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ABSTRACT

Exact equations which relate the cavity function to excess solvation free energies

and equilibrium association constants are rederived by using a thermodynamic cycle. A

zeroth-order approximation, derived previously by us as a simple interpolation scheme,

is found to be very accurate if the associative bonding occurs on or near the surface of

the repulsive core of the interaction potential. If the bonding radius is substantially less

than the core radius, the approximation overestimates the association degree and the as-

sociation constant. For binary association, the zeroth-order approximation is equivalent

to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle
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association, the combination of the zeroth-order approximation with a "linear" approx-

imation (for n-particle distribution functions in term of the 2-particle function) yields

the fiTSt-order TPT result. Using our exact equations to go beyond TPT, near-exact

analytic results for binary hard-sphere association are obtained. Solvent effects on binary

hard-sphere association and ionic association are also investigated. A new rule which gen-

eralizes Le Chatelier's principle is used to describe the three distinct forms of behaviours

involving solvent effects that we find. The replacement of the dielectric-continuum solvent

model by a dipolar hard-sphere model leads to improved agreement with an experimental

observation. Finally, an equation of state for an n-particle flexible linear-chain fluid is

derived on the basis of a one-parameter approximation that interpolates between the gen-

eralized Kirkwood superposition approximation and the linear approximation. A value

of the parameter that appears to be near optimal in the context of this application is

obtained from comparison with computer-simulation data.
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I. INTRODUCTION

This is the third in a series of studies by us on association in simple models of

molecular and ionic fluids. The first 1 paper in the series considered a family of models

(shielded sticky-shell and sticky-point models in both ionic and non-ionic versions) for

which we introduced as simple interpolation scheme (SIS) in order to obtain association

constant. In the second paper2 of the series, we extended our results in the SIS to the

general thermodynamic properties of our models, via the Helmholtz free energy. Here

we consider in more detail the central role of the cavity function in our work, using it

to fu~r extend our treatment by going beyond the SIS on the basis of certain simple K

exact identities. We also extend our modeling to the associating pearl necklace model of

polymer chains and related n-particle models, n > 2.

The cavity function Yij (r) for a pair of particles i and j is defined as

exp[f3uij(r)]9ij(r) where T = l/kBf3 is the absolute temperature, Uij(r) is the pair po-

tential and 9ij (r) is the radial distribution function. It has been shown that the cavity

function at r = 0 is related to thermodynamic quantities according to zero-separation

theorems for an important class of potentials (e.g., hard-sphere potentials3 and hard-core

potentials with various tails4,5). More recently, the cavity function has been exactly re-

lated to the excess solvation free energy for any type of pair potential. 6 This new exact

relation provides a way to calculate the cavity function easily and accurately if the equa-

tion of state for a relevant mixture is accurately known.6 The cavity function has also

been found to be useful and important in investigating chemical association and molecular

fluids.7-llf I(

In this paper, we show that recent exact results6 for the cavity function can be

simply obtained by using the thermodynamic cycle introduced earlier in our own work with

Friedman12 (Section II). Applying a generalized form of the exact result to binary chemical
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association, we derive a new exact result which relates the cavity function to the chemical

association constant (Section III). This result generalizes an earlier expression due to one

of us 13 and subsequent related results.lO It turns out that a zeroth-order approximation

(in which the cavity function for two nonassociated particles in the presence of both

non associated and associated particles )8-10 is approximated by the cavity function is

nearly exact if the association occurs on the surface of the repulsive core of the interactive

potential. (For certain special purposes, it is convenient to consider models in which the

bonding occurs above the repulsive core surface, and these models are well described by

the zeroth-order approximation. We include some representative results here for such

cases.) If the bonding is inside the hard core, the zeroth-order approximation tends

to overestimate the association degree and association constant. Near-exact analytic

results for hard-sphere association are obtained. Solvent effects on hard-sphere association

and ionic association are also investigated. A new rule is used to describe the three

distinct forms of behaviour involving solvent effects that we find. In Section IV, n-particle

association is investigated. We show that the zeroth-order approximation, when combined

with a "linear" approximation for higher order cavity functions,14 yields the result of

