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1. A survey of such methods (2g well az geverel computaticnal methods)

for spare matrices is given
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constructin

In this section we will derive some useful propoeriles of matrices

in BF, DBRBF and DERBRDF. which will be used in the next sectiocn for trans-
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D

forming symmetric sparse mabrices to one of these forms. ILet us asgsume

¢

that G is in band form such that

n

e

-
~~

= 0for |i-j] > i and P(gy. # O for |i-j| < x with 1 # ) = b, (

gij :

. th . .o .
where g;: 1s the 17 row and the j column element of G, ) is called

i

C

14,
=

iagonal element

the bandwidth of G and p &g the probability that a non-dis;

within the band is non-zero(P(...) = p denotes that the probability of
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ridently u'v = 0 (or u% v = Q)

Ty i b . . N - 3 - g . T N e
hat uw and v de not 'intersest’. The "length'! of

gbove sense rethsr than the ususl Duslide
L ’r}
The + T reme af B/ (" 3 <1 <3 + 1) 4a
08 4 o el b whera <1 = A L) A3

(p N ‘
given by &/ B‘L) = e; B 3% B. But thz i%' row of B (which is identical

) intersects the first through the (4 + 2x)th colunng
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AN .
rog of BVS/ hag the Tirst 23 + i elemenbs non-

th

of B. Therefore, the 1

cf B,

zero, in contrast with )\ + 1 such elemtns in ths 1

it can be seen that for » + 1L <i =n - )

th

2) elements on either side of

the 1 element are non-zero and for n - x < i <£n, the lagt

2x +1 + n - 1 elements are non-zero. Therefors, B(2> 18 a band matrix

of width 23. Proceeding in the abovs mouner it can be sasily shown that
B<h) a band matrix of width hy tien B(n+i , in (2.5), is also &

band matrix of width (h+1)), providsd that 2(h+l) % + 1 = n. Therefore,
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by induction on i,

kN + 1 <1 or k < 32=, This completss the proof of Theorem 2.1.
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a botal of n-v dlegtinet valuzs of i, and Plu, #0) = P (v, £0) = v rfo
V. w Foy
v values of 1, then
5l b2 0) = -(i-n®)Y Coy
b R J.“” '\.L "p' J s { 2. ":‘)
the expzeted valuz of u'v is ziven by
E(u ) (2.7)
£ T et ARSI b Je e mpen ] o S
Prooi, Evidently the n-v valuss of 1

and

E(u’v) = v p® + 2p(1-p). (2.9)
Proof: Since P(uilvi1¢ 0) = P(uizvi? £0) = p, or P(uiin1 = Q) =
P(ui?viq = Q) = 1-p, therefore, similar to the proof of Theorem 2.2, it
can be eagily shown that E(ULV)m(v—Q)p2+2p=vp2+2p(l—p)sand Py’ v=0) =
(1-p®)V"2(1-p)®, from which (2.8) directly follows.
Ve can now make wse of Thercem 2.1 to prove
Theorem 2.3. If the 1™ vow 2md the jth column element of ig

o)

derioted by b °) and P(bij
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B J ) - i v 3
(2.10)
wiere
(a) wvio =i+ a -2, 8.=2,forl=<i<i=zr+il,
L A :
(®) wy=i-J+2r-% g, =2, forlsicgr+landarlacielsy
! el
or At l <l <y~ anddi<ed=gi+ g,
\ — 2 T o v - — B £ L T K . RN S
(c) vig =L - 07 2 hrly Bgs =0, Ll e+l anddl + A<= 1i+2 %
or ) Tl <i<n-hand 1+ A< <12 ),
(d) Vig TR JE N1y g2 =2 forn-~-aA<i< ] <n.
Pr o In view of Theorenm 2.1 and the fact thot ) < < n; it is
vident that p{%) = 0, for |i-3] > 2 For 4ol <2 9. we have be°) =
evident that p;. s for |i-3) > Ao Tox I,L-;yi < 2 3, we have bj 4" =
= . (=) . .+ +
&, B % Bey = (Be,) ' % Bes. Thus by 4 40, if the 1% ard the i columns
[ L -
of B have a non-zerc Intersection. If 1 <1 < 3 < A+ 1, then in viaw
Y e et 3 - wy N -
of Corcllary 2.2, and the facts thab byy = 1, P\bij #0) = o, biy = 1,
Ple.. #0) =p, and for only i + % - 2 elemenls Plogy # 0) = P(bys #0) = p;
Ji vl ‘
2 1 {1 = - - ]
[T SV a = D ] ! 3 A “l — s N2
it follows that :’\bjgj) £ 0) =7 E<“”i> ¢ (Be.) # 0 | -(1-p®) V2 {(2-p)?,
where v = 1 + %, and (2.10) followe since wi; = 1 + A =2 = y - 2 and
2 /

