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ON THE USE OF SPLINES FOR THE NUMERICAL SOLUTION OF NONLINEAR

MULTIPOINT BOUNDARY VALUE PROBLEMS

R. P. Tewarson*

Abstract.
Cubic splines on splines ~~d quintic spline interpolations

are used .toapproximate the derivative terms in some highly

accurate schemes for the numerical solution of multipoint

boundary value problems. The storage requirements are the same

as that for the usual trapezoidal rule schemes that do not

use derivatives but the accuracy is improved from O(h3) to

either O(h6) or O(h7), where h is the net size. The use of

splines leads to solutions that reflect the smoothness of the

slopes of the differential equations.

1. Introduction.

We consider the numerical solution of the system of

differential equations

(1..1) H- f(x,y(x» = 0,

with the multipoint boundary conditions

(1.2 ) g(y( 0), y( 1 ) ) = 0,

where

y, f and g E Rrn, and ° ~ x ~ 1.

Let us subdivide the x range [0,1] into n equal parts,

such that h = 1/n and x. = ih, i = O,1,.;.,n. If we integrate
- . .. ~ ".'- - ',.. ---

the pth equation of the system (1.1) in the interval [ x. 1
,x.l].- ]...

and denote the resulting quantity by.A-. .(y) then we have
'-t' p].
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(1.3) -
S

Xi

eppi(Y) - Ypi - Yp,i-1 - xi-1 fp(x,Y(X»dX = 0,

whereY i = Y (x.) and p = 1,2,...,m; i = 1,2,...,n. The integralp p ~

in (1.3) can be evaluated by the various numerical schemes.

In this paper We will discuss three such schemes that require

the numerical derivatives of f [1,pp.284-285],p

h
(

.

)
h2 1 1

(1.4) ~pi(Y) = Ypi-Yp,i-1- ~ fpi+:fp.i-1. + fO.~fpl-fp,i-1)

h3 2 _? h7 6
- T26(f'pi+:tp,i-1)+ 100,800 fp( ~i)'

(1.5) ( ) h, h2 1 1 )q> . Y = Y .-Y . 1- ~\ f .+f' . 1 )- -n;- (f i -f. 1pl p~ p,~- ~ pl P,l- I~ P p,2-

h4 3 3 h7 6
- m(fpi-fp,i-1)+ 30,240fp( r i)

and

(1.6)
dp pi(Y) = Yp,i+1-Ypi+Yp,i-1- ~(fp,i+1-fp,i-1)

h2, 1 1 1
+ ~~f . 1-8f .+f . 1)-

~~ p,~+ p2 p,~-
h8~ 7 ( ~ . ),

60,480 P S ~

fp(Xi'Y(Xi»

Equation (1.4)

"
wherexi-1 ~ f i ~ xi' xi-1 ~ f i :~ xi+1' fpi =

and the superscripts on f denote its derivatives.

is associated with the name of Obrechkoff, (1.5).is the Euler-

Maclaurin sum formula and (1.6) is the highest precision three

point formula which uses f and f1.

Equations (1.4) or (1.5) along with (1.1) and (1.2)

are sufficient to determine Ypi' where p = 1,2,...,m, i ==0,1,

...,n. But in (1.6), since i = 1,2,...,n-1, we need one additional
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- . --'equation with 0(h8) accuracy to determine y .. This can bep~

easily achieved by including one additional equation with

---(1.6) of the type (1.5) with its last term replaced by

(1.7) h6 5 5 ) ( 9 )ff.-f. 1 + 0 h .\ ~ ~-

From now on let us denote by y, 4> and g the vectors

with the components Ypi' cri and gp respectively. Then equation
(1.5), (1.6) or (1.7) can be written as

(1.8) 4>(y? = 0-

and (1.2) as

(1.9) g(y) = O.

Clearly, ~ E Rmn, y € Rm(n+1) and gERm. It is worth noting

that in (1.8), mcomponents of y can be eliminated directly by

expressing them as linear functions of the rest of the components

by using (1.9), provided.that g(y) is a linear function of

y. We will assume that g(y) is linear and the necessary

elimination of y components has been done so that we only

have (1.8) to solve.

