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A semi- inf ini te  l a t t i c e  chain,  with f i n i t e  veloci ty  s t ep  applied a t  

the f i r s $  mass po in t ,  is analyzed t o  obtain  shock wave solut ions  which 

a r e  asymptotically va l i d  a t  l a rge  dis tances  along the  chain. For t he  

case of l i n e a r  neares t  neighbor i n t e r ac t i on ,  solut ions  a r e  given i n  terms 

of tabulated funct ions  f o r  a l l  q u a n t i t i e s  of i n t e r e s t .  For t h e  case of 

nonlinear neares t  neighbor i n t e r ac t i on ,  a  so lu t ion  previously obtained by 

Manvi, Duvall, and Lowell is put i n  asymptotic form and its l imi ta t ions  are 

discussed. 



NOTATION 

Airy function 

coefficient of nonlinearity (nondimensional) 

argument of Airy function for nonlinear case 

Bessel function of first kind and of order 2(~-1) 

Gamna function 

argument of Airy function for linear case 

Laplace transform parameter 

dimensionless displacement from equilibrium of the Nth mass point 

= (displacement) /( equilibrium distance between mass points ) 

dimensionless time = (time)*(reference frequency), reference 

frequency is the square root of the spring stiffness divided by 

the mass of a particle 

arrival time of shock wave for nonlinear solution 

dimensionless velocity step at M = 1 

= (velocity)/(Newtonian sound speed) 

dimensionless shock velocity from asymptotic solutkbns. 

= (shock velocity )/(Newtonian sound speed) 

.= dimensionless average shock velocity 

dimensionless frequency = (frequency)/(reference frequency) 

dimensionless position of Nth mass point 

= (position coordinate )/(equilibrium distance between mass points 



INTRODUCTION 

The exact solution fo r  shock waves in  a semi-infinite chain of mass 

points has been obtained by Manvi, Duvall, and ~ o w e l l l  f o r  l inear  nearest 

neighbor interaction. The solution f o r  acceleration is given by 

-1 SN1'(T) = 2ul(A-1)T J2(N-l) (2T) f o r  N 1 2 ,  where ul is  the velocity s tep  

a t  the first pa r t i c l e  and different iat ion with respect t o  time is indicated 

by a prime. The l inear  case is extended i n  R e f .  1 t o  a nonlinear nearest 

neighbor interact ion case by a time averaging procedure. In both cases, 

the velocity and displacement a t  any mass point are prescribed by successive 

integration of the  acceleration with respect t o  time. However, the  integrals  

a re  not tabulated for  large values of N because of large orders of the  Bessel 

functions involved. It i s  the  purpose of t h i s  note t o  point out t h a t  i n  t h e  

~ P C -  of 1 i n e n r  .i n t - e r ~ c t i m  sirnn7-e asymptotic solutions ex i s t  i n  terms of 

tabulated functions for  large values of N f o r  a l l  of the  quanti t ies  of 

in te res t  (acceleration, pa r t i c l e  velocity,  displacement and s t r a in ) .  I n  the  

case of nonlinear interact ion,  t h e  solutions of Ref. 1 are  put i n  asymptotic 

form. The nonlinear asymptotic solutions yield a shock velocity expression 

for  the head of the  wave; they a l so  show t h a t  integration with respect t o  

time of the anhlytioal solution for  acceleration given f n  Ref. 1 does not 

y ie ld  physically acceptable solutions for pa r t i c l e  velocity or displacement. 



LINEAR CASE 

r o r  l a rge  order ,  Bessel functions a r e  e s s e n t i a l l y  zero u n t i l  the  argu- 

ment of t h e  function approaches t he  order ,  a t  which time a Bessel function 

