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SUMMARY

A semi-infinite lattice chain, with finite velocity step applied at
the first mass point, is analyzed to obtain shock wave solutions which
are asymptotically valid at large distances along the chain. For the
case of linear nearest neighbor interaction, solutions are given in terms
of tabulated functions for all quantities of interest. For the case of
nonlinear nearest neighbor interaction, a solution previously obtained by

Manvi, Duvall, and Lowell is put in asymptotic formand its limitations are

discussed.
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NOTATI ON

A3 Ary function

a coefficient of nonlinearity (nondimensional)

B argunent of Airy function for nonlinear case

Jo(y-1y Bessel function of first kind and of order 2(N-1)

r Gamma function

n argunent of Airy function for |inear case

P Laplace transform paranet er

Sy di nensi onl ess di spl acenent fromequilibriumof the Nh nass poi nt

= (di spl acenent) /<{equilibriumdi stance between nass points)

T di nensi onl ess tine = (time)+(reference frequency), reference
frequency is the square root of the spring stiffness divided by
the mass of a particle

T arrival tine of shock wave for nonlinear solution

u di nensi onl ess velocity step at N = 1
= (velocity)/(Newtonian sound speed)

U di nensi onl ess shock vel ocity from asynptotiC solutibns.
=(shock velocity)/(Newonian sound speed)

U = di mensi onl ess average shock vel ocity

s
w di nensi onl ess frequency = (frequency)/(reference frequency)
Xy di nensi onl ess position of Nh nass poi nt

= (position coordinate)/(equilibrium distance between nass points)



INTRODUCTION

The exact solution for shock waves in a semi-infinite chain of mass
points has been obtained by Manvi, buvall, and Lowell™ for linear nearest
neighbor interaction. The solution for acceleration is given by
8y"(T) = 2ul(N—1)T_1J2(N_l)(2T) for N 2 2, where u, is the velocity step
at the first particle and differentiation with respect to time is indicated
by a prime. The linear case is extended in Ref. 1 to a nonlinear nearest
neighbor interaction case by a time averaging procedure. In both cases,
the velocity and displacement at any nass point are prescribed by successive
integration of the acceleration with respect to time. However, the integrals
are not tabulated for large values of N because of large orders of the Bessel
functions involved. It is the purpose of this note to point out that in the
rese of linear interaction. simple asymptotic solutions exist in terms of
tabulated functions for large values of N for all of the quantities of
interest (acceleration, particle velocity, displacement and strain). In the
case of nonlinear interaction, the solutions of Ref. 1 are put in asymptotic
form. The nonlinear asymptotic solutions yield a shock velocity expression
for the head of the wave; they also show that integration with respect to
time of the analytieal solution for acceleration given in Ref. 1 does not

yield physically acceptable solutions for particle velocity or displacement.



LI NEAR CASE

For large order, Bessel functions are essentially zero until the argu-
ment of the function approaches the order, at which time a Bessel function
can be represented by an Airy function.2 Rather than use this property of
Bessel functi.ons, however, it is simpler in the linear case to obtain
asymptotic solutions directly from a Laplace transform solution of the

initial value problem. The dimensionless equation of motion for linear

nearest neighbor interaction isl

1" -
Sy (T) = Sy¢p - BN Sy—q , N> 1 (1)

For zero initial conditions and a velocity step at N = 4, the transform

solutions for acceleration, velocity, and displacement are

e e )"ul r‘¥+i°° (1 = l) »plpT-A(N-1)14
NN CONY T T y-ie ’5"pz e¥pLpt-AlN-17Jdp

with A =2sinh_:|(% p). The asymptotic solutions for N >> 1 can be carried out
3,4 .

in a straightforward manner. ’ With p = iw, A = ‘D-‘l’ and ;‘1 Now ot w3/ 24

for low frequencies, the asymptotic solutions are

8,"(1) ~ 2u, (-17Y3 pi-m) (2)
5,'(T) v [5 + /7 AL(-E)dE] (3)

‘ 1
SN(T) n ul{-é-(T—(N-l))

()
.
+ 200200 Gy/(2m) + 407 Ai(-t:)df,dn']}
in which stationary phase contributions are ignored. In equations (2)-(4)
n = 2 [T-(N-1)I(w-1)"23 (5)
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and Ai(-n) is the Airy function. The strain between two mass points N, N-1

is
| s )
strain (T - 8 (D
D1 yie L 1 2.1/2 .
* ZaT Tyoiw - 5L * 5 (410°) “JexplpT-A(N-1)]dp

-1/ 3A:'L( -n)

v o ul{%- + ngi(-E)dE + (N-1)

(6)

-2/3

+ 525 (N-1)"%/34 Ai(-n)/dn}

The asymptotic expression in Eq. (6) isvalid near the head of the wave.
Stationary phase contributions could also be included, but they yield terms
of order (N-154 and are only important behind the head of the wave. The
wiry function, its derivative and its integrals that appear in equations

(2)-(6) are tabulated in Ref, 5 and 6.