In this paper we focus 'our attention primarily on the

efficient computation of two items; the required derivatives

of f and the roots of the nonlinear system (1.8). To this end,

we will first utilize a cubic spline on spline technique or

a quintic spline to determine some approximationsto the

derivatives, and then use a nonlinear iterative technique to

- :3 -



solve the resulting system of equations (1.8).
.- .,.-" -

It is possible to compute the derivatives of f directly

by differentiating the differential equation ([1),p.246).

For example

f1 = f + f Qy
x yax

and since from (1.1)

(1.10)

H-= f, we get

f1 = fx + fyf,

where the subscripts denote the partial derivatives. The computa-

tiona of higher derivatives of f is, in many cases, rather

cumbersome. If the differentiation (1.10) is reasonably easy

to perform then (1.6) can be used to give an 0(h8) formula.

Of course, as mentioned earlier, due to the use of one equation

of the type (1.5) with the last term replaced according to (1.7),

which is necessary to make (1".6) fully cLetermined, we still

need to compute the third and the fifth derivatives of f at

the two points, say ~ and ~-1. The general expressions for

. these are quite involved ( [11,p.246). The evaluation of the

partial derivatives can, in principle; be done analytically,

but more often that not, f is a.complicated computer program

and these computations are not possible without the expenditure

of a considerable amount of wor~. Alternatively, it is ,also

possible.to use numerical derivatives of f. This is done in [2]

to solve equations, of the type

h . h3.2
rh . = Y .-Y . 1- ~(f .+f . 1)+ -::7, 1: . 1

.'1"p~ p~ p,~- L p~ P,1- It::p,~-z

h5 4 7
- J?>7'\ f . ~ + O(h )<;-ou Pt1.--....

(1.11)
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in a defferred correction mode. The principal
-- .' - -, -,

of using numerical derivatives for f2 1.. 1 and
p, -~

usual piecewise interpolating polynomials

disadvantages

f4 . 1 from the
p, 1.-~-

is that these poly-

nomials not only overlap but also lack smoothness at the junctions

(net points x.). Furthmore, the defferred correction mode -1.

necessitates the repeated solution of equations of the type

u1(y(k»z(k)=b for different right hand sides b. We shall

have more to say about this aspect of the problem later on.

The use of cubic spline, on spline and the quintic spline,

that we advocate in this paper,to compute the numerical deriva-

tives imposes not only smoothness at the junctions but also

requires only a very small amount of computational work as will

be shown later.

To achieve O(h6) accuracy as the cubic spline on spline
-, - , . '

techniques considered in this paper, the Gap schemes of White

[3] require the computation of f1 = fx+fyf and

f2 = f +2f f+f ff+fxf +f f f at each of the m(n+1) pointsxx xy yy y yy

Ypi' i = O,1~...,n,p = 1,2, m. The difficultiesassociated

with the computation of partial derivatives have already been

mentioned. Furthermore, a total of 8m(n+1) multiplications are

necessary to compute f1. and ~. to achieve O( h6), accuracy
w ' p1.' p1.

even after the partial derivatives have been computed. For

O(h8) accuracy Whites' gap schemes will require the computation

of f3. Of course, O(h7) is not realizable'with these schemes.
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The n~erical results obtained with our technique cannot be

easily compared with other techniques in view of the following

reasons given in [31:

"Due to the fact that most numerical tests in this area

are published with little detail concerning implementation,

computer times, and so on, it is hard to make any final judge-

ments about the relative merits of different techniques. The

ultimate comparison will be that given by the user which will

require: ease of use, applicability or adaptibility to its

particular problem, and overall ecconomy in computer cost and

reliability."

.Itis possible to use Taylor's expansion to expand

about x. ~ and prove the following result
~-"2"

(1.12)
h

(
113 2 2

~pi = ypi-Yp,i-1- 2 fpi+fp,i-1)+ 24(fpi+fp,i-1)

h5 4 4 7
- ~(f .+f . 1)+O(h ).