Wertheim's first-order thermodynamic perturbation theory (TPT)8-9 when n > 2. While

the zeroth-order approximation is very accurate for dimerization of hard-core monomers

when the association occurs on the surface of the hard core, the first-order TPT is only

highly accurate for n-mers (n 2::3) for the association of atoms into a linear molecule, as

has been noticed by others.8,9 Under the zeroth-order approximation, the thermodynamic

properties of the mixture of atoms and molecules, which consists of n atoms, are fully

determined by the thermodynamic properties of atomic fluids and the solvation free energy

of a single n-atom molecule in the atomic fluid. A recent simulation study has verified this

prediction.15 The approximation appears to be potentially very useful in investigating

thermodynamic properties of polymer molecules. Finally a one-parameter equation of
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state for a fluid of n-particle flexible chains is obtained that interpolates between the

Kirkwood superposition and linear approximation result and compared with simulation

data16 to obtain a near-optimal value of the parameter.

II. THE EXACT EQUATION

We consider a thermodynamic cycle introduced earlier12

Vacuum: ~G2 Q +
z

Fluid:

oro
l~Gl

oro ~G4 Q
z

0
J

1~G3
+ 0

J

(2.1)

where AG2 and AG4 are the reversible work needed to bring two particles of species i

and j from infinity to distance r apart in a vacuum and in a fluid respectively, AGI is

the Gibbs free-energy change of moving the fixed pair of particles from the vacuum to the

fluid, and AG3 is simply the sum of two single-particle excess chemical potentials. As a

result, we have

A G ex ex
.u 3 = J1.i + J1.j (2.2)

and

AGI = AG4 + AG3- AG2, (2.3)

where J1.ixis the excess chemical potential of particles of species i (over the ideal chemical

potential). Note that AGI can also be regarded as the solvation-free energy of a single

pair of particles, one of species i and one of species j, a distance r apart, and can be

identified with J1.ex(r), the excess chemical potential associated with such a pair

AGI = J1.ij(r). (2.3b)

This J1.ij(r) can also be regarded as the excess chemical potential associated with a single

diatomic molecule consisting of a pair of particles of different species rigidly held a distance
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r apart. This in turn can be thought of as the zero-density limit of the excess chemical

potential associated with a species M of such diatomics

JL1j(r) = JLM(r)lpM=O 2.3c)

Further, it is easy to see that12

!:lG2 = Uij(r) (2.4)

and12,17

!:lG4 = -kBTlngij(r) . (2.5)

Then, from eq.(2.3), we immediately have, according the definition of Yij(r),

lnYij(r) = jJlJL1x + JLjX - JL~X(r)lpM=O]' (2.6)

For a high-order and angular-dependent cavity function, a similar derivation yields

n

lnyi~~..sn(rl, ..., rn) = jJlL JL;~- JLM(Sl...Sn)(q, ..., rn)lpM=O]
i=l

(2.7)

where JL~~is the excess chemical potential for species Si and JLM(Sl,..Sn)(q, ..., rn) is

the excess chemical potential for molecular species M(Sl...Sn), which consists of particles

species S1, s2, .. Sn with the fixed distance and orientation between Si and Sj, r ij = r i - rj,

1 :::;i,j :::;n. Here, y(n) is defined as

yi~!.Sn(rl, ..., rn) = exp[jJ L uSks/(rk,l )]gi~~..sn(q, ..., rn)
1:5k:51:5n

In this section, we have provided a new way to obtain the exact results6 (2.6) and

(2.8)

(2.7). In the next section, we shall generalize these results to show how the cavity function

is related to chemical association.

III. BINARY CHEMICAL ASSOCIATION
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A. General Results

We can immediately generalize (2.6) to the case in which PM =f O. Following the

same reasoning as before we have simply

InYij(r) = ,B[Jl1x+ JljX - Jlx,(r)]. (3.1)

where Yij(r) refers to a cavity function for a particle of species i and a particle of species j

in the presence of all the other particles of species i, j, and M. We shall now use (3.1) and

the equilibrium conditions for the three-component system to which it refers to describe

chemical association in a related two-species system consisting of particles of species]

and species J that associate into rigid diatomics of species M consisting of pairs of I and