(case [ The proof for the other three cases

the seme routine arguments and is omlitte

case (c¢), corresponding to the

a zerc in the other columm, therefore we use Theorem 2.

Corollary 2.2. This accounts for the fact that B

*

s Je G,

Corollary 2
p =22
2

In Theorem 2.3, if either B3 '2,or

2)

then p N

(‘_I.

Proof,

-3

»Jlj

2 instead of
P 0 in case (¢).

=0 but \)ij

follows exactly
nobed that in

ment of one cclumn there is

22 and
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for only §L~j\ = 25%¢ and 1f dn B, the cutermogh elemants in the band are
nonN-zero viz., bqt =1 for {q~tﬂ = %y thea for {imj\ = 2% b<i% =

{ R Ios e = % M % = B l'._,"i = 7 ¥y, 7 = g
\Bei> iy j}j Oi‘*"/\gi K Oj"':\.gj 154 Since 11 nx -y 8 _______J:’,,J_, - ]}\ J " 7\_Q
Ia view of tha ebors resulis and Corollary 2.3, we have.

Coroilary 2.. If in B, thz outermost elenents in the band are
noa-zero and p is the probabiliily of the noa-diegonal elemants within the
band bsiaz non-zero, then P, . Z Dy [1—35 < 2%

We will new give a theores for i, whlch is defined as the expecbad

o

) . . .y
value of the sum of the 'inberssct 1th

the other colunns. In other words,

I 2
o; = E L’Z.(“ei)’(Be:) 3 = E E 5 eiB“e. 1
JAL J
=E [' e/B%(x e.) ] =E| e.B%(V-s,) ‘]

isual(not Boolean)matrix multiplication.

Theorer B 1s & band matriz end o 1s defined by (2.11

. . )
o =P [p( 227 - Za v 2) + ileippiz) + 2001 ], Tt cn
1 2] o -
. L. 3y i
=p [p(ar®5-1) sl s apla- 2o D) [ v i<



E | (Bs )’(B~~)J = E{e B%.) = v ep(l-p), T = § i+, §+#4,

i}
e
Al
o
e
A
S
A
AN
bt

B .
W2 s W,

13

i
Jie
i
e
5
A
>
1.8
¥
"
e
+
H
A
s
y
i
A
=
i3

1]
N
&)

ot

i

o
S~
N
[N
-+
=t

i

f._i

S
o R G L VS (43,
j<i i<]i=<arl WL

which oa simplifisation gives (2.12). Siailar computations zan be used

to prove {2.13) =and (2.14).

Similar to o 5 gnother usseful quantity is V%j which 1s given by
Thsorem 2.5. 1If Y3 18 the expacted value of the sun of the
lengbhs of intersections of the jth coluwm with the firsb y columns of

a band matrix B, then
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.. fox 1 1 Y a7 RN PR 1 .
= D HEA = Z— 4+ =y, = J)- 22 +10 O AT gy ] e DS
rLPLhw > 2 i )= @A) b 2L ed) 1, N F L 2 o 2D

Va2 e, | (2.18)

At lsp<20and 2+l €] €3, er2h+t1lcp< o< TR (2.19)
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This proves {2.15). In similar manner {(2.16)-{2.19) can be proved.
In cass B is of doubly borderad band form (case 10, in Fiz. 1) and
o is the width of the border, then ws hav

