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4. Introduction.

Remote sensing problems occur in mawy important practical applications.
Some of these are: the determination of vertical temperature profiles by
satellites for weather forecasting, inference from reflected energy (waves)
to predict the rock structure in oil and coal exploration, reconstruction
of pictures from their projections i n x-ray image processing, and some in-
verse problems of compartmental analysis in Biology (e.g., parameter esti-
mation i n models of renal concentrating mechanisms).

In many cases, a common feature of the remote sensing problems is their
underdetermined nature. The amount of data that can be observed is small due
to the cost, instrumentation or experimental constraints. For example, a
biological system can be subjected to only a small number of probes (experiments)
before it degenerates and the number of parameters to be estimated may be much
larger than the possible number of probes. In the caseofx-rays only a small
number of projections can be taken due to the potential radiation damages to
the patient. The satellites can have only a finite number of channels for ob-
serving the radiation, due to their weight and cost considerations.

Mathematically, the underdetermined nature of our problems can be de-
scribed as follows. bt us assume that the relevant discretization and the
numerical quadrature have already been applied, then we have a system of

equations
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F(y) = 4, (1.1)

where d is an unknown m dimensional vector of observations, y is the unknown
n element vector to be determined, and F i s a column vector of dimension m.
The number of observations m is much smaller than the number of unknowns n.
In the applications mentioned earlier, d is a vector of, respectively, the
radiance measurements made by the satellite, projection data suitably ordered,
above ground sensor data, or input-output and probe data from a mammalian
kidney.

Our problem is to determine y for a given value of d. Since the problem
i s underdetermined (m < n), viz., may y's lead to the same d, additional in-
formation has to be incorporated in the solution process to get a desirable
unique solution y. The observed vector d is generally contaminated with noise
(measurement errors etc.) and therefore an exact solution of (1.1) may not be
as useful as an approximate solution which satisfies some constraints on y
and d. These constraints on y and d can be obtained from the available
additional information. This information can be of one or more of the fol-
lowing kinds: statistical, smoothing and structural. Furthermore, we may
have some information to come up with a good initial guess for the solution,
and/or know some basis functions in terms of which the solution can be ex-
pressed.

In the next section a method for solving the system of equation (1.1) is
described. The subsequent section deals with the problem of incorporation of
known information about the solution vector or the right handside in the
solution process.

2. Solving the System of Equations.

*
The solution of (1.1) involves the determination of a vector.y such that

* *
F(y ) zd Let y° be an initial approximation toy , then F(y°) # d, otherwise
y° = y and the solution process is complete. Let xX®* be the unknown correction

*
such that y = y° + x°, then we have

F(y° +x°) - d

1
o

and the use of Taylor's theorem leads to
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F() - @ + F/(5°) 4eer = O, (2.1)

where F'(y°) is the derivative (Jacobian) of F with respect to y evaluated at

y°. If weletv® =d - F(y°) and A° = F'(y°) then (2.1) can be written as
A x® = b0+ ..., (2.2)

The exact solution of the above equation for x°may yield a value which may
have a large norm and this i s certainly undesirable because Taylor's ex-
pansion in (2.1) requires that the norm of x° be small. To alleviate this

situation we proceed as follows. Let us consider the functional
o) = [ - a 2|2 + 2,

where V and W are symmetric positive semi-definite matrices and ”Z”G is the
G-length of a vector z such that Hzné - 2'Gz. Thus 9(x°) is the am of the
squares of the V-length of the residual and the W-length of the correction.
Note that for G = I, the G-length i s the usual Euclidean length of the vector.
Minimizing ©(x°) will minimize the V-length of the residual in (2.2) as well
as the W-length of the correction vector x°. It should be observed that mini-
mizing ||xl|; is a very desirable feature because the higher order terms in (2.1)
can be neglected if onil; is small. V% have mede the tacit assymption that
the second derivatives (Hessians) of F in the neighborhood of y are bounded.
The matrices V and W are generally chosen to be positive definite and their
choice i s based on statistical and/or smoothing conditions. This is described

i n the next section.

The value of x° which minimizes o(x°) can be found as follows (Golub and
Businger, 1965). W first use-the Cholesky factorization (this requires that
V and W be positive definite or semi-definite (see Lawson and Hanson, 1974;

page 124) to compute R and S such that

RR = V and §'8 = W (2.3)

and then apply an orthogonal triangularization to the linear system




rRAb.v o Imee '
o)
[¥] -2 :5)
. J
[‘é]- * - h] l (26

whereU i s an upper triangular matrix and d and f are column vectors of dimension

n and m respectively. It can be easily shown that the value of x° which minimizes

such that

or

o(x°) is the least squares solution of (2.4) or (2.5), this in turn implies that

x* =U™'d and mip o(x°) = t7f. For additional details see Tewarson (1972). If
X

the matrix [?j is large and sparse, then it iS generally desirable to use
- sparse matrix methods to save storage and computing tirge (Tewarson, 1973).

Once x° i s determined the new approximation fory isy* =y° + x°, and
we can then iterate untii yk (the value of y after k such steps) is close to
the desirable solutiony .

We conclude this section with the observation that instead of directly
solving (2.2) for x°, the minimization of the functional ¢(x°) leads not only
to a desirable solution for proper choices of V and W, but also improves the
conditioning of the problem (Tewarson and Narain, 1974b).