J particles rigidly held a distance L apart. The I J pair potential is to be regarded as

identical to the ij pair potential except that it includes an extra associating term that leads

to the binding between I and J particles into rigid dimers, indistinguishable from the rigid

dimers of i and j particles considered above. We shall designate free (unbound) I particles

as A particles, free J particles as B particles and M dimers as AB molecules. Equilibrium

configurations of the two-species system consisting of free A particles of density PA, free

B particles of density PIB and AM dimers of density PAB will be indistinguishable from

equilibrium configurations of the three-component system of particles of species i density

PA, particles of species j of density PBand ij dimers of density PAB. This result, which

follows immediately from the thermodynamics of association developed by Gibbs, has

recently been discussed and rederived by Olaussen and Stell17 from the standpoint of

statistical mechanical models such as those considered here. It was also obtained in the

language of associating interaction-site models by Pratt and Chandler.l1
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For a chenUcal-association reaction, we have

A + B f:.G---'-..- AB

PA PB PAB

where PA and PB are the number densities of the unbounded atoms A and B, respectively

and PAB is the number density of the molecular AB.

Since J1M - J1A - J1B = 0 in chenUcal equilibrium, we have the exact result

KIKo = YAB(L) (3.2)

where we have used the equations

J1A ==J1~ + kBTlnpA + J1~x (3.3a)

J1B ==J1~ + kBTlnpB + J1~x (3.3b)

J1M = J1M + kBTlnpAB + J1lJ (3.3c)

0 0 0

-kBTlnKo = J1AB - J1A - J1B (3.3d)

K = PAB

PAPB

Here, K is the equilibrium association constant and Ko is its ideal limiting value. Equation

(3.3e)

(3.2), which was obtained earlier for some special cases, 7a,10,13 is an exact equation for

chemical reactions when the molecular AB is rigid.

For the equimolar association, we have PA = po(1 - a) = PB,PAB= apo where PO

is total number density of particles A or B (including those associated and unassociated)

and a is the association degree. Thus, eq.(3.2) becomes [cf.(3.3e)]

K = (a )2 = KOYAB(L)PO 1 - a

where YAB(L) is evaluated for PA = PB = po(1 - a) and PAB = apo. Eq.(3.4) represents

(3.4)

an exact equation for the association degree a when Ko and POare given and YAB(L) is

known as a function of PA, PB and PAB.
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Eq.(3.2) can be expanded in terms of the density PABat constant PO

OYAB(L)
KI Ko = YAB(L)lpAB=O+.Q IPAB=OPAB+ ...

PAB (3.5a)

The zeroth-order result is

KIKO ~ YAB(L)lpAB=O= y:~f(L), (3.5b)

which is an approximation considered by Chandler and Pratt,10 and is also the first-order

TPT result of Wertheim8 as well as the result of our own simple interpolation scheme

(515).1,2 It has been extensively used.8-10 Here, ref denotes the reference system which

contains only fully dissociated non-associative particles.

The following observations may be helpful in connection with (3.5b). Consider a

two-species (A and B) mixture. The radial distribution function 9:V(r) is the equilibrium

constant19 of the process of equilibration involving particles of species A in the bulk and

particles of species A found a distance r away from those of species B. Consider next the

addition of a third species [molecular AB(L)] into the mixture and the removal of pairs

of A and B particles such that each pair are approximately a distance L apart. For each

such pair removed, insert an AB dimer in its place. (Don't ask about details - this

is a heuristic argument.) One expects that 9AB(L) will be almost unchanged since each

dimer AB(L) is almost indistinguishable from an unassociated pair of atoms A and the

atom B that are approximately a distance L apart,20 assuming L is greater than or equal

to the sum of atomic radii. Thus one expects the zeroth-order approximation (3.5b) to

be accurate if the binding occurs on or above the surface of the hard-core region. And

so it proves to be. (If soft-core potentials such as the Lennard-Jones potential are used,

one expects that the zeroth-order approximation (3.5b) is accurate as long as L is not

small compared to the effective diameter of the repulsive core of the potential.) This

9



illuminates why Wertheim obtained such excellent results for hard dumbbells for which a

"sticky point" is located at contact, when using the first-order TPT.8

When the zeroth-order approximation (3.5b) is valid, we also have the following

results8,2 for the Helmholtz free energy A( a) and the pressure p(a) for the equal binary

association

a
,8[A(a) - A(a =O)]jNo= 2" + In(l - a) (3.6)