Theorem 2.6, If B is DBBF and for 1 # j,

Pb,. #0) =p, for L =1, j = - cand |i-iis A,

= Ps for eitner 1 or j or both in [n-c+l,n],

and . is definsd according to (2.11), then
3 E



o, =P ‘}\ 0 (w—'?.m Ao+ . 1') %
L i o ]
* =34 < j+ 1, (2.20)
= o 10/9%8 = %~ 1) + L 4 42 i, 39
D RN el - ,,3 + 2_1:,} =+ ..'\.!‘3\2;\_ T b )
P Lj_v\ / )7\, L., A g 5 5 )
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Proof, Ths proof of this

(2.21)

as those of Theorem 2.1 and is therefors omitted.
: e . . N N
Theorem 2.7 If B is D3BF or DBEDF such that P\Dii #0) =9
i)

1 # 3end 1 or 3 or bobh in In-ctd,n]), and ¢ > 1, then
:P/' (2> Vi " - . . .
P(bss" #0) 2p, for a1l 1 =1, § = n.
o = < . (2) ‘ ('} / ' 1
Proof. TFor 211 1 =3, j £nwe have, b, "= e/B" ‘e. = (Be,)' # Be..
iy - J i J
. , T S -
Since for thes last elemeunts both the i%? and the 3% colwans of B,
P(by; #0) = Plog.: #0) = p(in fach, the ineguality holds for only !
\Dgq 7 U FiDyg 4 z plin Iacv, The Lnequallty aolds 101 OnLy the

Ead

dlagonal elemants), thersfore in viow of

fact that ¢ > 1, we have

( ) #£0) =1 -(1 pg)g > 5 .
3. Pefnutin_ mabrices to BT, DB3F a

In the preceding section, we

DBBF and DBBDT. In this ssctdion,

—i deg S
an arvitrary symmetric

used to transform

one of these forms. Leb 3 bes the me

sach non-zero element of A by one.

t

avident

[
v}

that,

e

of B

gave some vesulbs

wa will

In view

{2.6), Corollery 2.3 and the

nd DBBDF,

for matrices in BE,
show how theze results can be
positive definite mabtrix 4 o

obtained from A by replaclag

~!

and bthe definitions

of {1.L),

ey
(]
°
%
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N



In the zhove eguation, S is
BF, DBBYF or LBLEDF,
and not oin®). Ta osder to
the resullts given in Ssction
. — (2 -
Jede If S( ) = 3

I

matrix Q guch that Q'S4 = 3,

Proof. Since Q has oaly one non-zero element in each 0¥ and column,
therefors Q%Q = QQ = I, QV = 7, and 3 = 3/SQ = Q™ 3 % Q. Thus, for
1 <i<n, .

I ﬂ(z) ¢ YAl e LxY ~ 1 — I3 o
e/ 3V = 55V =e/QBQR* QBQV =g/ QB % B)V
i i i i
2
=g sl )V, for 1 <3 <n.
J
1 N (g) ~ (R -1
Bub from Thsorem 2.7, P(b..” #0) = 5, which implies bhat
1] *
- f?)
=) 2 ~
B [e' S( )V] =T La’ B V] >pn =on).
J
Corollary 3.1, If in Theorem 3.1, B is a band mabrix, then
2
E(ef sPl1) = o)) < < oln).
2 - .
Proof. From Corollary 2.3, P(b§'> # 0) = plexcept for ths outermost
J

/
2
element in the band,) thersfore E(e{ g\ )V)

o) < < ofn), since )} < < n.

In naking uss of the ahove Corollar

It should

the fact that O < p =1

1, the walis
mdereatinate.

In orlar to find

last o rogs and colans of Blwhen 3 is I

12.

. 80 obtained is g=asrall

Lia rows and colunmne

< ey o 8§ o - Ty e g e ey R
shere exists a permubatbtlon

&

either D3BF or DB3DF, then fov

= oln).

E [eé B(B)Vj = p(2n) =

KRR I N
a3vimatec Oy using

74 ) can be

in view of (2.3) and

(3.