~£tV p~ p,~-

But since the above requires the evaluation of the second and

the fourth derivatives it is not competitive with (1.4), (1.5)

and (1.6), unless f2 and f4 are readily computable.

In the next section, we first describe the cubic spline

on spline and quintic splin~and then show how these can be

used to determine f~i' f~i and f~i. Computational considerations

are discussed in the last section.

2. Use of Spline on Spline and Quintic Splines.

For the sake of clarity of presentation we shall drop
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the subscript p from this point on. It is however understood

that a seperate spline interpol~~t will be used for each value

of p. Furthermore, for the cubic spline on spline f ~ 05 and

for the quintic spline f E 06, the class of five or six times

continuously differentiable functions. Seperate splines must

be used in the x range if these conditions are not met in the

whole interval [0,1J.

s(Xi)

xi be

Let s denote a eubic spline interpolant l41 so that

= +i for i = 0,1,...,n. Let the rth derivatives of s at

denoted by s:. It is well known that if we have eitherJ.

(2.1)
1 1 1 1so = fa and s = f ,.n n

or

(2.2)
2 2 2 2

So = fa and sn = fn'

then s is unique (4].

It is c~stomary to compute sl and si directly from the

fi values by the following well known formulas

(2.3)
111 3Si 1+4s.+s. 1 = ~(f.1- f. 4)+ J. J.- n J.+ J.-I .

and

(
2 22 6

( )2.4) s' +1+4s.+s. 1
= _

2 f. 1-2f.+f. 1 '

J. J. J.- h J.+ J. J.-

with (2.1) and (2.2) respectively for the boundary values at

i = a and n.

To compute a bound on the error between s: and t:, weJ. J.

define

(2.5) e: = i: - s:,
J. J. J.

IIf(x)11 = max I f (x) I 'x I\erll = m~!eII,and then prove the
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following theorem.

Theorem 1. If f E 05 then

(2.6)
II e11\ ~ * \I f5\l

and

(2.7)
IIe211 ~ ¥211 f411.

Proof. Subtracting fl+1+4fl+fl-1 from both sides of (2.3),

using (2.5) with r = 1, and then Taylor's expansion we get

(2.8)
1 11 3

)
1 11

)e.
1+4e.+e. 1 = - ~(f. 1-f. 1 + (f. 1+4f.+f. 1 '~+ ~ ~- n ~+ ~- ~+ ~~-

2h4 5
= ":M!" f (lL.), x. 1-< lI. ~ x. l'

I~ I~ ~- - r~ ~+

where i = 1,2,...,n-1. Now due to (2.1) e6 = e~ = 0, and if

we let e and f5 denote the vectors

(
1 1 1

)
T

(
5
( )

5 T .

e1,e2,...,en-1 and f 11 ,...,f (Pn-1» respect~vely, then

(2.8) can be written as

4 4
. Ae 1 = ~ f5 or e1 = ~ A-1 f5 .

If B is a matrix such that (B).. = 1 if i = j+1 or i+1 = j~J

and zero otherwise, then

IIA-1\i
=

II(4I+B)-11\

1

= ! II (I;-iB)-1n ~ i 1\111- t II B II

1
~ t ;::r'" i

and therefore

He 111 ~ t; h4 IIA-111 . iI f5tl ~ ~ IIf511 .

(It has come to our attention that an alternative proof of
(2.6) is giyen in a book just published [10J. )
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This proves (2.6). To prove (2.7) we subtract fi+1+4~+~-1

from both sides of (2.4) and use (2.5) with r = 2 and then

use Taylor's theorem to get

(2.9)
2 . 2 2 6 _? 2-?ei 1T4e.+e. 1

= - -
2(f. 1-2f.+f. 1)+1~ 1+4f.+l~ 1+ ~ ~- h ~+ ~ ~- ~+ ~~-

= h2(f4( YJi)-!f4( Si»' xi-1~YJi' !'i~ xi+1'

i=1,2,...,n-1.

