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Introduction 
Tm classical theory of hydrodynamic lubrication is 

based on the assumption of negligible inertia forces. Conse- 
quently, the theory is a linear theory and corresponds mathe- 
matically to a flow with zero Reynolds number. I n  recent years, 
the nonlinear aspects of hydrodynamic lubrication have become 
of interest. This interest stems from the use of higher bearing 
speeds as well as low viscosity lubricants such as gases and liquid 
metals. Both of these effects contribute to an increased Reynolds 
number and therefore result in conditions for which the inertia 
effect may no longer be negligible. 

The influence of the nonlinear inertia terms has been investi- 
gated in an approximate manner by Osterle, Saibel, et al. (ref- 
erences [2,5,6,8, lo]).' The technique employed was to  approxi- 
mate the inertia terms by the average value across the film, thus 
making the inertia terms a function of longitudinal direction 
only. The equation of motion could then be integrated locally 
across the film and an expression for the pressure gradient ob- 
tained as a function of film thickness and total mass flow rate of 
lubricant. 

Another approximate solution was obtained by Kahlert [9] 
who solved the equation of motion neglecting inertia and then 
approximated the inertia terms by averaging across the film, 
using the inertialess velocity expressions. I n  reference [5], a 
comparison is made between Kahlert's technique and the Osterle- 
Saibel approximation. The two methods agree reasonably well 
although Kahlert's corrections to the inertialess pressure distri- 
bution are generally larger than those predicted by the Osterle- 
Saibel method. 

Milne [4] has considered a solution to the complete equations 
of motion in cylindrical coordinates without using the thin film 
approximation. His technique consists of a series expansion of the 
stream function with reciprocal ldnematic viscosity as the expan- 
sion parameter. The zero order term in the series then cor- 
responds to the inertialess case since l/v = 0 for negligible 
inertia. 

I n  the present analysis, the influence of the nonlinear inertia 
terms in the slider bearing is investigated by a more exact series 
solution. The solution considers the local variation of the inertia 
terms across the film as well as in the direction of motion of the 
slider. 
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The Analysis 
The governing equations for the slider bearing including inertia 

terms are 

I n  the prescnt analysis, a linear variation of film thickness is con- 
sidered, and the geometry is illustrated in Fig. I .  

Fig. 1 Slider bearing geometry 

Before proceeding to the solution of the complete equation of 
motion, it will be useful to summarize the results for the inertia- 
less case. Neglecting the inertia terms in equation (1) and inte- 
grating the equation of motion across the film, subject to the 
boundary conditions 

u(0) = U u(h)  = 0 (3) 

gives 

where q = v/h. The total mass flow rate per unit depth in the Z 
direction is 

From equations (4) and (5) the following expression can be oh- 
tained which will be useful later 

Integrating equation (6) over the length of the beafing subject 
to  the boundary conditions 

P(h  = ho) = Pa P(h = hl) = Po (7) 

Nomenclature 
C,, = pressure expansion coefficients of $* = bearing load including inertia p = absolute viscosity 

equation (18) m = total mass flow rate per unit depth ?I 
h = film thiclrness in Z direction v = ;  
h,, = h a t x  = 0 P = pressure 6 = h/ho 
hl = h a t x  = L Pa = pressure a t  x = 0 and z = L = stream function 

dh hl - ha h ' = - = -  u = longitudinal velocity v = kinematic viscosity 
dx L U = plate velocity 
v v = transverse velocity 

K = - 
h' x = longitudinal coordinate 

L = bearing length y = transverse coordinate 
B = bearing load neglecting inertia p = density 

Discussion on this paper will be accepted at ASME Headquarters until November 19, 1962 



Equation ( 6 )  for the inertialess case suggests that a series es- 
pansion of the pressure gradient be assumed in the form 

gives 

where ho is the film thickness at x = 0 and hl is the thiclrness at  
a = L. 

where the C's are constants. Substituting equation (18) into 
(17) and equating coefEcients of successive powers of 6 to zero 
gives the series of equations 

\ 
I 

From equations (4), (6), and (8), the velocity expression can be 
written rts 

which is of the form 

with 

In  writing equation ( l ' i ) ,  the constant K has been defined f i ~ ~ c h  
that f Defining the stream function !4/ such that 

equation ( 1 0 )  suggests that a series solution for \k be assumed as 

The series of equations for the f furictioris are each oi third 

ever, each equation for f involves one of the constants C of the 

I 
order and thus three constants of integration will appear. Zlol\.- 

pressure gradient expansion, and if C* appearing in the j,, eyua- 
tion is considered to be a fourth unspecified constant, then four 
boundary conditions may be applied. 