2

)



following Theoremn. Let I' denote the set of indices ¢f those rows and

o rows and colurms of B, then we have

Theorem 3.2. If in (3.1), is in DBBF with p = o, A = 0, and
! = o
Q €5 = €5 then
r" ’ So \1 " r‘ - —7
T e e, I ! — ks 3 2
E Lei ( 1>J re 20D L(?k )p 1_J P N (3h)
and Max el S°(V - e.) | mdp®n , 3¢ 3.c
and e B ef ( el)_| ~ AP, AT (3.5)
Proof. From (2.11), (3.1) and the facts that QV = V, ey = er,
we have
o =’r7f‘w-'>l“2@7’*6'\7"13;“"{ Q" s* Qv - )_.J ’“,5 (V-edg-
,aJ Rl Luj J/ LDJ AN J i _J
But from (2.23) and the fact that X < < n, we have

ol =
o, =p Ap(en - 3 - 1) + (20 - 2) + (x - 1)(2n - 1 - 2)p | \

J Y
‘ T“ I'4 s -\ “‘;
=2p [ap(2n - 20 - 1) + (n -1)(1-p)].
o (2“1 +1 ] Lok Dr 1
~2mp  \Zh - L)p * 1 |, which proves (3.4).
&=
On the other hand, for i & E e 2 S2(V - ei)J will be maximum for

2L+ 1<i<n-0-2k and from (2.22) it follows that
o, = Ap [p(ék +n - L) + 6}
~ Ap°n, which proves (3.5)
From the above theorem it follows that
E[ L8RV Yl me B el s2(v )] (3.6)
ei -e) | ~8E LeJ (V- e, .
where i CT and j & T, and 8 = ~+._5?:—-(~%—1) > ), since 0 < p < 1.

8

It can be shown that (3.6) also holds for IBBDF, if we assume that th

diagonal blocks are of average size ). However, in this case 6 =z 3.
2 .

Therefore, we can generally make use of 5%to determine the rows and

colurms of S which belong to I'. Ip such rows and columms are remcved

from S, then we nesd to debermine whebther the remaining matrix can be

13.



trarsformed to the BDF or BF. To this end we will need the following.

: ) s s NG .
Theorem 3.3. If B is in band form and 5<'= SYa S, h =1, 2, ...,
and k = —D s then
) ()
" / bl N JUY -
}.’4( ei S \Tj~ O(,L;,‘J‘ ( bo ?)
Proof. In the proof of Theorem 2.1 we have geen that the anawwdt
<l’+1) de > w(k‘) LI T . -
of B g ) more than that for B i p = L. Thersiore it fellows that
(k , " . . . i
= V'V for &k = »§;. In case O < p < 1, then from Corollary 2.3 it
. 1) . A x .
follows that for nearly all elenents bg.’ of B(k). P(EET) # 0) =
- Sy S B b-
1 B . N [ng N
Therefore E(e’ B(K>V) = o(n), since L =2 p = JEQ&Q
1 2
Theorem 3.L. If in (3.1), B is in BDF with P(b,. # 0) = p for i, J

in any of the diagonal blocks and zero ctherwise, and w is the size of the

N

largest diagonal block, then

S(R>T) < . (3.8)

A ;.(e
5 X

—
o

Proofs Since only the columms belonging to the same dilagonal blocks
can have a non-zerc intersection and the Beclean powers of B increase the
probability(of being non zmero)cf those elements thatliz in the diagonal
blocks, therefore at most m elements can be non-zero in any row or column,
and (3.8) follows. This completes the proof of thc theorenm.

If we know that S can be permuted to the form of z band matrix, then
we need the following results for ordering the rows and columms of S
(viz., to determine Q).

From the proof of Theovem 3.2, we have

; 27 ‘1 _ r’ 2y j — I, 0 - e e
B [e;87(V-0,) | = E | 8 (V-e;) | = o, where @ og = ¢ (3.9)
and from (2.12) it follows that
@y - oy = p(oap-2p+2)(j-i), L =i< jsr +1
and min (o; - op)= p(2Ap-2p*2), 1 €1 < j=<r+1
1,7 d -
4‘1 . ] s
p -)-\-é--’ 1 (:.Jn‘}i

1h.