Arguments similar to those used in proving (2.6) yeild

Ile2~~ h2 IIA-111 ~ IIf411 ~ i h2 Ilf41\.. 16

We will need the following.

. t+1 1
'Corollary 1. If fi have errors of O(h ) and/or_fo

and f~ have errors of O(ht), then

IIe111 = O(hmin(4,t».

Proof. In (2.8), an O(ht) term will result on the right

hand side due to these errors. Hence the minimum of t and 4 will

be the power of h in the overall resulting error order estimate.

Corollary 2. If fi have err~rs of O(ht+2) and/or f6

and ~ have errors of O(ht), thenn

.

Ile21\= O(hmin(2,t».

Proof. In (2.9) therig'ifrlhandside will have an O(ht)

term due to these errors and the minimum of 2 and t will be the

resulting power of h in the overall error. .

These two corollaries have two important consequences.

First, at the end points, instead of (2.1) and (2.2), O(h4)
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and O(h2) approximationsto the first and second derivatives

can be used. Therefore, we can use the following [5].

1 1 1 4 5
(2.10a) fO= ~(-25fo+48f1-36f2+16f3-3f4)+ ,h f ,

( 2 . 1 Ob )

1 1 1 4 5
fn= ~(25fn-48fn-1+36fn-2-16fn-3+3fn-4)+ ,h f ,

( )
_? 1 11 2 4

2.11a ro= ~(2fo-5f1+4f2-f3)+ ~h f ,

2 1
(

11 2 4
(2.11b) fn= ~ 2fn-5fn-1+4fn-2-fn-3)+ ~ h f ,

For later use we will also need the following form~laB:

3
(2.12a) f6= -1-2(35fO-104f1+114f2-56f3+11f4)- ~ f5,12h

(2.12b)

(2.13a)

(2.13.b)

(2.14a)

(2.14b)

(2.15a)

(2.15b)

2 1
(

.

)
Sh3 S

fn= 12h2 35fn-104fn-1+114fn-2-56fn-3+11fn-4 + 1) f ,

3 1
(

. 725
fO= ~ -5fo+18f1-24f2+14f3-3f4)+ 4h f ,2h .

2

f~= 2~3(5fn-18fn-1+24fn-2-14fn-3+3fn-4)+ ~ f5,

2 1
(

137 4 6
fO= ---2 45fO-154f1+214f2-1S6f3+61f4-10f5)+ T80 h f ,12h .

f~= 1;h2(45fn-154fn-1+214fn-2-156fn-3+61f~-4-10fn-5)

. + 137h4f6TSO '

4 1
( 6 )

1 7 2 ~6

fO= ~ 3fO-14f1+2 f2-24f3+11f4-2f5 + 1)h ~ ,h
4 1

)
17 2 6

fn= h4(3fn-14fn-1+26fn-2-24fn-3+11fn-4-2fn-5 + 1)h f ,

(
4 1 5 2 6

2.15c) f1= h4(2fo-9f1+16f2-14f3+6f4-fS)+bh f ,
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(2.15d)

(2.15e)

and

(2.15f)

4 1 ( ~ ) .526f 1
= _

4 2f -9f 1+16f 2-14f 3+6~ 4-f 5 T 7h f ,n- h n n- n- n-:: n- ~- __°

f6= 14(fO-4f1+6f2-4f3+f4)-2hf5,h

f4: 14(f -4f 1+6f 2-4f 3+f 4 )+2hf5.
n h n n- n- n- n-

The derivatives of f in the error terms of the above formulas

are evaluated at some point x in the interval defined by the

xi's corresponding to the extreme fi values used in that particular

formula..
The second conseq~ence of the Corollaries 1 and 2 is in

the use of spline on spline computation as follows:

Theorem 2. Let ~ denote a cubic interpolatingspline on

the s1 values computed in (2.3), and'the first and second

derivativesof s at x. are computed from the formulas
,.., ~

(2.16)

with

(2.17 )

and

(2.18)

with

(2.19)

then

(2.20)

