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1. Introduction 

Let us consider the .  system of equations 

Ilx = by 

where A i s  an (n+l) x n matrix of rank n, x and b are column vectors with n and 

(n+l) elements respectively, We a lso  assume that  the system (1.1) is inconsistent 

viz., b does not l i e  i n  the column space or range p(A) of A. In  otherwords, no x 

i n  the n dimensional Euclidean space can be found for  a i c h  (1.1) is  exactly 

satisfLed and as  a consequence (1.1) is not a proper equality. If for  a given 

x e En, r (x)  denotes the residual vector, then (1.1) can be written properly as  
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Let ri(x) denote the ith element of F(x). I n  t h i s  paper we shall give an 

dlgorithm f o r  the s o i u t i m  of the following problem: 

In the general case, when A i s  m x  n, with m >  n; b is m x 1 and rank of 

A = n, a subset of n+l rows out of the m rows i s  chosen and the solution of this 

sub-problem fs determined, Tnis is  followed by an iterative process which yields  

the solut ion of the  complete problem. An excellent discussion of t h i s  is  given by 

Cheney El]. I n  v iew of this, a numerically s table  and relat ively simple computa- 

t iona l  method (which is given below) fo r  the solution of the sub-problem (1.3) may 

be of some in t e res t ,  

2, -Theoretical Development 

Let z i  denote the ith element of a column vector s i n  F1. The ith element, 

agn zi, of the vector sgn z is defined as  follows: 

We shall make use of  the Theorem given by Cheney [l, p, 43.1. I n  our case it can be 

restated a s  follows: 

Theorem 2.1, If y is the l e a s t  square solution of (1.1), then the minimax sol-  

ution of (1.3) i s  the exact solution of  

n+l n+l 
where 0 = s s  r t y )  and G = P r:(y) ,/ P Iri(y)l. 
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In order t o  make use of the above Theorem we will need the following for 

orthogonal triangulari sa t ion  [2,8] of A and a few other r e su l t s  that are  re la ted  

t o  it. For k = 1, 2, ..,, n, l e t  us define 

T 
where 0,- 1, - $P(k)u(k) and v(=) = A. If the element i n  the ith row and the jth 

- columnof i s d e n ~ t e d b y v ' ~ ) ,  t h e n t h e  s c a l a r p k i s  givenby 
i j  

and the n + l  components of the column vector u(lC) are  

u (k) = s* (v(k)) (0 + I Jk) 1 ), 
k kk k kk 

u (k)T is the transpose of u ( ~ )  and In+l is the ident i ty  matrix of order n+l. Thus 

Blr is  a sgnrmetric orthogonal matrix of order n+l, which transforms all the elements 

V(k) i > k i n  equation (2.3) t o  zero [2,8]. Since -the columns of A are  l inear ly  
ikJ  

independent, we have 

where Q = 0 , .e2e1 and R is  an upper t r iangular  non-singular matrix of order n. If 

T denotes the first n rows and q the last row of Q and Q its transpose, then the 

fac t  t h a t  Q i s  orthogonal gives 



and 

Now, from (2.4) we have 

To find the l e a s t  square solut ion of (1.1) we shall need the generalized inverse of 

. A [3yh]. For a given A t he  generalized inverse i s  defined as the unique matrix A+ 

satisf'ying each of  the following equat ions  

where * denotes t h e  conjugate transpose of the relevant matrix. For r e a l  matrices, 

* implies the usual  transpose. Now, i n  view of (2.7), (2.8) and (2.51, it i s  easy 

to  ver ify by d i r e c t  substi tution, t h a t  
-- 

A+ = R-I Q, . (2-9) 

Let the orthogonal matrix Q also operate on b viz., 

.- 
where f is an n x 1 vector. and X is a scalar ,  We can now s t a t e  and prove the  

following : 

Theorem 2 -2, The solut ion of (1.3) is given by 

x = R-If - b R - l a g  , 
qa 

where 0 = - sgn(lqT). 

Proof: !The least square solut ion of (1.1) is [4] 



where y i s  an a r b i t r a r y  vector  i n  E'. Therefore, the  l e a s t  square res idua l  is  

since in view o f  (2.8), AA'A = A. On using (2.7) and (2 -9) i n  (2.13) and simplify- 

ing t he  r e s u l t  by keeping (2.6) and (2.10) i n  view, we have 

and a which was defined in Theorem 2.1 i s  now given by, 

T 
a = sgn r (y )  = - sgn (hq 1. 

Also, *om Theorem 2.1, ( 2 . a )  and (2.5) it follows t h a t  

I n  view o f  Theorem 2.1, t h e  so lu t ion  of  .(1.3) is  the  exact solut ion of (2.2). But 

the  general so lu t ion  of  (2.2) i s  [h] 

N q  from (2,7), (2.9) and (2.5) we have 
-. + T rn - A A = I, - R - ~ % Q J ~  = I, - R ~ R  =.on , 

whsre On i s  t h e  n u l l  matrix of  order n. Therefore, (2-17) becomes 

This is the exact  so lu t i on  of  (2.2). This can be seen by computing the correspond- 

ing r e s i d u a l  xhich in view of (2.16) w i l l  turn out t o  be zero. Using (2.9) and (2.16) 

i n  (2.18), we have 

X x = R-i gnb - - R-1 Q~~ 
q= 

X - = R-1 f - - R-1 a., , using (2.10). 
'20 



3. The Algorithm 

I. Use orthogonal tr iangularization (2.3) t o  compute R, f and a s  follows: 

If the Raar condition (every subset of n rows of A i s  a non-singular matrix) i s  

not sa t i s f i ed  then i n  the course of the above reduction, a row other than the l a s t  

row may become zero. In t h i s  case, one row permutation w i l l  be required t o  bring 

the zero row t o  be the last  one. 

2. Compute Re' f ,  R-I Qn by performing the back subs t i tu t ion  (backward course) 

part  of the Gaussian elemination [8, p. 2001 a s  follows: 

In other words, we transform the upper t r iangular  matrix R by elementary row operat- 

ions t o  & and perform the same row operations on f and 9. 

3. Using the resu l t s  obtained i n  (3.2), compute a = - sgn (lqT) and 
X 

x = R-I f - - R-I %a (see.  (2.15) and (2 .n )  ) . 
q= 

We conclude t h i s  paper with a few remarks regarding the  algorithm described above. 

T In vim of (2.l.h), (2.2) and (2.16), i f  needed the l e a s t  square residual  r (y )  = - Xq 
A 

and the Chebyshev res idual  e a = - -a can be easi ly  evaluated from (3.2). The 
qa 

principal advantages o f  using the orthogonal symmetric matrices i n  the reduction (3.1) 

are: (i) s t a b i l i t y  is unconditionally guaranteed 18, p. 2451, ( i i )  during the reduct- 

ion no dangerous growth of elements can take place 18, p. 2451 and ( i i i )  i f  A i s  spa r se ,  

than considerable savings i n  storage and computational e f f o r t  can be made [5,6]. The 

"high accuracy i n  the inversion of t r iangular  matricesr1 i s  well known [7]. Therefore 

in the reduction (3.2) we expect l o x  round'- of f  e r rors  i n  R-I f and R-I %, because 



R is  upper t r iangular  with reasonable s ized non-zero diagonal elements 
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