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Minimax Solution of n+l Inconsistent Linear Equations in n Unknowns

R. P. Tewarson
State University of New York*, Stony Brook, N. Y.

ABSTRACT. An algorithm for computing the Chebyshev solution of n+l inconsistent
linear equations in n unknowns is given. It makes use of orthogonal triangulariza-

tion followed by the back-substitution part of the Gaussian elimination.
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1., Introduction

Le£ us consider the system of equations

Ax = b, (1.1)
where A is an (n+l) x n matrix of rank n, x and b are column vectors with n and
(n+l) elements respectively. We also assume that the system (1.l) is inconsistent
viz., b does not lie in the column space or range (A) of A. In otherwords, no x
in the n dimensional Euclidean space E' can be found for which (1.1) is exactly
satisfied and as a consequence (1.1) is not a proper equality. If for a given
x ¢ E%, r(x) denotes the residual vector, then (l.l) can be written properly as

Ax - b = r(x) . (1.2)

#Applied Analysis Department. This work was supported by the National Aeronautics
and Space Administration, Washington, D.C., Grant No. NGR-33-015-013.



Let r; (x) denote the ith element of r(x). In this paper we shall give an
algorithm for the solution of the following problem:

min mi;x [ri(x)[, i=1, 2, eee, ntl; X ¢ B, (Le3)
x

In the general case, when A ismx n, withm> n; b is m x 1 and rank of
A = n, a subset of ntl rows out of the m rows is chosen and the solution of this
sub-problem is determined. This is followed by an iterative process which yields
the solution of the complete problem. An excellent discussion of this is given by
Cheney [1]. In view of this, a numerically stable and relatively simple computa-
tional method (which is giveh below) for the solution of the sub-problem (l.3) ‘may

be of some interest.
2. -Theoretical Development

Let z; denote the ith element of a column vector .z in En+l. The ith element,
8gn 2, of the vector sgn z is defined as follows:
1if z. > 0,
i

sgn zi=9 0 if z; (2.1)

]
o
-

~1 if z; < O.

We shall make use of the Tneorem given by Cheney [1, p. L1]. In our case it can be

restated as follows:

theorem 2.1. If y is the least square solution of (l.l), then the minimax sol-
ution of (1.3) is the exact solution of

Aic—b=ec’,. (2'2)

II’i(Y) .
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In order to make use of the above Theorem we will need the following for
orthogonal triangularization [2,8] of A and a few other results that are reléted

to it. For k=1, 2, ..., n, let us define
(1), 8, v, | | (2.3)

T
where 01~ In+1—,aku(k)u(k) and V(1) = A, If the element in the i*! row and the jth

colum of V(k) is denoted by vé?), then the scalar B, is given by
-1 +1
_ (k) Sl CO NP
_Bk = o (crk + [vkk |) , vhere o, = §=k (vik )

and the n+l components of the column wvector u(k) are

u,(k) =0, 1 < k; u,(k) = v‘(k), i> k.
i i ik

W) = sgn (189) (o + |+,

T
k k
u( ) is the transpose of u< ) and In+1

Sk is a symmetric ortnogonal matrix of order n+l, which transforms all the elements

is the identity matrix of order n+l. Thus

v(lzl)(, 1> k in equation (2.3) to zero [2,8]. Since the columns of A are linearly

Q4 =G) , (2.4)

where Q = 8p...8,8; and R is an upper triangular non-singular matrix of order n. If

independent, we have

Q, denotes the first n rows and q the last row of Q and QT its transpose, then the
fact that Q is orthogonal gives

| T T
o] Q Q

o - ot (B (@D (S % o oo, edad 1, @9
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and. I, = QTq = (oI, qT)( Qn) = Qfop+ ofq . (2.6)
q

Now, from (2.4) we have

. | 4
A=QT( )= <r. (2.7)
0

To find the least square solution of (1.1l) we shall need the generalized inverse of
A [3,4]s For a given A the generalized inverse is defined as the unique matrix A"

satisfying each of the following equationss

AA*A = A, AT A A* = A%, (A1) = AA* and (A*A)7= A*A, (2.8)

where % denotes the conjugate transpose of the relevant matrix. For real matrices 3
¥ implies the usual transpose. Now, in view of (2.7), (2.8) and (2.5), it is easy
to verify by direct substitution, that

