Remulan Spaces and Relations

By

D. V. Thampurem

The concept of uniform continuity of psendometric spaces has been genemalized in two ways both of which preserve symmetry: the method of Weil (5) through uniform spaces and the method of fremovich (1,2) and Smimov (4) through proximity spaces. Both of theses methods yield completely regul ar spaces. The method involving proximity spaces can be generalized still further, with preservation of symmetry, and this will yield regular tonologicel spaces. This can be accomplished through the use of a symmetric binary relation, hevins $s l l$ the properties of a proximity except one which is modified, whose topolosy is regular; every regular topology is the topology of such a relation. Products of such binary relations are also considered in this paper.

Regarding proximity spaces, the terminology used in this paper is that of Mamuzić (3).

Iet Z be a set. Pox a subset A of \mathbb{B} we will write $c A=E-A$. If $b \in 2^{\mathbb{E}}<2^{E}$ and (A, B) of b we will also write $(A, B) \in \operatorname{cb}$; if $A=\{x\}$ we will write (x, B) for (A, B).

> Iet $r \in 2^{\mathbb{B}}>2^{\mathbb{B}}$ be such that for all subsets A, P, C, D of B and all x in \mathbb{E}

Definition 1. A binary relation x defined as above is said to be a reguler relation for B. The ordered pair (E, r) is said to be a regular space.

We will usually write B for (E, r) if the context makes the meaning clear.

Let J be the family of all subsets T of \mathbb{E} such that x in T implies $(x, c T) \varepsilon$ cr.It is obvious that σ is a topology for E .

Definition 2. Let (\mathbb{E}, r) be a regular space. The topology of obtained as above is called the topology of r or of (\mathbb{E}, r) and ($\mathbb{E}, r, 7$) the topological space of r.

When (\mathbb{B}, r) is considered as a topological space we will write ($B, r, f)$. Let k be the Kuratowski closure function of the topolosy γ. We will denote ($\mathrm{I}, \mathrm{r}, \boldsymbol{J}$) also by (\mathbb{E}, r, k) or by \mathbb{B} alone if the meaning is clear.

Let k^{\prime} denote the interior function of k. Then $k^{\prime}=$ oke. If $A=\{x\}$ we will wite lx for k ho

$$
\begin{aligned}
& \text { Theorem I. } k A=\{x:(x, c h) \varepsilon \text { or }\} \text { where } A \subset \mathbb{E} \text {. } \\
& \text { Proof. Let } B=\{x:(x, c A) \varepsilon \text { cr }\} \text {. Now }
\end{aligned}
$$

${ }^{\prime} A \subset B \subset A$. Hence if $k^{\prime} B=B$ then $K^{\prime} A=B$. Let $x \varepsilon B$. Then $(x, c A) \varepsilon$ cr and so $(x, C) \varepsilon \operatorname{cr},(c C, c A) \varepsilon$ cr for some subset C of \mathbb{E}. Then $y \in c C$ implies $(y, C A) \quad \varepsilon$ cr and so $y \in B$ from which it follows $C C \subset B$. Hence $c B \subset C$ and so $(x, c B) \in$ cr which implies $k^{\prime} B=B$.
corollary. $\mathrm{kA}=\{\mathrm{x}:(\mathrm{x}, \mathrm{A}) \varepsilon \mathrm{x}\}$.

It is easy to see that $(A, B) \varepsilon$ or implies
A. $\int \mathrm{kB}=\varnothing$ and $k \mathrm{~A} \cap \mathrm{~B}=\phi \cdot \operatorname{M1so}(\mathrm{x}, \mathrm{A})$ \& cr implies (ky, kA) ε cr for from (x, A) e cr we get $(x, C), \mathcal{C r},(c C, A) \in$ cr for some subset C of B and then $(x, D) \varepsilon c r,(C D, C) \varepsilon c r$ and $(C C, A) \varepsilon c r$ for some subset D of \mathbb{B}; hence $k x \subset C D, k A \subset C$ and so (lX, kA) $\varepsilon c r$.

