Bitopolosical Spaces and Complete Regularity

By
D. V. Thampuran

The rain object of this paper is to prove that a bitopological space is completely regular iff it is homeomorphic to a subspace of a product of guasimetric spaces. hile proving this main result it has also been proved that a quasimetric space is completely remuler and the product of completely regular bitonolosical spaces is conpletely regular.

It is not difficult to deduce from the main result that a quasluniform space is completely regular.

Kelly (1) has proved several results on bitopological spaces. But our terminolosy is different and in our terminology, the results for bitopological spaces can be expressed in the same way as Sor topolosicel spaces.

Te have also proved that a subspace of a regular bitopological snace is regular and that the product of regular bitonological spaces is regular.

For topological spaces we follow the terminology of Kelley (2).

Definition 1 . Let \mathbb{M} be a set and \mathscr{F}, J^{\prime} tro topologies for W. The ordered trible (II, y^{\prime}, y^{\prime}) is said to be a bitopological space. We will say is the left topology, (M,y) is the left topological space, y^{\prime} is the right topology and ($1 \mathrm{~h}, \mathrm{y}^{\prime}$) is the right topological snace of the bitopological space (M,y, y').

When there is no risk of confusion we will denote this bitopological space by in. Rake $c A=\|-A$ for $A \subset M$.

Definition 2. A function d on the cartesian product of 11 with itself to the nonnegative reals is said to be a quesimetric for the set ifs d is such that for all points $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of M
(i) $a(x, y)=0$ in $x=y$ and
(ii) $d(x, y) \leqslant d(x, z)+d(z, y)$.

We will say (n, d) is a quasimetric space.

Let I be the family of 211 subsets T of 11 such that $x \in T$ implies $\{y: d(y, x)<x\} \in$ for some $r>0$. Then of is a topology for 1.

Denote by y^{\prime} the family of ell subsets T of 11 such that $x \in T$ implies $\{y: a(x, y)<r\} \subset$ for some $r>0$. Then g^{\prime} is also a topology for F 。

Definition 3. We will call of the left topology, y^{\prime} the right topology and ($\mathrm{m}, \mathrm{d}, \mathrm{J}, \mathrm{g}^{\prime}$, the bitopological space of the quasimetric δ.

We will usually denote the bitopological space (in, d, J, y^{\prime}) by (II, d) and also call it a quasimetric space.

For the reels, define a quasimetric m as follow s: $m(x, y)=y-x$ for all reel x, y.

Definition 4 . Ne will call m the usual quasimetric for the reals and the bitopological space of m the usual bitopological
space for the reals．
Definition 5．Let（ $11,9, y^{\prime}$ ），（17，ス，，ク＇）be two bitopological spaces and f a function from $\boldsymbol{l l}$ to \mathbb{N} ．We will say f is continuous iff it is $y-\Omega$ continuous and $y^{\prime}-n^{\prime}$ continuous and f is a homeomorphism ff it is one to one，it is continuous and its inverse is continuous．The two spaces are said to be homeomorphic iff there exists a homeomorphism from one space to the other．

Definition 6．Let J be an index set ana let（if $, J_{j}, y_{j}^{\prime}$ ）， $j \varepsilon J$ be a family of bitopological spaces．Denote by $\mathrm{j}, \mathrm{g}, \mathrm{g}$ ， the product respectively of the sets Il $_{j}$ ，the topologies J_{j} and the topologies \mathcal{J}_{j}^{\prime} ．Then the bitopological space（nl，of，of＇）， is said to be the product of the bitonological spaces（ $j_{j} J_{j}, J_{j}^{\prime}$ ）， ј εJ 。

Definition 7．Let（if，y，y^{\prime} ）be a bitopological space and let N be a subset of N ．Let N, N^{\prime} be the relativiaations respectively of J, J^{\prime} to N ．Then（ N, χ, χ^{\prime} ）is said to be a subspace of（ $M, \sigma, \sigma Y^{\prime}$ ）．

Definition 8．Let（N，goy，y^{\prime} ），（ N ，M，d^{\prime} ）be two bitopological spaces and f a function from 15 to \mathbb{N} ．We will say f is on open map iff
（i）$B \in \sigma$ implies the image $A B$ ，of B under f, is in d and （ii）$B^{\prime} \varepsilon \sigma y^{\prime}$ implies $f B^{\prime} \varepsilon \varkappa^{\prime}$