Except for the equation for f,,, ench of the f, equations is linear, 
and can be easily convrrted to a Volterra integral equation of thc 
second lrind. 

I 

where 6 = It/hn, q = ?)/It, and K is a nondimensiondizing con- 
stant to  be specified later. 

Expressing the appropriate velocity expressions in tenns of the 
stream function gives 

K - -  - h~ (./"of" + .f1'"8 + ,f2'"6f + ,f3'''83 + . . .) (14) 
Discussion of Bou~idary  Conditiolls 

@I2 The boundary conditions to be satisfied are 

a14 
- - lih' - -- 
ax  hZ 

(fo' + fi'6 + jz'J2 + ja'SS + . . .) 
K7h' 

- - (fo" + fi"6 + f2"82 + . . .) 
ha 

Kh' + - (A' + 2J2'6 + 3faf6' + lf.i'S3 + . . .) (15) huh 

Kvh' 
v =  - ( r  . 0' + J1'6 + jZ's2 + . . .) 

Kh' 
- - (h 2196 + :3faS2 + . . .) ( 1 6 )  ho 

where h' = clh/dx = constant. 
Substituting equations (12)-(16) into (1) and multiplying by 

h3 - 
PK gives 

-(So' + f i t s  + A'SZ + . . . ) ( . fa1 + . /~'6 + S2'6Z + . . .) 
+ (So' + f1'6 + f2'S2 + . . .)( f1'8 + 2jx'S2 + 3j3'6' + . . .) 
-(So1' + fi"6 4- j2"62 + . . .)(f16 + 2 f d Z  + ,7S363 + . . .) 

h3 aP + = .fd" + jl"'6 + .L"'82 + . . . (17) 

Reierriny to equations ( 1 2 )  and ( 1 6 )  shows that  the follo~~ing 
conditions will satisfy the boundary conditions of equalion (23). 

The four boundary conditions for each f function will then 
determine the Cn of the pressure gradient expansion. The C,, 
will involve m as seen from equation (24). Substituting the C, 
into equation (18) and integrating gives another constant of 
integration. This constant and the unknown constant m can bbe 
determined a8s in the inertialess case by applying the two bound- 
ary conclitions on P 

P(lt = ho) = I'o P ( h  = hl) = Po (27) 

The pressure distribution is thereby determined. 
Solutions for to and fi. The first order inertia eflects can be de- 
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ter~nined by considering only the first two terms of equation (18) 
by analogy with the corresponding inertialess expression given 
by equation (6). The problem is then to determine the constants 

12m 
Coo = -- 

P 

Q and Cl of equation (18) which requires a solution of equations 
(19) and (20) forjo and f l ,  respectively. 

From equation (19) we have 

A comparison of equations (6), (18)) tbnd (31a) shows that the 
first term in the Coj expression corresponds to the  inertialess case. 
Equations (31a) and (33) arc! suficient to  determine Coj to any 
desired accuracy by a process of successive substitu~tions. From 
an inspection of the equations, it is clear that Coj will have the 
form 

with boundary conditions 

where the B l  are constant. Since IC wns defined us 

Recttuse of the nonlinearity of the equation, an exact solution 
satisfying the boundary conditions cannot be given. However, 
an approximate solution can readily be obtained by successive 
approximations. If fai represents the j th  order approximation 
and gi = ( joif)2, the exact equation is replaced by the linear jth 
order approximation as 

the constant Coj reduces t o  the inertialess case if 1/1< = 0. The 
condition l / IC = 0 implies either Y = m, the fictitious limiting 
case of zero Reynolds nu~r~ber, or h' = 0, the case of parallel 
surfaces. 

Since the jl equation, (ZO),  is linear and nonhomogeneous, it 1 
j~ j" '  + gj-I = - C,jj 

K (29) 

Thus the zeroth order approsimation will be the solution to 

1 
joo1l1 = - GIII 

can readily be convertcd into a Volterra integral equation of the 
first kind by performing three integrations and applying the 
boundary conditions of equation (25). The result is 

the first order uppro~irnat~ion the solution to 

and so forth. 
Integrating equation (29) three times between the limits of 0 

and q and utilizing the boundary conditions foil(0) = 0 = jnj(0) 
gives 

I t  is clear from an examination of equations (B), (IS), and (366) 
that the first term of the Cl equation corresponds to the inertia- 
less case. Using equations (33), (36a), and (36b) permits an 
evaluation of Cl to any desired accuracy and it is clear froin an 
inspection of the equations that Cl mill be expressible as a pourer 
series in (l/IC). 