Definition 3. A topology of for E is said to be regular ff A is a closed subset of \mathbb{E} and X is a point, of \mathbb{E}, not in A imply x and A have disjoint neighborhoods. A topology σ for $卫$ is said to be completely regular ifs A is a closed subset of \mathbb{E} and x is a point not in A imply there is a continuous function from E to the closed unit interval $[0, I]$ such that $f(x)=0$ and $f A=1$.

Theorem 2. The topology of a regular relation is regular.

Proof. Let r be a regular relation for E and (E, r, k) the topological space of r. Let $A=$ KA and x ε ch. Then $(x, A) \varepsilon$ cr and so $(x, B) \varepsilon$ cr, $(c B, A) \varepsilon$ or for some subset B of B. Hence there is a subset C of \mathbb{E} such that $(x, C) \varepsilon$ or and $(c C, B) \varepsilon c r$. Evidently $x \quad \varepsilon$ ckC and $1 \times \mathrm{k}^{\prime} \mathrm{B}$. Now ckC and $\mathrm{l}^{\prime} B$ are disjoint open sets since they are subsets respectively of $C C$ and B.

Definition 4. Let (\mathbb{E}, r, k) be a regular space. A set B is said to be a r-neighborhood of a set A iff (A, CB) E cr.

A r-neighborhood is obviously a neighborhood.

If $(x, A) \varepsilon \operatorname{cr}$ then x and A have disjoint x-neighborhoods, because $(x, A) \varepsilon$ cr implies there are subsets B, C of \mathbb{E} such that $(x, C) \varepsilon c x,(c C, B) \varepsilon c x,(c B, A) \varepsilon c r$ and then $C C$ and B are disjoint r-neighborhoods respectively of x end A.

Theorem 3. If A is a r-neighborhood of x then there is an open r-neighborhood B of X and a closed r-neighborhood C of x such that $C \subset B \subset A$ 。

$$
\text { Proof the are given }(x, c A) \varepsilon \text { cr. Hence }(x, k c A) \varepsilon \text { cx }
$$

and so $B=c k c A$ is an open r-neighborhood of x. Now ($x, c B$) ε cr end so $(x, D) \varepsilon c r,(C D, C B) \varepsilon$ cr for some subset D. Then $C=k c D$ is such that $(x, 0) \quad \varepsilon$ cr and so C is a closed x-neighborhood of x. We also know that $k c D$ and $C B$ are disjoint and so $k c D$ is a subset of B. Hence $C \subset B \subset A$ 。

Let $B \supseteq A$ denote B is a r-neighborhood of A; if $A=\{x\}$ we will write $B \geqslant x$. The following properties of r-neighborhoods are easy to prove:

$$
\text { I. } \mathrm{B} \supseteq \mathrm{~A} \text { implies } \mathrm{CA} \supseteq \mathrm{CB}
$$

2. $B \supseteq \mathrm{~A}$ implies $\mathrm{B} \supset \mathrm{kA}$ 。
3. $B \supseteq A \supset c$ or $B \supset A \supset C$ implies $B \supseteq C$.

4. $B \supseteq x$ implies $B D A D$ for some A.

It is clear that uniform spaces and proximity spaces are regular spaces. A regular space ($\mathbb{E}, \mathrm{r}, \mathrm{k}$) is Hausdorff ifs it is \mathbb{T}_{3}.

Theorem 4. Let A be a subset of a regular space ($\mathbb{E}, \mathrm{r}, \mathrm{k}$). Then KA is the intersection of all the r-neighborhoods of A.

Proof. Let B be the intersection of all the r-neighborhoods of A; then kA is a subset of B. Suppose $x \in B-k A$. This implies there is a r-neighborhood C of A such that x is not in C. But B is a subset of C and hence x is in C which is a contradiction.

Corollary. The interior of A is the mion of all the sets for which A is a r-neighborhood.

Definition 5. A subset S of a topological space \mathbb{E} is said to be compact iff every open cover of S has a finite subcover. A subspace S of E is compact iff S as a subset of \mathbb{E} is compact.