1 1 1 3 1 1s. 1 + 4s. + s. 1 = '1::"(s. 1 - s. 1)"'~+ ~ ,.,,~- Il ~+ 1-

1 2
~O = fO

and s1 = f2n n

2 2 2 61 1 1s. 1+4s. + s. 1
= _

2(8. 1 -2s. + s. 1)~~+ ~~ "'1- 1+ ~ 1-h

2 3
~O =10 and s2 = f3""n n.

t

2 1 3f. - s.
I
= O(h )~ ,...~

3 2
(
2

)
I

f.-8.
I

=Oh.
~ ""'1

and

Proof. FTom (2.5) and (2.6) we have s~ = f~ + O(h4)1 ~

- 11 -



and therefore from Corollary 1 and (2.16) we get the first

equation in (2.20). Similarly, (2.5), (2.7), Corollary 2 and

(2.18) lead to the second equation in (2.20). .

Thus we have seen that spline on spline computation

gives an additional power of h improvement in the order of

accuracy in the second and third derivatives. Rigorous theoretical

error bounds for spline on spline computations for any point

in the interval [O,~ will be published elsewhere [6]. It

should be noted that instead of (2.17) and (2.19) we can use

"(2.12) and (2.13) respectively.

Now, we can replace f~, ~ and f~ in (1.4), (1.5) and
J. J. J.

(1.6) by s~, s~ and s~ respectively. We recall that the sub-J. tVJ. NJ.

script p had been dropped earlier. Therefore, in view of (2.6)

and (2.20) we get

h h2 1 1 h3 1 1 6
(2.21) ~ i (Y)=Y'-y, 1- ~(f.+f. 1)+ ~(s.-s. 1)- ~(s.+s. 1)+Q(h ),

"t" J. J.- t:. J. J.- IU J. J.- It:.U "'J. ""J.-

( ) (
h h2 1 1 h4 2 2

)
6

)2.22 ~ 1 y)=Y
J.
'-Y' 1- ~(f.+f. 1)+ ~(s.-s. 1)- ~(s.-s. 1 +O(h ,~ J.- t:. J. J.- It:. J.].- I~V NJ. ~1-

.

. . 3h h2 1 1. 1
)

I 6
{2.23) ~ .(y)=y'- 1-2y.+y. 1

--s (f. 1-f. 1)+ ~(s' +1-SS,"'S1' 1 +O\h ).~J. 1+ J. J.- 1+ 1- ~~ 1 J.-
. .

We recall that (2.23) requires the use of one equation

of the type (2.21) or (2.22), since in (2.23), i = 1,2,...,n-1.

It is possible to use a quintic spline to improve the

accuracy in (2.21), (2.22) and (2.23) from 0(h6) to O(h7). Since

the formulas for the quintic spline~ are not readily available

for equally spaced knots and the various derivatives of the spline,

we give a short derivation of some .of the results that we will

- 12 -
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use later on. Let us define the quintic polynomial in the

ith interval

(2.24)

[xi-1' xi] by

2
s(x)=f.w+f. 1w+ ~«w3-w)M.+(w3-w)M. 1)~ ~- 0 ~ ~-

4
+ ~«3w5_10w3+7W)Fi+(3w5_10w3+7W)Fi-1)'

where i = 1,2,...,n, w = (x-xi-1)/h and w = 1-w. It is easy

to verify that w1 = 1/h = -w1. and when x = xi-1' w = 0 and

W =1, when x = x.,~

the rth derivative of sex) evaluated at x..~

the s1(x.) for the ith and (i+1)th interval we have~

h2. 6 ~

(2.25) Mi+1+4I>1i+Mi-1=r;o(7Fi+1+16Fi+~Fi-1)+ h.2(fi+1-2fi+Ii-1).