,8[p(a) - p(a = 0)] = -apo[1 + POdlnYAB(L,a = 0)]
Jpo

(3.7)

where NO = 2povtot. Eq.(3.6) is simply the ideal limit of the excess Helmholtz free

energy (over the Helmholtz free energy of the reference system).21 Since the Helmholtz

free energy A =G - pvtot, we have

1 1 tot
A(a) = 2No(1 - a)(J.LA+ J.LB)+ 2NoaJ.LMAB - p(a)V

(3.8)

or [cf.(3.3)]

1
,8[A(a) - A(a = O)]jNo=In(l - a) + 2,8[J.L~X(a)+ J.L~X(a)- J.L~X(a= 0) - J.L~X(a= 0)]

,8[p(a) - p(a = 0)]
2po

(3.9)

Eq.(3.9) is an exact equation. When (3.6) is accurate, we should also have

,8[J.L~X(a)+ J.L~X(a) - J.L~X(a = 0) - J.L~X(a= 0)] - ,8[p(a) - p(a = 0)] - a = 0
')M 2 (3.10)

or [cf.(3.7)]

,8[J.L~X(a)+ IL~X(a) - J.L~X(a = 0) -1L~X(a = 0)] = -apo dlnYAB(L,a = 0)dpO
(3.11)
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B. Hard-Sphere Association

When L = CiAB,the zeroth-order approximation of (3.5b) should be very accurate.

In Table I, we compare the exact virial coefficients22for homonuclear hard-dumbbells

with the virial coefficients obtained from eq.(3.7) when the exact virial coefficients for

hard-spheres is used as input. It turns out that eq.(3.7) indeed gives very accurate B3,

B4, and B5.

For the hard-sphere association, J1eMx , J1~xand J1~xcan be calculated from theAB

Boublik equation of state "23,Sand then YAB(L) can be calculated from the exact eq.(3.1)

analytically with very high accuracy. In Figs.1-8 we compare the association degree ob-

tained in (3.2) with those obtained in the zeroth-order approximation (3.5b). The figures

show that for L < Ciij, the zeroth-order approximation overestimates the association

degree 0: and the association constant K. When Ko increases, 0: increases but KIKo

decreases. The figures also show that the association degree 0: appears to be largest when

L = 0 if KO is fixed.

In Fig.9, we investigate the hard-sphere solvent effects on association between hard-

spheres with surface attraction at infinite dilution of reacting species. It turns out that

there are three distinct regimes of solvent effects as the solvent density is increased: 1) the

association constant increases, 2) the association constant decreases, 3) the association

constant first increases and then decreases. Chandler and Pratt 10 argued that the increase

of the association constant is due to the tendency to save space under the influence of

the steric repulsive core effects that lead to attractive potentials of mean force in liquids.

However, this cannot explain the other two sorts of solvent effects we observe. All three

types of behaviour can be explained in terms of a generalized Le Chatelier's principle:

the chemical equilibrium will shift to the side in which the

reacting species is most like the solvent.
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When the solvent hard-sphere is smaller than or equal to the reacting hard-spheres in

size, one expects K /K0 > 1 since the dumbbell is relatively less like the solvent sphere

than the reacting hard sphere. On the other hand, when the solvent hard sphere is

much bigger than the reacting hard sphere, one has K /K0 < 1 since the reacting hard

sphere is relatively less like the solvent hard-sphere than the dumbbell. Between these

two extremes, we have the third kind of behaviour. (At low density, the solvent is more

like of fluid of reacting hard spheres, but at the liquid density, the solvent is more like a

collection of dumbbells because of the greater number of solvent sphere pairs nearly at

contact.) Fig.9 also shows that the reduced association constant K /Ko is very sensitive

to the diameter ratio of the solvent to the reacting sphere. This makes the quantitative

comparisons with experiments difficult due to the lack of an accurate means of estimating

the diameter of our model molecules when comparing with experimental systems. Some

qualitative comparisons have been made elsewhere.7,10

C. Ionic Association: Solvent Effects

The zeroth-order approximation has been applied to the ionic association for the

bonding length equal to the closest distance of approach between ions.2 According to the

arguments in subsection A above, we know that the zeroth-order approximation is very

accurate at that bonding length. In this paper we focus on the solvent effects on the

charged hard-sphere association.