2 
can be represented by an Airy function.  Rather than use t h i s  property of . 
Bessel funct ions ,  however, it is simpler i n  t h e  l i n e a r  case t o  obtain 

asymptotic so lu t ions  d i r ec t l y  from a Laplace transform so lu t ion  of the  

i n i t i a l  value problem. The dixensionless equation of motion f o r  l i n e a r  

neares t  neighbor i n t e r ac t i on  is 1 

SNV(T) = N - , N > 1  (1) s ~ + l  - 2S + 1 

For zero i n i t i a l  condit ions and a ve loc i ty  s t e p  a t  N = 1, the  transform 

solut ions  f o r  acce le ra t ion ,  ve loc i ty ,  and displacement a r e  

-1 1 with A =2s inh  (q p) .  The asymptotic so lu t ions  f o r  N >> 1 can be car r ied  out  

i n  a s t ra ightforward manner. 
3 3'4 = i o ,  A = i A l ,  and A1 2 w t w /24 

f o r  low frequencies,  t h e  asymptotic so lu t ions  a r e  

i n  which s t a t i ona ry  phase contr ibut ions  a r e  ignored. I n  equations (2)-(4) 

n = 2 [T-(N-l)J(N-l) 
-1/3 ( 5 )  



and A i ( - v )  is the hipy f u r ~ c t i o n .  The, s t r a i n  between two mass points M, N-1 

i s  

strain = SN(T) - SN-l(~) 

The asymptotic expression i n  Eq. C6) i s  va l id  near t h e  head of the  wave. 

Stationary phase contr ibut ions  could also be included, but they y i e l d  terms 

4 of order ( ~ - 1 r  and a r e  only important behind the  head of t h e  wave. The 

wiry function,  i t s  der iva t ive  and its in t eg ra l s  t h a t  appear i n  equations 
. . 

(2)-(6) are tabulated i n  R e f ,  5 and 6. 

The p a r t i c l e  ve loc i ty  from equation (3) is  shown i n  Fig. 1 f o r  th ree  widely 

separated p a r t i c l e s .  The existence of a precursor p r i o r  t o  t he  a r r i v a l  of ' 

t he  head of the  pulse  i s  due t o  the  frequency dispers ion cha rac t e r i s t i c s  of 

the  l a t t i c e  system. The displacement-time xwlationship given by equation (4) 

yie lds  t h e  position- time curves shown i n  Fig. 2 f o r  s eve ra l  neighboring 

pa r t i c l e s .  To ca l cu l a t e  t h e  shock speed, let  T(*) be t h e  time a t  which the  

disturbance associated with a given value of n a r r i v e s  at  p a r t i c l e  N. From 

equation ( 5 )  

For p a r t i c l e  N + 1, the  disturbance associated with t h e  same value of n occurs 

at  time . The speed Us with which the disturbance t r a v e l s  from 

p a r t i c l e  N t o  N + 1 is 



The d i spers ion  of  t h e  shock i n  the neighborhood of  t h e  head of t h e  wave, 

given e x p l i c i t l y  by equation ( 7 ) ,  i s  a l s o  ind ica ted  by t h e  curves i n  

Fig. 1. For q negat ive  (T < N-l), t h e  shock t r a v e l s  a t  a f a s t e r  speed 

than t h e  sound speed; f o r  n p o s i t i v e  (T > N-1) t h e  shock t r a v e l s  a t  a slower 

speed than t h e  sound speed, wi th  t h e  d i f fe rence  i n  shock speed i n  t h e  

neighborhood of  t h e  head o f f h e  wave becoming vanishingly small a t  increas-  

i n g l y  l a r g e  d i s t a n c e s  i n  t h e  latt ice.  The decrease of t h e  s lope  o f  t h e  

L -  . - *  \ ... A1 r .. . - ., . . .& .... i.;; t ~ c ~ i  uLscrved by Tsai and ~ e c k e t t '  i n  

t h e i r  numerical studies of shock waves. 



NONLINEAR CASE 

For nonlinear neares t  neighbor in te rac t ion  force  of t h e  type 

where a is t h e  coe f f i c i en t  of parabolic i n t e r ac t i on ,  t h e  equation of motion 

is  

The approximations used t o  obtain  an ana ly t i ca l  so lu t ion  f o r  t he  nonlinear 

equations a r e  described i n  R e f .  1. It is assumed t h a t  t he  displacement and 

ve loc i ty  a r e  zero p r i o r  t o  t h e  a r r i v a l  time TN of t h e  shock wave a t  t h e  Nth 

- mass point .  According t o  Ref. 1, TN i s  calculated by 

- 
where an average shock ve loc i ty ,  "s ' with which t h e  wave t r a v e l s  is 

computed from 

The so lu t ions  f o r  p a r t i c l e  accelerat ion and ve loc i ty  a r e  1 .  