Similarly, matching s3(x.) for the same two intervals, we get~

2
(2.26) M. 1~2M.+M. 1= ~(F.+1+4F.+F. 1).~+ ~ ~- 0 ~ ~~-

w = 1 and w = O. As before, let s: denote~

Now, matching

(2.27)

Subtracting (2.26) ~rom (2.25) and dividing by six, we get

h2 1

Mi= - ~(Fi+1;8Fi+ Fi-1)+ ~(fi+1-2fi+fi-1).

Substituting for Mi-1' Mi and Mi+1 from (2.27) in (2.26) we

have on simplification

(2.28)
Fi+2+26Fi+1~66Fi+26Fi-1+Fi-2= 1~~(fi+2-4fi+1+6fi-4fi-1

+fi-2)

It is easy to verify that

(2.29) s~ = M. and~ ~
4 -s. - F.~ ~

and these automatically match for the ith and {i+1)th intervals

- 13 -



at xi.

In order to use (2.28) to compute Fi-from fiwe prescribe
- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4

that Fa - So - fO' Fn - sn - fn' F1 - s1 - f1 and Fn-1-sn-1-fn-1.

It can be shown by arguments similar to those used for the

cubic splines that for the quintic spline

(2.30) \sI - ~l = O(h6-r), r = 1,2,3 and 4.

Now, since Fi = s1 we have

\F i - f1 \ = 0 (h 2 ) ,

so equation (2.15) can be used to compute f6, ft, f~ and f~-1

without 'sacrificing the order estimate for the errors. The

use of (2.26) requires that Mo = s20 = f20 and M = s2 =-r2n n. n

and (2.14) can be used to compute f6 and f~.

Now from (2.24) routine computation gives

1 1 h h3
(2.31) Si-s. 1 = ~(M.+M. 1)- ~(F.+F. 1)~- L ~ ~- ,~~~-

and

(2.32)
3 3 h

(s. - s. 1 = ~ Fi+F. 1).~ ~- L ~-

Replacing the derivatives of f in (1.4) by the corresponding

spline derivatives and in view of (2.30) we have

,.+...
( )

h
( )

h2 1 1 h3 2 2' 7
~i' Y =Yi-Yi-1-2 fi+fi-1 + 10(s1-si-1)- ~(si+si-1~+a(h ),

which by using (2.31) and (2.32) becomes

h h3' h5 7
(2.33)~'(Y)=Y.-Y'1- ~(f.+f. 1)+ ~(M.+M. 1)- ~(F.+F. 1)+O(h )&

'-t'~ ~ ~- L ~ ~- L~ ~ ~- ,~u J. ~-

It can be verified that even :from(1.5) when we use (2~30),
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(2.31) and (2.32) we get also the same equation as (2.33) !

Furthermore, replacing the second and fourth derivatives in

(1.12) by Mi and Fi' respectively, again gives (2.33)! Thus

we have seen that in the case of quintic spline (1.4), (1.5)

and (1.12) all lead to the same formula (2.33). The third

equation (1.6), in view of (2.30), (2.31) ro1d (2.32), after

routine simplification leads to

3
(2.34) CPi(Y)=Yi+1-2Yi+Yi-1- ~(fi+1-fi-1)+~(Mi+1-ftli-1)

h5 7- 7)1?\(F. 1-F. 1)+0(h ).
£.Lf-V ~+ ~-

It is interesting to not that the right hand side of (2.34)

can be obtained from (2.33) by subtracting<Pi from qpi+1.

Instead of the quintic spline the f~ values in (1.12) can be~

computed by three applications of cubic splines as follows.

Use (2.3) to compute s!, then (2.16) to evaluate s1 and then~ N~

" 2 '"2 ",2 6( 1. 1 1
)

(2.35) si+1 + 4si + si-1 =~ ~i+1- 2~i + ~i-1

with f E: c6,

(2.36 ) ~~ = f6 and ~~ = f~

to compute s~ as the approximationsto f~ values. Now, in~ ~

.view of (2.20) and Corollary 2,

I si - .r{ t = 0(h) ,

and therefore O(h) approximations can be used in (2.36) fQr-

f6 and f~. From ~he above facts and (1.12) it follows that

h .h3
(

1 1
)

115
(
"'2 A 2

) (
' 6

)(2.37) '~.(y)=y.-y. 1- ~(f.+f. 1)+ ~ s.+s. 1 - ~ s;+s; 1 +0 n ."t'~ ~ ~- L ~ ~- £.Lj-,.,~ ,.,~- £.Lj-V ~ ~-
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In the follovdng section, we - <te$cribea method for solving

the system (1.8) for y.