Consider ionic association in a solvent in the infinitely dilute limit of reacting

species. We have [cf.(3.2)]

K/I(o = YAB(L) = y~~(L)exp[j1(J.l~le+ J.l~le- J.l~(L))] (3.12)

where Ko is the association contant in the ideal gas limit, Y~~is the hard-core contribution

to the cavity function for ionic species A and B, J.l~le,J.l~le,and J.l~~(L) are the Born
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solvation free energy (BSFE)24 for species A, B, and ionic pair AB at a fixed distance L

apart, respectively. The single ionic BSFE 11~lefor a dielectric continuum solvent model

is well known.25 It is
2

11~le = - qA (1 -l/f)
UA

(3.13)

where qA and 0'A is the charge and hard-core diameter of ionic species A, respectively, and

f is the dielectric constant of the solvent. When L ~ UAB = (UA + uB)/2, the BSFE of

ionic pair at a fixed distance L apart is also well known.25 It is

2 2

I1l!iAB(L) = _[qA + qB + qAqB](l-l/f)
0'A UB L

(3.14)

Therefore, for a continuum solvent model, we have,25

In{l{/[l{Oy~~(L)]} = Pq~qB(l-l/f) , L ~ UAB (3.15)

From (3.15), lnl{ is linearly dependent on 1/(.25 For a dipolar hard-sphere solvent

modeI12,26-29 and a dipolar dumbbell solvent model,12,27-29 the single ionic BSFE26,27

and the BSFE for an ionic pair12,28 at a fixed distance apart under the mean-spherical

approximation have also been obtained analytically for L ~ UAB.28One has

ele
(L)

- (1 - l/f)
11MAB - 2 X

(UA + ~S)(UB+ ~s) - [UAUB/(2L)]
2 2 2 2222

{[ - (
UAUB

)
2
](qA + qB + qAqB

) + [
2 + 2 + qAqBUAB

+ qAuB + qBu A]~ }UAUB 2L qA qB L 4L2 S
UA UB (JAB

(3.16)

where ~s reflects the solvent properties.12,26-29 For a dipolar hard-sphere solvent, we

have30

30's

~s = f1/3 + f-1/3 - 2
(3.17a)

where (Js is the diameter of the solvent particles and

f =9 - J92 - 1, 9 = 1+ 54J[ . (3.17b)
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Using eq.(3.12), we have for the association constant in a dipolar hard-sphere solvent

In{K/[Koy~~(L)]} = (3[J1-1!t(L = 00) - J1-Xf(L)] (3.18)

where J1-j!/(L)satisfies eq.(3.16). When us/ .JUAUB-+ 0, eq.(3.18) reduces to (3.15) as ex-

pected. The InK in (3.18) is not linearly dependent on l/f anymore, However, it still can

be approximated as linearly dependent when f is not too large or not too small (Fig.l0).

When f is large (or small), compared to 1, the linear dependence will underestimate InK

(or overestimate -InK, as in Fig.10). This has been observed experimentally.25

When U/3 ::; L ::; U =UA = UB,the analytical expression for J1-Xf(L)has also been

obtained for dipolar dumbbell and dipolar hard-sphere solvents.29

IV. n-P ARTICLE ASSOCIATION

For an n-particle association reaction

A + B + C + . . . ;:::: ABC. . . (4.1)

it is easy to show that

n

K/ Ko = y~~t..(LA,LB"") = exp{(3[ L J1-1X - J1-AJ...(LA,LB,...)]} (4.2)
i=A,B,...

where the n-point cavity function y(n) is evaluated at the locations LA, LB, ..., of A, B,

.. ., that yield the structure of the molecule M "'. Again, y~~t.. is the n-point cavity for

unassociated particles A, B, C, "'. Using an accurate equation of state for hard-body

mixtures,23 one is able to solve eq.( 4.2) numerically to obtain the association degree and

the association constant.