A =R Q. (2.9)

Let the orthogonal matrix Q also operate on b viz.,

Qb:(f);ﬁ an--f = Qb = fand g b =1}, (2.10)
v q A

where f is an n x 1 vector and A is a scalar. We can now state and prove the

following:
Theorem 2.2. The solution of (1.3) is given by

x=R1f - Z&; RQ0 , (2.11)

where o = - sgn(qu).
Proof: The least square solution of (1.1) is [L]

+ +
- y=ADb+ (In—A A) y . (2.12)



where vy is an arbitrary vector in E®. Therefore s the least square residual is

r(y) =Ay -b=8"0 - b+ (4 -8"A) y = - (Ip - 447) b, (2.13)
since in view of (2.8), AATA = A, On using (2.7) and (2.9) in (2.13) and simplify-

ing the result by keeping (2.6) and (2.10) in view, we have
() = - (pa - QR RT Q) b= - (T, - Q%) b = - qlav= - ad, (2.14)
r\y n+l Qn Qn n+ nen q qb Xq ) °

and ¢ which was defined in Theorem 2.1 is now given by,
' T
o =sgnr(y) =-sgn (Aq ). (2.15)
Also, from Theorem 2.1, (2.1l) and (2.5) it follows that

T 2 (y) r Tre(s \qr
) L (y)] [;(y)] _harg (2.16)
Z,I‘i(}’)l [z(y) o] -Aqo qo

In view of Theorem 2.1, the solution of (1.3) is the exact solution of (2.2). But
the general solution of (2.2) is [L]

x=A"b+erTo+ (I -4 )y . (2.17)

Now, from (2.7), (2.9) a.nd“(Z.S) we have |
I, -A"A=1I -RIQQR=1I,-RR=0_,
where Op is the null matri;x of order n. Therefore, (2.17) becomes

x=A"b+rerto . (2.18)
This is the exact solution of (2.2). This can be seen by computing the correspond-
ing residual which in view of (2.16) will turn out to be zero. Using (2.9) and (2.16)
in (2.18), we have
x =RIQpD - %c-r R Qpo

=R-1f__k



3. The Algorithm

1. Use orthogonal triangularization (2.3) to compute R, f and ) as follows:
aw - (5 7). (3.1)
0 A
If the Haar condition (every subset of n rows of A is a non-singular matrix) is
not satisfied then in the course of the above reduction, a row other than the last
row may become zero. In this case, one row permutation will be required to bring

the zero row to be the last one.

2. Compute R f, R1Q, by performing the back substitution (backward course)

part of the Gaussian elemination [8, p. 200] as follows:

R O£ Q I, RUf RIQ,

, —_ . (3.2)
0 A q \ 0 A q :

In other words, we transform the upper triangular matrix R by elementary row operat-

ions to I, and perform the same row operations on f and Q.

- 3. Using the results obtained in (3.2), compute ¢ = - sgn ()\qT) and
N .

x=Rlf - —R1 Q0 (see (2.15) and (2.11) ).
qo

We conclude this paper with a few remarks regarding the algorithm described above.

In view of (2.1k4), (2.2) and (2.16), if needed the least square residual r(y) = - XqT
and the Chebyshev residual ¢ o = - }q?or can be easily evaluated from (3.2). The
principal advantages of using the orthogonal symmetric matrices in the reduction (3.1)
are: (i) stability is uncondit_ionaily guaranteed [8, p. 245], (ii) during the reduct-
ion no dangerous growth of elements can take place [8, p. 245] and (iii) if A is sparse,
then considerable savings in storage and computational effort can be made [5,6]. The
Yhigh accuracy in the inversion of triangular matrices" is well known [7]. Therefore

in the reduction (3.2) we expect low round.— off errors in R* f and R Q,n, because

6.



R is upper triangular with reasonable sized non-zero diagonal elements

(- sgn vl;k) ck; k=1, 2, ..., n, [2,8].
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