Pressure Distribution and Load Capacity. T O  evaluate the influence 
of inertia on pressure distribution equation (18) is integrated and 
compared with the integrated version of equation (6). The 

The constants Coj and A j  are evaluated from the conditions 
m 

j11,{1) = - f '(1) = 0 with the results 
PK' O' 

boundary conditions on pressure which are applied are 

P(h = ho) = Po P(h  = h ~ )  = Po (37) 

I n  the present analysis, only the first two terms of equation (18) 
will be retained and the constants Co and CI will be evaluated 
to terms linear in  1/K. This will givc what might be termed 
first order inertia effects. 

An examination of equations (31a) and (33) shows that 

and that to  evaluate Coj to order 1/K requires the retention of 
terms to order (l/K)"n gj. Equation (3la) then becomes 

Performing'the integration gives 

Equations (31)-(33) are valid for j 2 1 and the zeroth order 
results are 

Similarly, an evaluation of C1 to order 1/K requirea terms up  to 
order ( l /K)Z in j o ' f i  and from equations (33) and (36a) we get 
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where 

Substituting equation (41) into (36b) and performing the integra- 
tion gives 

The quantity m / p  and the constant of integration appearing 
when equations ( 6 )  and (18)  are integrated are eliminated from 
the two boundary conditions of equation (37). The integration is 
facilitated if the transformation 

d d = h ' -  
x dh 

is used. 
The solution to equation ( 6 )  can be written 

and the solution to equation (18)  is 

The negative sign must be chosen since the right side of equation 
(47 )  must vanish for = 0. 

Neglecting the term quadratic in d and substituting equation 
(47) into (44a) gives 

The parameter @ can be rewritten as 

which is the product of the Reynolds number based on hl and 
hl/L.  

The total load d: is given by 

!J h(hl + ho) 
If 6: is the inertialess load and &* is the load considering first 
order inertia effects, the percentage increase in load capacity due 

+ L ( - ) (14) to  the inertia effect can be written in the particularly simple 
h~ form 

where C* - 6: C"1' - 6U -- -- [ I  - ( I )  (51) 

c1 6: 6U 18 
C,' =--- = 6u - ---- 

ho E (:) ( 4 4 ~ )  where for simplicity Po has been taken as  zero. 
The quantity ( 2 *  - C)/& is shown in Fig. 2 for various va111eu 

The constants Ca and C1' may be related by applying the bound- of @ 6 1. It is seen that the variation is essentially linear over 
ary conditions to the integrated form of equation (18)  with the 
result 

Equations (43)  and (44 )  give the pressure distributions for the 
inertialess case and for the case of first order inertia effects, re- 
spectively. It is interesting to note that the equations differ 
only through the magnitudes of the coefficients 6U and CI', re- 
spectively, and that C1' = 6U for 1/K = 0. The first order 
inertia effects change the inertialess pressure distribution by a 
constant scale factor and the position of maximum pressure is the 
same in both cases. From the definition of 1 / K  

since hi = dh/dx < 0, 1 /K < 0 and therefore 

The effect of inertia results in higher pressures and consequently 
a greater load capacity than that predicted from the linear 
theory. 

The quantity m/p may be determined from equations (40), 
(44 ) ,  (45) and requires only the solution of a quadratic algebraic 

39 U m 
equation. Solving for the quantity - - - gives 

35 K p 

210 0 
0 0.2 0. & 0.6  0.8 1.0 

I 

Fig. 2 Increase in load capacity considering first order inedia effecf 
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the range considered. Also the inertialess load capacity is 

underestimated by 10 percent a t  a value of 6, = 0.55. 
Nomedcol hmnple. To demonstrate the range of cP which can 

be encountered ming different lubricants, the value of cP for four 
lubricrtnk will be calculated for the following assumed bearing 

conditions. 

I -; 0,002 in., U = 50 ft/sec, L = 12 in., h,/h, = 2 

The property values are taken from reference [7] and the values 
of cP are tabulated below. 

rlir 0.239 x 0.0464 
Light oil 4.6 X 10- 0.242 
Mercury 1 X 10-6 11.1 
Sodium 8.1 X 10-6 1.37 

The above examples show that the inertia effect for air would 
be negligible while the errors in load capacity for the light oil and 
eodium are approximately 6 percent and 19 percent, respectively. 
The error involved using mercury would be beyond the limit of 
validity of the  first order c~rrect~ion which neglects the term 
cluadratic in  @ in equation (47). 
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