Let Vu be the vector oblzined from V by replacing ite last n - u elements

by zerc. Then Y ., which was defined in Theorem 2.5, can be expressed as
Yo.o= wle! B ). 3> . (3.11)
LA’-J j W & pEY N
. . Xy e s EIPaRY s LS .. . e
If we letv QV = Q“ and er = @, than from (3.10) and (3.1) it follows that
Ly 1, ¢ Y .
R ot=2, el @B o~ N . -,
o= Ele. BV ) = (e’ S Qo). (3.,12)
N i i L
We are new £inglly in a peosition to describes an aligorithm for finding
© 4]

]

a permutation mabtrix Q corresponding te a gilven sparse syimstric positive

nite matrix A such that the matrix ¢ defined according .to (1.4) is in

;,.

def
IBBF, DEBDF, or BF.

Algorithm 3.1.

1. Construct S, the incidence matrix corresponding to A and compute 8% Fronm
8 e . 9, .. . - g~ LS. (\2) "r I Nad ~ A
S%, construct the corrvesponding incildence watrix SV /. 4L for 211 i,
ORI . 6 ; .
ei V=10c{n), then go to sten 6 (In view of Theorem 3.1 and Cerollary 3.1,
B can be either DBEDF, or IBBF but not in BF or BIF).

2. Compute B = V'SV, & zsig% nég &

o

)
where ¥ 2 A If Max ¢, S(L/V =
‘ A i i

o(n), then go to step L(B is in band form-this follows from Theorems 3.3

+

and 3.L and the fact that m < < n, since A is sparse. It should be noted

hat A =2 M@X(@ S V—l), since 2x + 1 is the maxinum nunbsr of non-zero
i

e~

elements in any row of B; also in view of (2.3), the value of A given by

-n . .
A~ <57 is generally an underestimate) .

: n . (Tl . .
3. Compute S( ) and denote its 1tn row and Jth column elenment by
n .
sgj). Then s€?> # 0, for all columns(rows)of S which belong to the same
13
diagonal blotk as the 1" colurm(row). Starting with the first columm,

assign each colurm(row)of S %c a particular diagonal block. This determines

£
Q such that Q S Q is in BDF(Harary 1962, Tewarson 1967). Stop.

e

L. Determine 2) values of T for which



: D7 [P~ £ an -y ’
M SQKV~9?>§;Gi 3 k7~ﬂ1>3i # 7, 1415, values
t H i
PaO
en . A (*} - e / 2

of 7 into two sels as follows. ILf SR O (ox 21 3 o = 0), v # Xk,

I i

r 'k T k
then 1, and 1, belong to different sets. Within each set arrange the

f<e

values of N's in the order of ascending valuss of o Let Ty, Moy -ccs

o
R — - . - o » -._. 2 Y
ﬂk and My, Tosee.s Ny D& the resuliing arrangements for the N's in the
2 A

first and the sscond seb respectively, then 67\’ enm, ..;.,‘anqu are the
' = A
first A columns and OF 5 +ees OF 5 €7 AYE the last i columns of Q.
A = 1

(Remarks: Note that A wzs estimated in step 2 of this zlgorithm. Turther-
more, from (3.9) and (3.10) it follows that for the T's in'each set, the
ﬁalues of @ 's are generally distinct. Ties can be broken by using
el SV.). Construct an n dimensional column vector Q which has unity in
positions Ty, Mo ««.s T and zerces elsewhere. |

5. Compute QT = Mz e; S® 0, i# @ , then e, ie the next colum v
of Q. (This follows frewm (3.12), (2.15) and (2.16). It can easily be
shown that if T has more than one value, then the corresponding colurms
of B are very close together. We can use e; SE(V»eT) to break the ties
in the beginning if any.). Make the 7o element of O a ons. Similarly
the additional columms of Q from the right hand side are also determined
by using 0, which has unity in positions ﬁl, ﬁg, cavs ﬁk‘ Repeat the
current step of the algorithm uantil 811l columns of S have been ¢xhausted,

viz., Q0+ Q =V, and Q has been determined. Stop.

6. Compute &j = &5 S?(V—ej), 3 =1, 2, ..., n. Determine the set
I'y such that if p €T and k ¢ I then &p is significantly greater than
&k' (For example, &p ~ B &k’ where 0 ~ L, this follows from (3.6)). Let
Pis Pzs «vrs Py c ' Then €y, ©py? "t epc are the last colums of Q.