. . . . 
SNSll'(T) = 0 9 .T < TN 

accelerat ion = (11) 
-1 (2BT) ,T > TN 

S, ,211(T) = 2ul(N-1)T J2(N-l) 

S ~ S l l ( ~ )  = o 'T < T~ 
ve loc i ty  = (12 

T 1 
N ,2 

(2By)dy, T > TN s ' (TI = 2ul(N-1) IT y J2(N-l) , 

N 

where 

The corresponding asymptotic expressions f o r  S I' and S ' are 
N ,2 N S2 



Before showing the  consequences of t he  assumptions on which equations 

(11) and (12) axe based, it should be noted t h a t  t h e  so lu t ion  of Ref. 1 

f o r  acce le ra t ion  and ve loc i ty  imply a d i f f e r e n t  expression f o r  shock 

ve loc i ty  a t  t he  head of t he  wave, Us, than t h e  a v e n g e  shock ve loc i ty  

- 
Us used i n  computing T from (9) .  Following t h e  reasoning t h a t  l ed  t o  N 

Eqn. (7) f o r  t he  l i n e a r  case, t h e  shock ve loc i ty  f i m m  t h e  asymptotic bolution 

f o r  t h e  nonlinear case is 

A comparison of U 5 B with cs given by (10) can be made by expanding both 
5 

expressions i n  powers of aul. The r e s u l t s  are 
. . 

From (14) and d 151, US is g rea t e r  than cs, with t h e  t u o  shock ve loc i t i e s  

d i f f e r i n g  i n  t h e i r  first order dependency on aul. Therefore, t he  shock 

ve loc i ty  implied by t h e  wave so lu t ion  is not cons i s ten t  with t h e  shock 

veloc i ty  used i n  obtaining t h e  solut ion.  

With regard t o  computing p a r t i c l e  ve loc i ty ,  i f  TN = (N-l)/US = 

(N-1)/B is used, then BN = 0 and 



For the  l i n e a r  case ,  t h e  maximum value of p a r t i c l e  ve loc i ty  (from equation 

(3) ) is 1.27ul, and f a r  behind the  head of t he  pulse t h e  solut ion approaches 

the  applied s t e p  ve loc i ty  u a s  it should. For t he  nonlinear so lu t ion  
1 ' 

given by equation (12"), t he  maximum value of p a r t i c l e  ve loc i ty  is 0.94ul, 

and far behind the  head of the  pulse t h e  so lu t ion  approaches t he  value 

( 2/3 )ul, which is  physical ly  unacceptable. * Similar ly ,  computing displace-  

ment by i n t eg ra t i ng  S '(TI, with zero value f o r  displacement when T < TN, 
N, 2 

a l s o  y i e l d s  a physical ly  unacceptable solut ion.  The problem with t h e  non- 

l i n e a r  ana lys i s  of Ref. 1 l i e s  i n  the  assumption t h a t  t h e  p a r t i c l e  displace-  

ment and ve loc i ty  are zero p r i o r  t o  t he  a r r i v a l  t i m e  Tli of the  shook wave. 

Hence, t h e r e  is  no accelerat ion p r io r  t o  T a t  which time a discont inui ty  N' 

a r i s e s  i n  t h e  accelerat ion.  As is seen i n  Figs. 1 and 2,  t h e  existence of 

nonzero values of ve loc i ty  and displacement p r i o r  t o  t h e  a r r i v a l  of t h e  head 

of  the  pulse a r e  fundamental cha rac t e r i s t i c s  of t he  l a t t i c e  chain and should 

not be ignored. 

*It should be noted t h a t  if  %, r a the r  than Us, ware used t o  determine T 
then t h e  p a r t i c l e  v e l o c i t i e s  would be st i l l  lower. N' 
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FIGUtU LEGEND 

Fig. 1 particle velocity fcm three particles, linear case. Dashed line 
indicates the solution for the continuum approximation. 

Fig. 2 Position-time relationship for three neighboring particles, 
linear case with u = 0.2 
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