3. Incorporation of Known Information in the Solution Process.

The known information about the solution vector can be incorporated in
the solution process in several ways. Ome of these is the use of matrices
V and W that were introduced in the last section. Three types of information
can be utilized to construct V and W: .(a) statistical, (b) smoothing and
(c) structural. A brief description of each follows:

(a) Statistical Information. |If the given system of equation (1.1)
is linear, then Ay = b, since F(y) = Ay and F’(y°) = A. Let us assume that
from previous experiments of a similar nature a meen value y for y is avail -

able. Thus y mey denote a meen (average) picture or a mean vertical temperature
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profile. Nw if we let & = Ay then it follows that A(y - y) =d - d.or Ax = b,
where x =y -y and b =d - d. The vectors x and b are respectively the deviations
of y and d from their mean values y and d@. If a large number of x values and the
the corresponding b value are available from model calibration etc. and we | et

X and B denote the matrices with columns x(l), cee , x(k) and b(l),... ’ b(k)

respectively, and |et

E =B - AX,

then the covariance matrices for y and the measurement noise E in d can be
approximated by
T
S = Q(— and § = E.E_
y k € k

Ve row take W = S;”( and v = S‘é , Wher'e + denotes the Moore-Penrose generalized
inverse. The reason for the above choice »f V and W, the relationship with the
best linear unbiased estimate, and a detailed description can be found in
Strand and Westwater (1968), Fleming and Smith (1972), Tewarson (1972),
Tewarson and Narain (1974a,b) and Mascarenhas and Pratt (1975). The special
case V=1 and W = A | is described in Levenberg (194k), Marquardt (1963),
Twomey (1965) and Tihonov (1965). Methods for computing generalized inverses
are given in Tewarson (19%9a, 1971).

(b) Smoothing. It i s sometimes known that the vector x (or vector y)

is a function of the distance from some origin and is reasonably smooth. Then

x = x(u), where u is the distance from the origin and therefore the functional

B 2 xX{u 2
I8 ox()?® + a() (Zly2y

should be minimized instead of just the norm of x(u),(p(u) and q(u) are suitable
weights). n discretization this integral leads to xTV\/x, where W i s a tridiagonal
matrix (Tihonov 1963a,b, 1965, Tewarson 1972).

(c) Structural. Once again we assume that F i s linear, then in may cases
it is known that the main contribution to a particular element of b comes
from a small subset of the elements of x. Therefore, when predicting x from b,

this relationship should be preserved. This leads to a structure-oriented
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generalized inverse AS (Tewarson and Narain 1974a) such that in each row of
A®A the elements get progressively smaller as one gets away from the main
diagonal. See also Backus (1970), Conrath (1972),and Chen and Surmont (1975).
Having made the choice of V and W in one or more of the above mentioned
ways we mow focus our attention to the other methods for incorporating additional
information i n the solution process.
In some cases the constraints on y may be known as H(y) = 0 and it may

be more convenient t o consider solving the augmented system w(y) = d, where

W(y) =ﬁ18§ and a = [g} . This, of course involves salving a larger system of

equations than (1.1) and requiresadditional conditions for the convergence of
the Newton-Raphson method. A survey of these and related techniques i s given
in Tewarson (1975). General theory for the solution of non-linear equations
i s discussed in Ortega and Rhienboldt (1970).

In all of the above mentioned methods the choice of the initial approxi-
mation y° is very critical. In any iterative method for solving non—llnear
(or linear) equations, y° must lie within the domain of attraction of y ; this
often requires y° to be very closetoy and such a choice i s generally hard
to make. |In underdetermined problems, without any smoothing and other con-
straints the component of y in the null space of the relevant iteration op-
erator remains the same e.g., when using the Kaczmarz method (Tewarson, 1969b).
Therefore this component should be reasonable in y° in order for the method
to converge to a desirable solution.

Ve will nov briefly mention some of the other methods that have been
found useful in picture reconstruction and satellite temperature profile
determination.

If it is known that each x = B v, where B i s some known basis (e.g.,
exponential functions in renal transport) and vy i s a suitable unknown, then

from (2.2), neglecting the small terms, we have

A°By=bD
or '

+ .
vy = {A°B) b + N A, where N i s the
A°B - A°B




ortho%onal projector on the null space of A°B and X is arbitrary. Note that
(a°B) can be determined by either a direct (Tewarson 1969a) or an iterative
method (Tewarson 1971). Detailed descriptionsof these techniques are given
i n Gordon and Herman (1974), Smith, Wolfe and Jacob (1970).

In the case of picture reconstruction, analytical solutions and con-
volution methods are given in Radon (1917), Bracewell and Riddle (1969),
Herman and Rowland (1973). Fourier transform mehtods, which involve taking
the Fourier transform of the projections, interpolating and then inverting
the results, are discussed in Bracewell (1956), Hoppe et. al. (1968),
DeRosier and Klug (1968), Crowther et. al. (1970), DeRosier (1971).

I n conclusion, we again restate the fact that all possible information
about the problem must be incorporated in the solution process when under-
determined problems are being solved. It is of course possible that some
of this information nay be of qualitative nature and hard to incorporate
in a quantitative manner. The technique used to incorporate any information
must be tailored to suit the particular problem one wants to solve. Being
aware of the various successful methods in diverse application areas will
meke it easy for the user to choose the method best suited to his particular

application.
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