Let（h，y，y^{\prime} ）be a bitopological space and F a family of functions f such that f maps M into a bitopological
space \mathbb{N}_{f}. Denote by (11, N, N^{\prime}) the product of the bitopological spaces H_{f}, $f \in \mathbb{F}$. Define the function e from $\begin{aligned} & \text { d }\end{aligned}$
$e(x)_{f}=f(x)$, i.e. the $f-t h$ coordinate of $e(x)$ is $f(x)$.
Definition 9. The function e defined above is called the evaluation map of M into N. The family F of functions is said to distinguish points iff for each pair of distinct points x, y of ll there is f in F such that $f(x) \neq f(y)$. The family F is said to distinguish points and closed sets iff
(i) a subset B of $\mathbb{I I}$ is closed in of and $X \varepsilon \subset B$ imply there is f in such that $f(x)$ is not in the closure of $f B$ in the left topology of N_{f} and
(ii) a subset B^{\prime} of is closed in σ^{\prime} and $y \in c B^{\prime}$ imply there is g in F such that $g(y)$ is not in the closure of gB^{\prime} in the right topology of Ng_{g}.

Tmbedding Lemma. Let P be a family of continuous functions f such that f maps the bitopological space 11 into the bitopological space \mathbb{N}_{f}. Denote by \mathbb{N} the product of the bitopological spaces $\mathbb{N}_{f}, \perp \varepsilon \mathbb{F}$. Then
(i) the evaluation map e is a contimuous function from to \mathbb{N}
(ii) e is an open map of k onto elf if p distinguishes points and closed sets
(iii) e is one to one iff F distinguishes points

Proof. The last part is obvious. The first part follows since e followed by proiection P_{f} into the f-th coordinate space is continuous since $P_{f} e(x)=f(x)$. The second part can be proved a follows. Let B be a set open in the left topology of M and let x be a point of B. There is then a member f of F such
that $f(x)$ is not in the closure C of feB in the left topology of \mathbb{N}_{f}. 110% the set of all y $\varepsilon \mathbb{N}$ such that $y_{f} \& C$ is open in the left topology of N and its intersection with ell is a subset of $e B$. Hence $e B$ is a neighborhood of each of its points and so is open in the loft topology of IT. Similarly e maps sets open in the right topology of $1 /$ into sets open in the right topology of N . Therefore e is an open map if F distinguishes points and closed sets.

Let I denote the closed unit interval $[0,1]$ of the reals. Then the usual quasimetric m for the reals is also a quasimetric for I and $s o(I, m)$ is a quasimetric space.

Definition 10. A bitopological space (IN, J, y^{\prime}) is said to be completely recular iff
(i) $B \in G$ and $x \in B$ imply there is a function from $f 1 f$ to I such that fe $3=0, f(x)=1$ and
(ii) $B^{\prime} \varepsilon \mathcal{J}^{\prime}, y \in B^{\prime}$ imply there is a continuous function f from in to I such that $f(y)=0$ and $\cos ^{\prime}=1$ Theorem 1. Let (1, y, y^{\prime}) be a completely regular space. Then II is homeomorphic to a subspace of a product of quasimetric spaces.

Proof. Let $B \in \mathcal{J}$ and $x \in B$. There is then a continuous
function f_{B}, x from to I mapping $C B$ into 0 and x into 1 . And $B^{\prime} \varepsilon \mathcal{J}^{\prime}, X \varepsilon B^{\prime}$ imply there is a continuous function $f_{y, B}$, from W to 1 mapping y into O and $c B^{\prime}$ in to 1 . Finally let (h, d) be the quasimetric space where $d(x, y)=0$ for all x, y in in and

Let I he the identity mappins fom ($\mathrm{H}, \mathrm{g}, \mathrm{g}^{\prime}$) to (II, d) defined by $f(x)=x$. Let p be the family of functions consisting of f, oll functions of the form $f_{B, x}$ and all functions of the form $f_{y, B}$. Then P distinguishes points and points and closed sets. Hence ($M, \mathcal{J}, \sigma^{\prime}$) is homeomorphic to a subspace of a product of quasimetric spaces and this completes the proof.

Let x be a point and A a subset of 1 . will write $D(x, A)=\inf \{d(x, y): y \in A\}$ and $D(A, x)=\inf \{d(y, x): y \in A\}$.

Theorem 2 Let (n,d, J, J^{\prime}) be a quasimetric space and A a subset of Then $\{x: D(A, x)=0\}$ is the closure of A in (n, σ) and $\{x: D(x, A)=0\}$ is the closure of A in (if, σy^{\prime}).

Proof. Let B be the closure of A in (11, g) and let $C=\{x: D(A, x)=0\}$. Then $x \in C$ and $r>0$ imply there is $y \in A$ such that $d(y, x)<r$ and so every neighborhood of x in (II, y) intersects A. Hence $X \in B$ which implies $C \subset B$. Next $X \in B$ implies every neighborhood of x in (M, G) intersects A and so for each $r>0$ there is $y \varepsilon A$ such that $d(y, x)<r$. Therefore $D(A, x)=0$ or $x \in C$. Hence $B \subset 0$. Then $B=C$.