Using a similar argument as that already given in Section III, we expect that the

zeroth-order approximation

/ (n)
( L )I - [ (n) ]rej

K Ko = YABC'" LA, B,'" PABC...=O - YABC'" (4.3)
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will be very accurate as long as the bonding occurs on or outside the hard-core. We drop

the arguments Li of yi~t.. for convenience. If the interaction is a soft potential, one

expects that the zeroth-order approximation is accurate even when the bonding length is

relatively small.

For equal-molar association [PA= PO(1 - a), PB= po(1 - a), ..., PABC...= poa],

the Helmholtz free energy is given by

1 1 t~
A(a) = -No(1 - a)(J.lA+ J.lB+ ...) + -NoaJ.lABC'"- p(a)Vn n (4.4)

or [cf.(3.3)]

,B[A(a)-A(a =O)]jNo= In(l-a)+~,B I: [J.l1X(a)-J.l1X(a = 0)] ,8[p(a) - p(a = 0)]
n i=A,B,... npO

(4.5)

where No = npOvtot is the total number of particles both associated and unassociated.

Eq.(4.5) is an exact equation. Since the zeroth-order approximation for the cavity function

corresponds to taking the ideal limit of excess Helmholtz free energy (over the Helmholtz

free energy of the reference system) for binary association, we assume this is also true for

n-particle association. Then, the zeroth-order approximation of eq.(4.5) is (after the ideal

limit is taken)

n -1
,8[A(a) - A(a = O)]jNo= In(l - a) +-a n (4.6)

'\Then n = 2, (4.6) reduces to (3.6). Since

p = np5G(AjNo)
GPo

(4.7)

we find the pressure under the zeroth-order approximation to be

dl (n)
,B[p(a) - p(a = 0)] = -apO[n - 1+ P nYABC...(a= 0) ]0 J .

PO
(4.8)
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\\'hen n = 2, (4.8) reduces to (3.7). It is worth noting that eq. (4.6) and (4.8) are

different from the expressions of first-order TPT8-9 when n ~ 3. If one uses the "linear"

approximation 14 for y( n),

(n) (2) (2)
YABC...= YAB (LAB)YBc (LBc) ... (4.9)

eq.(4.8) yields the expression of first-order TPT8,9

(2)
p[p(a) - p(a = 0)] = -apo(n - 1)[1+ POdlnYAB(a = 0) ]

:JpO
(4.10)

when A = B = C = ... and LAB= LBc = ..'. In eq.(4.9), A and B, Band C, etc, are

nearest neighbours. For a hard-sphere chain of particles connected pairwise at the sphere

surfaces [(Lij = CTij),pearl necklace model], eq.(4.10) yields8,9 for a = 1

pp - 1 + TJ+ TJ2- TJ3

npo - (1 - TJ)3
(n - 1) 1 + TJ- TJ2/2

n (1-TJ)(1-TJ/2)
(4.11)

The Kirkwood superposition approximation (SA)31 for n = 3 yields

(3) - (2) (2) (2)
YABC - YAB YBC YAC (4.12)

compared with the linear approximation

(3) (2) (2)
YABC = YAB YBC (4.13)

where LAc ~ LAB and LBc. Since the exact 3-point cavity function can be expected to

lie between the SA and the linear approximation 14 in value for such configurations, one

expects, for such Lij, y(3) = [y(2)]f with 3 ~ f ~ 2. More generally, for n ~ 3, one

expects

y(n) = [y(2)]f(n) (4.14)

with f(n) ~ n -1. Eq.(4.14) leads to

pp(a) = 1+ TJ+ TJ2 - TJ3 - .!.[n- 1 + f(n) TJ(5/2- TJ) ]
npo (1 - TJ)3 n (1 - TJ/2)(1- TJ)

(4.15)
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Wefind that f(n) = (8n - 9)/7 gives a good fit to the available computer simulation

data16 for flexible n-hard-sphere chain (Fig.11).

For the case of unequal molar association, derivations for the zero-order approxi-

mation are similar. For the Helmoltz free energy, we have

RAez = -N In[y(n) ]ref + [R Aez ]ref
fJ ABC... ABC... fJ (4.16)

where Aez is the excess free energy over the ideal gas limit, the ref denotes the system

when the full dissociation is achieved. For the pressure, we have

pez - [p
ez

]ref - - dln[y(n) ]ref
- PABC...PO ABC...

dpO
(4.17)

when P is the total numb~r density of system at the full dissociation limit.