Now delets the rows and columns of S which belong to I' and we have a matrix

of order n-o, which is either in BF or BDF. Go to step 2 with n replaced

16.



by n-o to determine the first n-o columnms of Q. This cowmpletes Algorithm
3.1.

We shall now make a few pertinent remarks about the above algorithm.
Let ¢ bs the undirected graph which corresponds to S such that it has n
nodss and there is an edge between its jth and jth nedes if and onl& if
Si3 = sji =1, (Busacker and Saaty, 1965). Then ths permutation of the
rows and the colurms of S (according to (3.1))is equivalent to the re-
arrangement of the nodes of ¢ to get an undirected graph ¢ which corresponds
to B (matrix B is in BF, DBEF or DBRIDF). In view of these definitions of
¢ and ¥, it is evident that the equation e{ S® V = o(n) 3in the first step
of Algorithm 3.1 implies that there is a path of length two or less be-
tween most of the nodes of © (or ¢). Furthermore, in step 6, we determine
and delete some nodes and the assoclated edges of ©, such that the re-
maining graph doces not have most of its nocdes connected by paths of length
two or less (the associated matrix can be permuted to BF or BDF). In step

(n)

3, we make use of the connectivity matrix S to determine the nodes be-
longing to each connected subgraph of o (the diagonal blocks of B). The
determination of Q in steps L and 5 generally does not lead to a matrix
which has bandwidth close to the one estimated in step 2, mainly due to
the non-uniquenessof the quantities &ﬂ and QT, however the rows and
colurms which will minimize the bandwidth are in general fairly close
together in Q'S Q at the conclusion of these steps. Therefore, a few
'Vadditional interchanges of rows and colwmms might at times be desirable.
The above Algorithm is based on the assumption that there exists a
Q Such.that Q' S Q = B; where B is either in BF, DBBF, or BBBDF and the
probability of its elements (within the shsded areas in cases 8, 10 or

= v .
2 l, and m, ¢, A are of same order

5 in Fig. 1) being non-zero is p 2

17.



of magnitude, but much less than n. The closer p is to unit; the more
efficient the algorithm will be. For arbitrary symmetric matrix S with
non-zercos on the diagonal, the efficiency of this Algorithm will have
to be decided on the basis of a large number of computaltional ex-
periments. In any case, the algoriﬁhm should certainily do better than the
presant methods in litersture that the author is familiszr, due to the
following reasons. First, the rows and columns of S which would keep us
from minimizing A or m are put in the set I'; and second, at each stage
of the algorithm we have used more infeormation from the rows and columns
of both S and the desired form B than other methods seem to utilize.

Ve conclude this paper with = brief description of the methods

for matrix bandwidth minimization presently available in literature.

If we let mo= i -3, J < 1 and zerc otherwise, where a,. is the left

id
most non-zero element of A in the iR row, then Akyuz and Utku (1968)
n
give an iterative program for finding the quantity € = wmin ~%— T
i=1

Their method is based on interchanging two successive rows of A if band-
width is decreased or a row with large number of zeroes goes away from
the central row. The above'problem can also be expressed as a Linear
Programming problem (Tewarson, 1967). The related problem of finding
€ = méF m?x ™ is discussed by Alway and Martin (1965), Cuthill and
McKeev(1969) and Rosen (1968). Alway and Martin (1985) have constructed
a program which by means of an educated search of possible permutations
determines Q. Rosen's (1968) program is an iterative scheme which is
based on interchanging a pair of diagonal elements of A, such that either
max ﬂi is decreased or in certain cases remains the same. Cuthill and

i

McKee (1969) base their scheme on renumbering the diagonal elements of

A by looking at a few permutation sested by the structure of ¢ (the

193]
i
<
Q
9]

associated graph).
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The Algorithm given in this paper should be espezizlly usefy
where many problems with similar pattern of'non—zero glements bub
ffering values have to be solved. It will perhaps he advantagsous
to use powers of S greater than two in steps L and 5 of the algorithm

FS

~
for greater expected seperation between the aj‘s and ¥ 's. We hops that

e
1

. .

the probabilistic approach used in this paper will in the future lead

to additional algorithms.

December 15, 1969
State University of New York, Stony Brook, New York
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