The particle velocity from equation (3)is shown in Fig. A for three widely
separated particles. The existence of a precursor prior to the arrival of
the head of the pulse is due to the frequency dispersion characteristics of
the lattice system. The displacement-time relationship given by equation (4)
yields the position-time curves shown in Fig. 2 for several neighboring

particles. To calculate the shock speed, let T( ) be the time at which the

N
disturbance associated with a given value of n arrives at particle N. Fom

equation (5)

1/3

T, | = :’g— (-3 5 + (¥-1)

(N)

For particle N + 1, the disturbance associated with the same value of n occurs
at time 'JiN-l-l)' The speed Us with which the disturbance travels from

particle N to N+ 1 is



Ug = LN+ 1) = NI/C(T 0y = Tiyy)
v 1/{1 + n/[G(N—l)z/a]} , N-1 >> 1
or
U ~1- n/[G(N—l)Q/SJ , N-1 >> |n] (7)

The dispersion of the shock in the neighborhood of the head of the wave,
given explicitly by equation (7), is also indicated by the curves in

Fig. . For n negative (T < N-1), the shock travels at a faster speed
than the sound speed; for n positive (T > N-1) the shock travels at a slower
speed than the sound speed, with the difference in shock speed in the
neighborhood of the head of ;the wave becoming vanishingly smdl at increas-
ingly large distances in the lattice. The decrease of the slope of the
mhoeel e 22t with L. hao Leew observed by Tsai and Beckett in

their numerical studies of shock waves.
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NONLI NEAR CASE
For nonlinear nearest neighbor interaction force of the type

F -(s -s.)?

nyne1™ TCen TS T e By 8%
where a is the coefficient of parabolic interaction, the equation of motion
is

Sy'(T) = (S, ~28y + Sy ) [1 -« (S, -5y )] (8)

The approximations used to obtain an analytical solution for the nonlinear
equations are described in Ref. 1. It is assumed that the displacement and
velocity are zero prior to the arrival time T, of the shock wave at the Nth

N

mass point. According to Ref. 1, T, isS calculated by

N
TN = (N—l)/Us (2)

where an average shock velocity, ﬁs, with which the wave travels is

computed from

= 9 ‘
Us = [1+ a(ul/US)] (10)
The solutions for particle acceleration and velocity arel
SN’l“(T') = 0 » T < TN o
: 11
acceleration =
e | (2BT) ,T > T
] = - ’
SN,2 (T) 2u_l(N l‘)T J2(N-l) N
S )
N,1 (T) =0 T < Ty
velocity = (12
S, ,'(T) = 2u (N-1) IT L g (2By)dy , T > T
N,2 1 Ty Y 2(N-1)" ’ N
where
2 _ ‘ —
B =1+ 2a(ul/US)
i i i [« " ]
The corresponding asymptotic expressions for S,2 and SN’2 are
" y=L/3 L oy . '
SN’Q ~ 2ulB(N 1) Ai(-B) _ (1)

B =,



SN,Q‘ vy ISNAi(—C)dE (12")
where
B = 2[BT - (N-1)1(N-1)"1/3
By = B(T = TN)

Before showing the consequences of the assumptions on which equations
(11) and (12) are based, it should be noted that the solution of Ref. 1
for acceleration and velocity imply a different expression for shock
velocity at the head of the wave, Us, than the average shock velocity
'I.TS used in computing TN from (9). Following the reasoning that led to
Egn. (7) for the linear case, the shock velocity from the asymptotic solution

for the nonlinear case is

/3

U v B+ 0 (6/(N~l)2 ) (13)

A comparison of US ~ B with ﬁs given by (10) can be made by expanding both

expressions i n powers of au,. The results are

1
U ~B~X1+ au, - (au“)z + 0(ou )3 (14)
8 1 1° 1 :
! 3 2 3 ST T
Us N+ 7o, - g (aul) + O(aul) o (15)

From (14) and (15), Ug IS greater than 'ﬁs, with the two shock velocities
differing in their first order dependency on e, . Therefore, the shock
velocity implied by the wave solution is not consistent with the shock

velocity used in obtaining the solution.

With regard to computing particle velocity, if T, = (N--.).)/Us =

N

(N-1)/B is used, then BN = 0 and




B 4 13
SN,Q' vy J’o Ai(-£)dg (12")

For the linear case, the maximum value of particle velocity (from equation
(3)) is 1.27u,, and far behind the head of the pulse the solution approaches
the applied step velocity Us as it should. For the nonlinear solution
given by equation (12'"), the maximum value of particle velocity is O.Quul,
and far behind the head of the pulse the solution approaches the value
(2/3)ul, which is physically unacceptable.® Similarly, computing displace-
ment by integrating SN',2'(T)’ with zero value for displacement when T < T,,,
also yields a physically unacceptable solution. The problem with the non-
linear analysis of Ref. 1 liesin the assumption that the particle displace-
ment and velocity are zero prior to the arrival time T of the shook wave.
Hence, there is no acceleration prior to TI\'I at which time a discontinuity
arises in the acceleration. As isseen in Figs. 1 and 2, the existence of
nonzero values of velocity and displacement prior to the arrival of the head

of the pulse are fundamental characteristics of the lattice chain and should

not be ignored.

%It should be noted that if U , rather than US, ware used to determine TN’
then the particle velocities #ould be still rSwer.
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FIGURE LEGEND

Fig 1 Particle velocity for three particles, linear case. Dashed |ine
i ndi cates the solution for the continuum approxi mati on.
Fig. 2 Position-timerelationshipfor three neighboring particles,
l'inear case with Uy = 0.2
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