3. Solution of the Nonlinear Algebraic Equations.

Let

(3.1a) dp(y) = u(y) + ~v(y) for (2.21), (2.22) and (2.23),

and

(3.1 b )
h2

~(y) = u(y) + ~ v(y) for (2.33), (2.34) and (2.37),

where

(3.2) Ui(Y) = Yi-Yi-1- ~(fi+fi-1) for (2.21), (2.22), (2.33)
and (2.37),

= Yi+1-2Yi+Yi-1-i¥-(fi+1-fi-1) for (2.23),--

= Yi+1-2Yi~Yi-1- ~(fi+1-fi-1) for (2.34),

and

(
1 1

)
h2 1 1

)(3.3a) Vi(Y) ~ h si-si-1 - T2(~i+~i-1) for (2.21 ,

5h 1 1 h3 2 2 "=~(s.-s. 1)- ~(s.-s. 1) Ior (2.22),0 ~ ~- l~ -~ ~~-(3.3b)

(3.3e)

5h 1 n 1 1
) ( )= T2{si+1-8ci+si-1 for 2.23,

3
= h(M.+ M. 1)- ~(F.+F. 1) for (2.33),~ ~- ..LV ~ ~-

h3 -

=h(Mi+1-Mi-1)-~(Fi+1-Fi-1) for (2.34),

(3.3c)

(3.3d)

(3.3f) (
; 1

)
h3

(

A2 A2
)

.

( )= h 8.+S. 1 - ~ s.+s.
1

for 2.37.
N~ ~~- IV ~ ~-

It is necessary to leave the first power of h in the leading

term of vi(y) so that it is of the sa!ll~order as ui (y). (If

-- "i6 -



Yi and Yi-1 are very close ~hen the dominating part in ui(Y)

has the first power of h).

An iterative method is used to solve the system (:3.1).

It best described in the following algorithmic form.

Algori tr..m 1.

Given an initial approximationy(O) for y, do the following

steps for k = 0, 1, 2, ... until

c~.4) \\c?(y(k» II < E for some prechosen tolerance E.

(3.5)

1. Compute z(k) by solving the linear system

u1(y(k»z(k) = cp(y(k»,

where ti1is the Jacobian of u with respect to y.

2. Update the value of y(k) as follows:

y(k+1) = y(k) - z(k).

It is worth observing that the Jacobian u1 in (3.5),

which is computed from the value of u given by (3.2) has a

sparse structure because u1 is of order mn and, in view of

(3.6)

(1.1) and (3.2), it has only Oem) elements per row. In many

problems ( e.g., flow networks [7]) every fi is a function of
. .c

only a few components of y and.for such problems u' has a

few elements per row. Various sparse matrix tecr.niq~escan

be used in solving (3.5) [8].

The converg~nceof the sequence\y(k)} determined by

(3.5) and (3.6) is guaranteed by the following theorem

( [9J, Theorem 12.6.4).

- 17-



Theorem 3. (Ortega and Rheinboldt).

Suppose dp : D C Rn~Rn is F-differentiable on the

convex set DO C D and

Uc?1(y) _~1(z)\\ ~ '( Ily-zl/, y,z E:.DO.

Let y(0)E: DO be such that with ~O' d1?- 0

IIU1(Y)-U1(y(0»11 ~ f- Uy-y(O)1\

Hv1(y)\\ ~ 1\("0+ cS1I1y-y(0)1\)

v Y € DO

where /'\. = 10/h for (3.1a) and 24/h2 for (3.1b). Assume, moreover,

that u1(y(0» is nonsingular and

II[u1(y(0»J-1cf>(y(O»Il ~ YJ, Ilu1(y(0»/f ~ ~ ' and that ~SO< 1
2

[

. }.l+61 .

