, 3, 5).

ingly ~nough, in the case of the high solvent density (Sl = 0.4),
~-~ n ~ - ~-- --~ -~ n-- --- ~----- -- ~ - -

we observe only small deviations of s from the Stokes value Ss for

Strik-

various cases of q, even for the case q = 1. This remarkable feature,

together with the hydrodynamic structure in the velocity field around

the diffusing particle was discovered by Alder, et al. through their

MD studies17 (self-diffusion). This stimulated some workers20 to

attempt at describing this phenomena on purely hydrodynamic grounds.

In spite of the moderate successes in this route, we follow Hynes

and his coworkers in regarding this coincidence (s/sS ~ 1) as for-

tuitous and not fundamental, since, for small and light solute

particle the microscopic collisional contribution plays a significant

role in determining the diffusivity. The insensitivity of s or D12

to the solute mass in approaching the hydrodynamic limit is manifested

through the way the results for the various cases 6 = 0, 3, 5 tend to

converge toward an asymptotic value.



VI. SU~~RY AND CONCLUDING REMARKS

Here, we have argued that the original idea of Hynes, et al.

should be modified so as to more fully accommodate the approximate

nature of the continuum description for the solvent. For this, we

have introduced cr,~ the effective (or renormalized) contact dis-

tance and reduced mass of the solvent and solute particles, and

presented a scheme for finding the effective parameters through a

synthesis of the Enskog theory and hydrodynamics. The cr and ~ are

found to deviate significantly from their true values, i.e., cr12'

~12' in the regime where the hydrodynamic description is bound to

fail, i.e., for the low-solvent density and small solute particle.

When applied to self-diffusion, these yield results in an excellent

agreement with MD results. We believe this scheme may be capable

of giving a good description even for the Lorentzian gas regime.

Finally our results show how the hydrodynamic Stokes-Einstein re-

suIt for D12 happens to be a good numerical approximation at high

solvent density for all regions of q of interest to us.

In the following paper, we shall study the intrinsic shear and

bulk viscosity, by utilizing the results developed in Sec. IV.
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APPENDIX

1) MCSL expressions for Y. .
IJ

Yu = (1-~)-3{1 - ~ + ;(~l + q~2)}{1 - ~ +

(1 - ~)-3{1- ~ + 2(1 +qr1(~1 + q~2)}

x {l - ~ + (1 +q)-l(~l + q~2)}

-3
{

1 -1
}(1 - ~) 1 - ~ + "2 q (~l + q~2)

x {1 - ~ + q-l(~l + q~2)}

(~l + q~2)},
Y12 =

Y22 =

where

~ = ~+ ~1 2

7f 3
~. =-z-n.0..

1 0 1 11

q = 011/022

.1

In the caseof trace concentration of the species 2, which is

of concern to us here, the above are reduced to

2) The validit y of MCSLY.. for a < q < 1
IJ -

At q = 1, Y.. is reduced to the Carnahan-Starling (CS) Yll of
IJ

one-component fluid, which yields the exact equation of state.
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-3 1
YII = (1 - l) (1 - 2" l)

-3 -1 -1
Y12 = (1 - l) [1 - 1 + 2(l+q) l][l - l + (l+q) l]

-3 1 -1 -1
Y22 = (1 - 1) (1 - l + "2 q l) (1 - l + q l)
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P/nlkT = 1 + 4~lYll. But, for the binary mixture of disparate size,

the validity of Y.. has not been tested extensively. Our relation1J

(3.13), i.e., Y12 = 1 + 4~lYll in the limit q + 0 now can serve as

the criterion.
As is shown in Table 2, MCSL is even good at q = 0,

far better than the Percus-Yevick (PY) Y...
1J For large values of q,

however, no exact criterion seems to be available at this time.

3) Improvement of MCSL

Noting that the deviation of ~~SL from the exact Y12 is small

in the region 0 < q ~ 1 and is vanishing at q = 1, we may write

Y12(q)

yMCSL =
12 (q)

C(q) = Co + Cl (q ... 1)

To determine CO' Cl' we exploit two conditions

i) at q = 1, Y12(q=1) = Yll = Yii

C = 1 = C
0

ii) at q = 0, Y12(q=0) = 1 + 4~lYll

MCSL
Co - Cl = 1 + 4~Yll/Y12 (q=O)

We find

Y12(q) -

~1CSL ( )
-

12 q

1 + 4~lYll

[

1 + 4 lYll

]

+ 1 - q
~CSL( =0) ~CSL ( =0)12 q 12 q

3 1 3 1

= [(1- ~l)+ 4~1 (1-2 ~l)
{

- (1 - ~l) + 4~1 (1 - 2 ~l)
}

,l

[ 1 + ~1 + 1 1 + ~1 qJ

-3

{

-1

}{

-I

}x (1 - ~1) 1 + [(l+q ) -lnl 1 + [2(1+q) - l]~l

Y12 (q)
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It is worthwhile noting that this correction yields rigorously

the result M = 1 in the limit q + 0, where M is the mixing parameter

under the mixing condition of fixed temperature and pressure defined

in ref. [22]:

°

I; - 1;1. 1

M = 11m °
1;2+0 1;21;1

where 1;1°, 1;1 is the volume fraction of the solvent beforeeand after

mixing the solute, respectively. Physically this expresses the fact

that the overall volume increase by mixing is identical to the volume

of the solute mixed.
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TABLE1. Our results in comparison with MD17 results and the work

6 I

of Hynes, et al. (HKW). DE is the Enskog valLe of D, the self-

diffusion coefficient; ~l is ~Plal13/6 where PI is solvent number

density and all is solvent-particle diameter. The ail is effective

solvent-particle diameter. Column A refers to our result obtained

by using an effective collisional diameter only; B refers to our

final result obtained by using the effective reduced mass as well

as the effective diamJter.

(D/D ) HKW (D/DE)MD ,

(D/D) THIS WORK
1;1 f3 = ail/au

E
E

A B

0 1.191 1 0 :833 1.00

0.0074 1.190 1.030 1.02 0.852 1.017

0.037- 1 .185 1.156 1.04 0.935 1. 093

0. 247 1.135 1.711 1.34 1.261 1. 380

0.370 1.107 1.635 1.27 1.107 1. 207

0.4U 1.099 1.608 1.15 1. 057 1.153

0.463 1.088 1.437 0.84 0.865 0.955

0.494 1.082 1.280 0.58 0.698 O. 784



TABLE 2.
The ratio 1 +4Yll/Y12(q=0) given by the

two approximations noted in the text.

1
MCSL PY

0 1 1

0.01 1.0001 1. 0 00 3

0.1 1.0082 1.0250

0.2 1.0267 1. 0 85 7

0.3 1.0485 1.1687

0.4 1.0686 1.2667

0.5 1.0833 1.3750



Figure 1.

Figure 2.

Figure 3.

FIGURE CAPTIONS

The coefficient of self-diffusion given in terms of the

Enskog value DE.

final approximation B in which the solvent-solute collision

The full curve shows the result of our

is described by an eficctive reduced mass as well as an

effective collision diameter. The dashed curve gives the

result of Hynes, et al.6 (HKW) and the circles show the

molecular-dynamics value.17

The ratio of the friction coefficient s to the Stokes

value ~S for the size ratio 0 < ~11/cr22 ~ 1, at solvent

volume fraction ~l = 0.4. The full curves represent our

result for several values of 0, where 0 is defined through

<>

ml/m2 = (crll/cr22) .
The dotted line gives the result of

HKW for the case <>= 3.

As in Fig. 2, except that ~l = 0.1.
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