Under the zeroth-order approximation (4.3), the thermodynamic properties of

atomic and molecular mixtures can be obtained from the thermodynamic properties of

atomic mixtures and the solvation free energy of one molecule in the atomic mixture

[cf.eqs.(4.6), (4.8) and (2.7)]. This properly of the zeroth-order approximation greatly

simplifies the calculation of thermodynamic properties of larger molecules such as poly-

mers when the bonding region is on or outsJde a the hard-core.

Finally, using an accurate equation of state for hard-body mixtures,22 we find that

the zeroth-order approximation (4.6) and (4.8) is nearly exact for n =3 for the bonding

length Lij > O"ij.
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Table I. Comparisons of the exact virial coefficients, the virial coefficients of the Boublik-

Nezbeda (BN) equation of state, and the virial coefficients obtained from eq.(3.7) using

exact hard-sphere virial coefficients as input for a = 1 at L = (J".Here VMis the volume

21

of a homonuclear dumbbell.

B2/VM B3/VJ. B4/VJ Bs/Vj
Exact 5.444 17.04:f:0.06 34.52:f:0.35 52.22:f:l.05

BN 5.5 16.75 32.5 52.75

Eq. (3.7) 5.5 17.0676 34.37 53.62



FIGURE CAPTIONS

Fig.1 The association degree Q as a function of PO(13obtained by using Eq.(3.2) (-) and

the zeroth-order approximation (- - -). (1A= (1B = u, KO/(13= 1, L/(1 = 1, 0.5

and 0 from bottom to top at PO(13=0.3. For L/u = 1, (3.2),and the zeroth-order

approximation (3.5b) give indistinguishableresults.

Fig.2 The reduced association constant K /K Q as a function of pQ(13. Symbols and pa-

rameters as in Fig.I.

Fig.3 The association degree Q as a function of pQ(13. u A = UB = (1, L/U = 0.5 and

Ko/u3 = 1 and 5 from bottom to top. Symbols as in Fig.I.

Fig.4 The reduced association constant K /Ko as a function of PO(13. K 0/ (13= 1 and 5

from top to bottom. Other symbols and parameters as in Fig.3. For the zeroth-

order approximation (3.5b) (- - -), K / K0 is independent of Ko.

Fig.5 The association degree Q as a function of pQ(1r. (1A = (11,(1B= 2ul, K0/(1r = 1

L/Ul = 0, 0.7 and 1.5 from top to bottom. Symbols as in Fig.I. For L/(11 = 1.5,
-

(3.2) and the zeroth-order approximation (3.5b) give indistinguishable results.

Fig.6 The reduced association constant K /Koas a function of pO(1r. Symbols and pa-

rameters as in Fig.5.

Fig.7 The association degree Q as a function of PO(1rat K Q/(1r = 1 and K 0/ (1r = 5 (top

curve) respectively. Lj(11 = 0.7. Other symbols and parameters as in Fig.5.

Fig.S The reduced association constant K/Ko as a function of PO(1rat KO/(1r = 1 and

KO/ur = 5 (bottom curve) respectively. Symbols and parameters as in Fig.7. For

the zeroth-order approximation (3.5b) (- - -), K / Ko is independent of KO.

Fig.9 The reduced association constant K j Ko as a function of Psu~ in a hard-sphere

solvent at infinite dilution of reacting species. Here ps and Us is the number

22



density of solvent and the solvent diameter respectively. UA = UB,L/UA = 0.5.

From top to bottom, US/UA = 1.2, 1.3, and 2.

Fig.lO The logarithm of the ionic association constant, -kBTuA/q~ln[]{/ KOyHS(UAB)]' as

a function of the inverse of the solvent dielectric constant 1/ f. Here UA = UB,

L = UAB= (UA+ uB)/2, and the solvent djameter Us = uA/2. The continuum

solvent model (-- -)and the dipolar hard-sphere solvent (-). The solvent diameter

has been kept in constant for convenience.

Fig.ll The reduced pressure (3p/npO as a function of the volume fraction 7]= mrpOu3/6

for chains of n = 4,8,16 hard spheres. eq.(4.12) (- - -), (4.15) (-), and simulation

(Ref.) (.).
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