A Sparse tatrix Method forc Renal Models

ABSIRACT

A rpars> matrix maethod for *tne numerizal sclution of nonlinear differen=lal
equations arising in modeiins ~f the renal con.encrating mechanism 1y given. The
method Iavnlves a sym m2tric perwutatisn of the vaciadbles and cqﬁaticris such that
tiw occurznce matiix has a bYlock bidiegonzal structure and the blecks above aad

2 e

betow tnc mair diagonal have a known sparse structure. The method is faster and,

for more than fift~en nodes per tube, requires less siovage than the presen: metbods.
1. MAIN KESUOLYS

The si-e and complexity of realistic models of renal concentrating mechanisa
make it necessary to use special algorithms for the numerical sclution of diffarential
equations describing these models. Model connectivity is used in these aleavithms to
decrease the storage, run time and truncation errors [1-7]. The strecture of rhe
Jacobian for the model problem [1, 5, 7] is shown in Fig. 1, whers ocach *
represents a 3x3 block (volume flow, salt & urea) and the x range 15 divided “rto
ten equal parts (N = 10). Thus the matrix is of order 13¥. It is evident froa the
figure that the Jaccbian matrix is block bidiagonal except for thke last 3N+3 rows
aud columng. Therefore, the solutions of the first 15N-3 =zquations and variables is
relativcly easy in terms of the last 3N+3 wvariables. The methods described ian [1-7]
m ake use of this fact to solve the whole problem as a function of the last 3N+3
variables. This requires the com putation nof the small 3N+3 Jacobian eitter by the
repcated solution of the first 15N-3 equations [4, 6] or the use of Gaussian
elimination on the whole Jacobian generated in smail interacting parts [5, 6]. This

in turn leade to methods which we will, respectively, cell M1 ana MZ.

Tn Fig. 2 we have shown a permuted Fform of the Jacobisa of Fig. 1. It was
obtained by renumbering the variables and equations in each tube down the wedulla.
The Distal Nephron was divided into two equal parts and in each part the nuw bering

was done starting frem their respective junctions with the Ascending IHendes Liab
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and the Collecting Duct. In Fig. 2, the non-zero elements in the super-diagonal
blocks are due to the tube whose flow direction is reverse to that of our num bering.
Uniform chop size was used in all the tubes - this makes each part of the Distal
Nephron of length 0.5. The three nonzero columns in the first N/2 - 1 super—~diagonal
blocks are due to the Ascending Henles Limb, Ascending Vasa Recta and the part of
Distal Nephron flowing against the numbering. The rest of the super-diagonal blocks
have two non-zero columns since only half of the Distal Nephron is flowing against

the numbering.

Let the blocks in Fig.2 be called Ajj . Clearly Ags= 0, li—ﬂ > 1. At each
Newton step, the system of equations having the coefficient matrix of Fig. 2 and B

as the right hand side are solved as follows:

Algorithm M3

Generate the right hand side B. Let B4y be the part of B that corresponds to Apqs
Generate Ajq. For i = 1,2, ...... , N-1 do steps 1 to 3.
l. Generate and store the non-zero columns of Ai,i+l'
2. Perform the Gaussian elimination on the augmented matrix (Aii’Ai,i+l*Bi)
to transform A4 to the identity matrix I. Save the updated Aj,i+41-

3. Generate A.

141,141 on top of T and the non-zero elements of Ai+l,i'

then set
Ai+1,i+1 = Afed,441 T AL4l,1-A1 341

Bi+1 = Bisa — As41,1-Bs
Perform Gaussian elimination on (ANN, PN) to transform ANN to I. Back-solve for

super—diagonal blocks:
Bii1 = Biq ~A37,4°Bgs 1=
The solution is now in B.
1. COMPUTATIONAL RESULTS
Algorithm M3 was programmed for UNIVAC 1100 computer in FORTRAN and

used on the model problem [1, 5, 7]. The Trapezoidal (TR) and Simpsons Rule (SR)

[?] implementations were run for N = 10, 20, 40, 80 and 165. In each case, the

()



Table T

N Segments 40 40 80 80 160 160 6614
Tntegration Scheme SR TR SR TR SR TR MS
Order of 3.9-7) 6.3(-4) 2.4(-8) 1.6(-4) 1.5(-9) 3.9(=5) 1.0(-15)
Truncation Ervor

DHL v(l) .3642397(+0) .3641254(4+0) .3642428(+0) .3642131(4+0) .3642430(+0) .3642355(+0) .3642430(40)
DHL Cs(1) 2745445 (1) .2746306(+1)  .2745422(+1) .2745646(+1) .2745420(+1) .2745476(+1) .2745420(+1)
DY C (1) .1372722(4+1)  .1373153(+1) .1372711(+1) .1372823(+1) .1372710(+1) .1372738(+1) .1372710(+1)
AVR v(0) .5670590(+1) =.5670710(+1) -.5670587(+1) -.5670618(+1) -.5670587(+1) =.5670594(+1) —-.5570587(+1)
AVR Cg (D) .1049184(+1) .1049165(+1) .1049184(+1) .1049180(+1) .1049184(+1) .1049183(+1) .1049184(+1)
AVR Cu(O) .4639605(-1) .4639582(~-1) .4639606(-1) .4639600(-1) .4639606(-1) .4639604(-1) .4639606(-1)
CD (1) .1280192(-1) .1279552(-1) .1280208(-1) .1280063(-1) .1280209(-1) .1280173(-1) .1280209(-1)
cn Cs (1) .3000898(-3) .2788139(-3) .3000759(-3) .2946770(-3) .3000758(-3) .2987224(-3) .3000758(-3)
coH Cy () .2882929(+1) .2884037(+1) .2882901(+1) .2883142(+1) .2882899(+1) .2882960(+1) .2882899(+1)

Model Problem with Jump Discontinuity



Table TX

N Regments 40 40 30 80 160 160 5071
Tntearation Scheme SR TR SR TR SR TR M5
trisr of 3.9(-7) 6.3(=4) 2.4(-8) 1.6(-4) 1.5¢-9) 3.9(-5) 1.0-15)
Truncation Error
DEL  v(1) L4283244(+0)  .4275207(+0) .4283376(+0) .4281342(+0) .4283386(+0) .4282876(+0) .4283387(40)
L Cal) .2334679(+1)  .2339068(+1) .2334607(+1) .2335716(+1) .2334602(+1) .2334880(+1) .2334601(+1)
YT CalL) L1167340(+0)  .1169534(40) .1167304(+0) .1167858(+0) .1167301(+0) .1167440(+0) .1167301(+0)
AV v(") -.5605556(+1) -.5606309(+1) -.5605543(+1) =.5605723(+1) -.5605542(+1) -.5605590(+1) -.5605542(+1)
AVR C.(0) .1043763(¢+1) .1043814(+1) .1043765(+1) L1043777(+1)  .1043765(+1) .1043768(+1) .1043765(+1)
AVR  .C,(0) 4673648(-1)  .4673640(-1) .4673651(-1) .467365G(~1) .4673652(--1) .4673651(~1) .4673C5%(-1)
CD v(l) .1579934(~1) .1573760(-1) .1580013(-1) .1578443(-1) .1580019(-1} .1579625(-1) .i580020(-1)
cH e 4667617(-1)  .4403120(-1) .4669398(-1) .4601938(-1) .4669326(=1) .4652573(-1) .4669535(-1)
o Cull) L2406177(+1)  .2413412(+1)  .2406084(+1)  .2407921(+1) .2406077(+1) .2406538(+1) .2406077(+1)

Model Problem with Ramp