Theorem 5. Let A, B be subsets of (E,r,k) such that A is compact and A and $k B$ are disjoint. Then ($A, k B$) ε cr.

Proof. x in A implies $(x, k B)$ e cr and so there is C such that $(x, C),(c C, k B) \in$ or. Then ckC is an open set containing x; the family of all such cke for x in A is an open cover of A and so has a finite subcover D_{1}, \ldots, D_{n}, sey. Let $D=D_{1} \circlearrowleft \ldots\left(D_{n} \cdot \operatorname{How}\left(D_{i}, k B\right) \varepsilon\right.$ cr for each $i=1, \ldots, n$ and $s o(D, x B) \varepsilon$ cr. Hence (A,kB) ecr.

Corollary. A, B are disjoint closed subsets of a compect (\mathbb{B}, r, k) imply $(A, B) \varepsilon$ cr.

Wheorem 6. Let J be a regular topology for E. Then oy is the topology of a reguler relation r for $\mathbb{B}^{\text {. }}$

Proof. Let k be the Kuratowski closure function
of σ. Por subsets A, B of \mathbb{B} write $(A, B) \varepsilon r$ iff
kA, kB are not disjoint.

Definition 6. Let 3 be a subset of a regular space (B, r). For subsets A, B of F rite $(A, B) \varepsilon$ iff $(A, B) \varepsilon x$. Then (F, s) is called a subspace of (I, r).

Definition 7. A regular space ($\operatorname{H}, \mathrm{r}, \mathrm{k}$) is called a r-extension of a regular space ($\mathcal{F}, \mathrm{s}, \mathrm{h}$) iff F is dense in \mathbb{E} and (\mathbb{F}, \mathbf{S}) is a subspace of (\mathbb{E}, r).

A subspace (\mathbb{F}, s) of a regular space ($\mathbb{E}, \boldsymbol{r}$) is
obviously regular; also the topology of s is the
relativization of the topology of r to \mathbb{F}. A regular space (F, S, h) does not always seem to be dense in a compact regular space ($\mathrm{B}, \mathrm{r}, \mathrm{k}$) for then the topology of h would be completely regular, being the relativization of the completely regular topology of k and so all regular spaces do not have compact r-extensions.

Definition 8. Let (\mathbb{E}, r), (F, s) be two regular spaces and f a function from \mathbb{E} to \mathbb{T}. Then f is said to be a r-maping or r-function iff $A, B \subset B$ and $(A, B) \& r$ imply (fA, fB) ε s. A r-function f is called a r-homeomorphism iff f is one to one and both f and its inverse are r-functions. Two regular spaces are said to be r-homeomorphic iff there is a r-homeomorphism betreen them.

Lemma. Let f be a function from a regular space
(\mathbb{B}, r, k) to a regular space (F, s, h). Then f is contimuous iff $(x, A) \varepsilon r$ imply $(f(x), f A) \varepsilon S$ for x in E and $A \in \mathbb{E}$

Theorem 7. Bvery r-wunction from (B, x, k) to (x, s, h) is continuous.

The converse of Theorem 7 is obviously not valid. It is easy to see that a function from (B, r) to (P, s) is a r-unction iff $A, B \subset E$, and $(A, B) \varepsilon$ cs imply $\left(f^{-1} A, f^{-1} B\right) \varepsilon$ cr. It is also clear that if f is a function from a proximity space (\mathbb{E}, δ) to a proximity space (E, δ^{\prime}) then f is a δ-function iff f is a r-function; this shows that r-functions are generalizations of δ-functions and that regular spaces have symmetry and form a class of spaces, more generel than proximity spaces, which admit of such generalizations.

Let (\mathbb{E}, K), (F, h) be regular topological spaces. Define regular relations r, sor E, F as follows: $A, B \subset \mathbb{E} \subset \mathrm{imply}(A, B) \varepsilon r$ iff $k A \cap \mathrm{~KB} \neq \phi$ and $C, D \in \mathbb{i m p l y}(C, D) \varepsilon$ ifinc \quad in $h \neq \phi$. Then a function f from (\mathbb{E}, r, k) to ($\mathcal{F}, \mathrm{s}, \mathrm{h}$) is a r-function iff f is continuous.