]and «= °p>YY11(1- ~60) ~ !, whereIf=.max 1, Y .

Set !
t* = 1-(1-2~) ---2:!

<X 1- (!>80

'If S(y(O),t*) C DO' then the

, t** = 1+ ( 1- 2 d.. 1 (J )!
0(.

OTJ
.

1- (!>60

sequence ty(k)~ defined by

y(k+1) = y(k) - [u 1(y(k»] -1 <p (y(k», k=0,1, 2, ...

remains in S(y(O),t*) and converges to a solution y* of dp(y)

which is unique in DO" S(y(O),t**).

= 0

4. Computational Considerations.

We will now give some estimates of the computational
...

work involved in the deter~ination of spline derivatives s:,
. J.

~1, ~i, Fi' Mi and si. The derivatives are necessary when computing

v(y) according to (3.3). We recall that in (3.3c) one additional

equation of the type (3.3a) or (3.30) is necessary to make

. 18 -



it fully determinedbecause i = 1, 2, ... , n-1. Therefore, we

shall not consider (3.3c) as the work involved will be the same

as in (3.3a) or (3.3b). In.order to make relative comparisons

of the computational work, we have considered the total number

of multiplications and divisions in various computations. It

must be kept in mind that this is only a rough measure of the

computational work; data transfers, additions, subtractions

and other overhead can often add substantially to the estimates.

In Table 1 we have given the approximate number of

multiplications and divisions required to compute the splifie

derivatives. In constructing this table we have used the fact

that (2.3), (2.16), (2.18), (2.25) and (2.35) all entail the

solution of a tridiagonal system of linear equations, but in

(2.28) it is necessary to solve a pentadiagonal system. We

have assumed that the quantities h2/60, 3/h, 1/12h, 1/h2,

6/h2, 1/12h2, 1/2h3 and 120/h4 are computed only once at the

begining of the computer implmentation and are, therefore, not

included in Table 1.

In Table 2, we give the total number of operation counts

for the spline derivatives used in (3.3). Note that for (3.3f)

. in this table, the value of s~ is included because it is .1
1

necessary to compute s..~l

It follows from Table 2 that (3.3f) is a poor choice

for computing v(y) since (3.3a), (3.3b) and (3.3f) all have

0(h6) accuracy. On the other hand, the accuracy acheived by

(3.3d) or (3.3e) is 0(h7) and, the~efore, in many cases, the

additional work is justified. For example, when n = 10,

.- 19"-



(23n-32)/Bn = 2.4B and this increase in work will lead to an

improvement in accuracy by an additional decimal digit.

~)

Table 1. Number o~ multiplications and divisions necessary

to compute the derivatives o~ splines ~rom the

function values.

- 20 -
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Spline derivative s s s
Fi Mi

",2
s.N ....,

Equation used (2.3) (2.16) (2.1B) (2.2B) (2.25) (2.35)

Numerical derivative
at the end points 12 12 12 26 14 B

Equation used (2.10) (2.12) (2.13) (2.15 (2.14) (2.15e,
, a-d)

Right hand side n-1 n-1 n-1 4n-12 6n-6 n-1

Solution o band
type equations:

Forward course 2n-B 2n-B 2n-B Bn-36 2n-B 2n-8

Back substitution n-3 n-3 n-3 2n-7 n-3 n-3

.

Total 4n 4n 4n 14n-29 9n-3 4n-4



Table 2. Spline derivatives used in computing v(y) according

to (3.3).
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Equation Derivatives needed Total number of operations

(3.3a)
1 s ans., ,...,

(3.3b)
1 2 ansi' s.,v

(3.3d) or F., M. 23n - 32
(3.3e)

(3.3f) ,

1 1 ,,2
12n - 4s., s., si. ,.., -
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