The second part of the theorem can be proved in the same way.

Lemma. Let (M, y) be a topological space, (R, R, R^{\prime}) the usual bitopological space for the reals and f a function from $1 h$ to R. Then f is $g-R$ continuous (lower semi-continuous) iff $x \in M$ and $r>0$ imply there is a neighborhood A of x such
that $f(x)-f(y)<r \operatorname{ror} 211$ y ε A. Also f is $g-Q^{\prime}$ continuous (upper semi-contimuous) if $x \varepsilon \operatorname{li}, r>0$ imply there is a neighborhood B of x such that $f(y)-f(x)<r$ for 211 y ع B.

Theorem 3. Let (ii, d, fy, y^{\prime}) be a quasimetric space and (R, Q, Q^{\prime}) the usual bitopological space for the reals. Let $f(x)=D(A, x)$ and $g(x)=D(x, A)$ where $x \& M$ and $A \subset M$. Then f and $-g$ are continuous functions from M to R.

Proof. Let x, y, z be points of II. Te know $d(z, x) \leqslant d(z, y)+d(y, x)$. Taking infima for z in A we get $D(A, x) \leqslant D(A, y)+d(y, x)$. If y is in the neighborhood
$\{y: d(y, x)<r\}$ for $r>0$ of x then $D(A, x)-D(A, y)<r$ and so f is $I-R$ continuous. In the same way we can prove f is also $y^{\prime}-\mathbb{R}^{\prime}$ continuous.

Proceeding similarly we can prove g is F - Q^{\prime} and $y^{\prime}-\mathbb{R}$ continuous. Hence $-g$ is $\sigma-\mathbb{R}$ and $y^{\prime}-\mathbb{R}^{\prime}$ continuous.

Lemma. Let f, g be continuous functions from a bitopological space M to R and $k>0$. Then $f+g$ and kef are also continuous.

Theorem 4. A quasimetric space is completely regular.

Proof. Let (M, d, $\mathcal{J}, \mathcal{Y}^{\prime}$) be a quasimetric space, A a closed subset of (11, $\sqrt[J]{ }$) and x a point of $c A$. Let $D(A, x)=k$. Then k is positive. Define e by $e(u, v)=\min \{k, d(u, v)\}$
for all u, v in . Then e is a quasimetric for whose left and right topologies are the same as those of d. Take $E(A, u)=\inf \{e(v, u) ; v \in A\}$. Define $f(u)=\mathbb{E}(A, u) / K$. Then I is a continuous function from 11 to I such that $f A=0$ and $f(x)=1$.

Next let B be a closed subset of (M, y^{\prime}) and let y be in cB. Let $n=D(y, B)$. Then n is positive. Let $p(u, v)=\min \{n, d(u, v)\}$. This will make n a quasimetric for H whose left and right topologies coincide with those of d. Let $P(u, B)=\inf \{p(u, v): v \in B\}$. Take $g(u)=1-P(u, B) / n$. Then g is a contimuous function from 1 to I such that $g(y)=0$ and $g(B)=I$.

Theorem 5. The product of comoletely regular bitopological spaces is completely reguler.

Proof. Let J be an index set and (${ }_{j}, \sigma_{j}, J_{j}^{\prime}$) a family of completely regular spaces. Denote the product space by (II, oy, y^{\prime}). Let A be a closed subset of (i, y) and x a. point of $c A$. Then $c A$ is a nei hborhood of x in (in, σ) and so there is a finite number of open sets $S_{i} \varepsilon \mathcal{J}_{i}, \ldots$, $S_{k} \in g_{k}$ such that $x \in P_{i}^{-1} S_{i} \cap \ldots \bigcap P_{k K}^{-1} \subset$ cA where P_{j} denotes projection into the j - th coordinate space. Denote by x_{j} the projection of x into the $j-$ th coordinate space. There are then functions f_{i}, \ldots, f_{k} such thet f_{i} is continuous from ${ }_{i}$ to $I, f_{i}\left(M_{i}-S_{i}\right)=0, f_{i}\left(x_{i}\right)=I$, etc. Define the function δ_{i} from to I by $g_{i}=f_{i} P_{i}$, otc. Take
$g(x)=\min \left\{g_{i}(x), \ldots, g_{k}(x)\right\}$. Then g is a continuous function from 11 to I such that $g A=0$ and $g(x)=1$.

It can similarly be proved that B is closed in
(if, σ^{\prime}), $y \in C B$ imply there is a continuous function on If mapping y into 0 and B into I.