Let s be the intersection of a family of regular relations for \mathbb{E}. Then s has all the properties of a regular relation except perhaps the fourth condition in the definition of a regular relation. Similarly the union of
a family of regular relations for B will have all the properties of a regular relation except perhaps the sixth condition in the definition of a regular relation.

Definition 9. Let A be a set. Then a finite family A_{1}, \ldots, A_{m}, of subsets of A and whose union is A, is said to be a pertition of Λ.

Definition 10. Let r, s be two regular relations for a set \mathbb{B}. Then r is said to be finer than s (or s is coarser than r) iff $(A, B) \varepsilon r$ implies $(A, B) \varepsilon s$.

Theorem 8. Let s be the intersection of a family F of recular relations for a set A. Denote by u the union of all the regular relations finer than each member of F. Define r as follows: if $A, B \in E$ then $(A, B) \in r$ iff A_{I}, \ldots, A_{m} and B_{I}, \ldots, B_{n} are partitions of A and B imply ($\left.A_{i}, B_{j}\right) \varepsilon$ s for some $i=1, \ldots, m$ and some $j=1, \ldots, n$. Then $r=u$ and r is the coarsest regular relation finer than each member of R .

Definition 11. Let P be a family of regular relations for \mathbb{E}. Then the coarsest regular relation, finer than each member of F, is said to be generated by F.

Definition 12. A topology σ for E is said to be finer than a topology \& for \mathbb{E} (or S is coarser
than \mathcal{F}) iff S is a subfamily of \circ.

Let r be the regular relation generated by a family \mathbb{F} of regular relations for a set \mathbb{E}. Then the topology of r is the coarsest topology finer then that of each member of F .

Definition 13. A family R of binary relations
$b \subset 2^{\mathbb{R}} \nless 2^{\mathbb{E}}$ is said to be a regular family for \mathbb{I} iff

1. each nember of F satisfies the first five conditions
in the definition of a regular relation
2. s,t are in \mathbb{F} imply there is u in \mathbb{F} such that u
is finer than s and t
3. sin \mathbb{F} and $(x, A) \varepsilon c s i m p l y$ there is t in F and
a. subset C of E such that (x, C) ε ct and
$(c C, A) \& c t$.
The ordered pair (\mathbb{E}, R) will also be called a regular space.

A regular relation is a regular family containing only one nember.

Definition 14. Let R be a regular family for E. Then the family \mathcal{F}, of 211 subsets T of E such that x in T implies ($x, C \mathbb{P}$) ε cs for some s in R, (which is a topology for B) is said to be the topology of \mathbb{R} and we will denote the resulting topological space by (E, R, I) or simply by E .

Definition 15. Let R be a regular family for \mathbb{A}. Then r, defined by (A, B) is in x ifs (A, B) is in each member of R, (Which is a regular relation) is called the regular relation generated by R.

The topology of a regular family R coincides with the topology of the regular relation generated by R.

Let T be a family of regular relations for a set E. For each finite subfamily G of there is a coarsest regular relation g finer than each member of G; let R be the family of all such g for each finite subfamily G of F . Then R is a regular family. $A l s o n$ and F generate the sane regular relation.

Definition 16 . Let R, S be two regular families for B. Then R is said to be finer than S (or S is coarser than R) inf for each s in S there is r in R such that $r \subset$ s. -We will say R and S^{\prime} are equivalent jiff each is finer than the other.

Definition 17。 Let (\mathbb{E}, \mathbb{R}), ($\mathbb{E}^{\prime}, \mathrm{R}^{\prime}$) be regular spaces and f a function from S to \mathbb{E}^{\prime} 。 Then f is said to be $\left(\mathbb{R}, R^{\prime}\right)$-continuous ifs for each r^{\prime} in R^{\prime} there is r in R such that (A, B) is in r implies ($I A, I B$) is in r^{\prime}.

Let $(\mathbb{E}, R)\left(\mathbb{E}^{\prime}, \mathbb{R}^{\prime}\right)$ be regular spaces and f a function from B to B. Denote by r, r^{\prime} the regular relations generated
ry R, R^{\prime}. Then f from (\mathbb{Q}, r) to $\left(E^{\prime}, x^{\prime}\right)$ is a r-function if I is $\left(R, R^{\prime}\right)$-contimuous but the converse is not necessarily true.

Let E be a set, $\left(E^{\prime}, R^{\prime}\right)$ a regular space and f a function from \mathbb{E} to \mathbb{E}^{\prime}. For each r^{\prime} in \mathbb{R}^{\prime} write $(A, B) \& r$ for subsets A, B of E iff $(f A, f B) \varepsilon r^{\prime}$; let R be the family of all such r. Then R is a regular family for B and f is (R, R)-continuous. Also if S is a regular family for E such that f is $\left(S, R^{\prime}\right)$-continuous then S is finer then R. Write $f^{-1} R^{\prime}=R$ 。

Let E be a set and R_{i} a regular family, for \mathbb{E} for each i in an index set I. Denote by S the union of B_{i} for i in I. Por a finite subfanily T of S define (A, B) ε tiff A_{I}, \ldots, A_{m} and B_{1}, \ldots, B_{n} are partitions of A and B imply ($A_{a}, \cdot B_{b}$) is in each member of T for some $a=1, \ldots, m$ and some $b=1, \ldots, n ;$ let R be the family of all such t for each finite subfamily T of S. Then R is a regular family for E finer than each R_{i}, $i \in I$ and R is coarser than each regular fanily for E which is finer than each R_{i}; in this sense we can say R is the coarsest regular family finer than each R_{i}. Obviously R is unique up to equivalence.

Next, let E be a set and f_{j} a function from E to a regular space ($\mathbb{E}_{i}, R_{i}^{\prime}$) for each i in an index set I. Let $R_{i}=f_{i}^{-1} R_{i}^{\prime}$. Denote by R the coarsest reguler family finer than each R_{i} for i in I. Then R is the coarsest regular
family for R such that each f_{i} is ($R_{i} R_{i}$-continuous.

Definition 18. Let (E_{i}, R_{i}) be a family of regular spaces for each i in an index set I. Denote by E the Cartesian product of \mathbb{E}_{i} for i in I. Let R be the coarsest regular family for E such that projection into the i-th coordinate space is $\left(R, R_{i}\right)$-continuous for each in I. Then R is said to be the product of the regular families R_{i} for i in I and (\mathbb{E}, R) is said to be the product regular space.

It is clear that a product R is unique up to equivalence. It is easy to see that the topology of the product regular family is the product of the topologies of the regular families R_{i} for i in I.

Let $(\mathbb{B}, \mathbb{R}),(\mathbb{P}, S)$ and (G, T) be regular spaces. Let I be a (R, S)-continuous function from \mathbb{E} to I and $\&$ a (S, I)-continuous function from \mathbb{H}° to G. Then the composition gf is a (R, T)-continuous function from E to G. The next theorem is easy to prove.

Theorem 9. Let I be a function from a reguler space (\mathbb{F}, S) to a product $(\mathbb{E}, R$) of regular spaces. Then f is (S, R)-contimuous iff the composition $p_{i} f$ is (S, R_{i})-continuous for each i in I (using the notation of Definition 18) and this property determines the equival ence class of R.

Resular spaces do possess a property of functional separation similar to that of complotely regular spaces and is proved in another of my papers.

References

1. V. A. Efremovich, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76(1951) $341-343$ (Russian)
2. … , Geometry of proximity, Is llat. Sb. 31 (73) (1952)

189-200 (Russian)
3. 2. P. Mamuzic, Introduction to general topology, Groningen (1963)
4. Yu. M. Smirnov, On proximity spaces, Iat. Sb. 31 (73)
(1952) 543 - 574 (Russian)
5. A. Weil, Sur les espaces à structure uniforme et sur Ia topologie générale, Act. sci. et ind., 551, Paris (1937)