Lemma. A subspace of a completely regular bitopological space is completely regular.

Hence we get the result: if a bitopological space II is homeomorphic to a subspace of a product of quasinetric spaces then is completely regular. Combining this with Theorem I we thus have

Theorem 6. A bitopological space is completely regular iff it is homeomorphic to a subspace of a product of quasimetric spaces.

Definition 11. Let (II, 9 , g^{\prime}) be a bitonological
space. It is said to be regular iff
(i) A is a closed subset of (If, F), $\mathrm{x} \varepsilon \mathrm{cA}$ imply there are disjoint open sets x, x^{\prime}, such that $x \varepsilon \sigma, x^{\prime} \varepsilon \sigma^{\prime}$, $A \subset X^{\prime}, x \in X$ and
(ii) B is a closed subset of (M, σ^{\prime}), $y \varepsilon c B$ imply there are disjoint open sets Y, Y^{\prime} such that $Y \varepsilon \mathcal{J}, Y^{\prime} \varepsilon \mathcal{J}^{\prime}$, $y \in Y^{\prime}, B \subset Y$

It is obvious from the definition that a completely regular bitopological space is regular. But the converse is not necessarily true.

Theorem 7. The product of regul ar bitopoiogical
spaces is regular.
Proof. Let d he an index set. Let (l ajar $\left.{ }_{j} \gamma_{j}, J_{j}^{\prime}\right)$,
 their product. Suppose A is a closed subset of (i, J) and $x \in c A$. Then cA is a neighborhood of x in (M, y) and so there are open sets $S_{i} \in \mathcal{T}_{i}, \ldots, S_{k} \in \mathcal{J}_{k}$ such that $x \in P_{i}^{-1} S_{i} \cap \ldots \cap P_{k}^{-1} S_{k} \in{ }^{i}$ cA where P_{j} is the projection from to ${ }_{j}$. Denote by x_{j} the projection of x into the j - th coordinate space. There are then disjoint open sets
$T_{i} \varepsilon J_{i}, T_{i}^{\prime} \in \mathscr{J}_{i}$ such that ${ }_{i} \mathbb{S}_{i} \subset T_{i}^{\prime}, x_{i} \varepsilon T_{i}$, etc. Let I be the intersection of the inverse projections of T_{i}, \ldots, T_{k} and T^{\prime} the union of the inverse projections of $T_{i}^{\prime}, \ldots, T_{K}^{K}$. Then T, T^{\prime} are disjoint, $T \in$ of,$T^{\prime} \varepsilon y^{\prime}$, $\mathrm{A} \subset \mathrm{T}^{\prime}$ and $\mathrm{x} \varepsilon \mathrm{T}$.

We can prove similarly that B is a closed subset of (M, σ^{\prime}), y $\varepsilon \subset B$ imply there are disjoint sets Y, Y^{\prime} such that $Y \in \mathcal{J}, Y^{\prime} \varepsilon \mathcal{J}^{\prime}, X \varepsilon Y^{\prime}$ and $B \subset X$. This completes the proof.

It is easy to prove that a subspace of a regular bitopological space is also regular.

Definition 12. A bitopological space (N, J, y^{\prime}) is said to be normal iff A, B are disjoint sets closed respectively in (H, of) and (if, of') imply there are
disjoint sets $C \in \mathcal{J}, D \varepsilon \mathcal{J}^{\prime}$ such that $A \subset D$ and $B \subset C$. Definition 13. A bitopological space (M, of , G') is seid to be completely normal iff A, B are disjoint sets closed respectively in (in, \mathcal{F}) and (if, of') imply there is a continuous function from 1 If to I such that $\mathrm{IA}=0$ and $f B=1$.

It is obvious that complete normality implies normality.

The following results were proved by Kelly (I) but usines a different terminology: A normal bitopological space is completely normal and a quasimetric space is normal. But these results are not difficult to prove using the view-point of this paper.

It is clear that normality is not hereditary and that the product of normal bitopological spaces need not be normal.

A topological space (II, of) can be considered to be the bitopological space (II, σ, σ^{\prime}) and then the preceding definitions and results apply to rogular, normal, completely regular and completely normal topolosical spaces. The results of this paper are thus generalizations of the curresponding results ior topological spaces.

If (in, y) is a tomological space then there is a topology of such that (fi, of, g^{\prime}) is normal and completely regular; it is only necessary to take of'as the topolocsy
having as base the family of all closed subsets of (if, J).

References

1. Kelly, J. C., Bitopological Spaces, Proc. London Math. Soc. (3) 23 (1963) 71-89.
2. Kellev, J. L., General Tonology, Princeton (1968).
