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such thst f maps x inte O and each point of A into 1; it is also known that a
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Let M be s set snd U
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Definition 1. U is ssid to ke a quasiuniformity for M and (M,U) is said
be a quasiuniform space.
Let T be the family of sll subsets T of M such that x € T implies
{y: (y,x) U} CT for some U in Y; then T is a Lopology for M. ILet T’ be the
family of all subsets T of M such that x in T implies {y: (x,y) €U} < T for

. 7 S o
some U in U; then 77 is also a topology for M.



Tefinition 2. (M,7,77) 1s sald to Le the bitopological space of U and
T,T’ are said to be the left and rignht topologies of 1,

Tefiniton 3. A function 4 from M>tM to the non-negative reals is said

to be a quasimetric for M iff for all x,y,2 in M

(1) da(x,x) = 0 angd

(2) d(x,y) =d (x,z) +4d (z,y).
(M,d) is said to be a quasimetric space. The family U of all subsets U of M>=M
such that . {(x,y) : a{x,y) <r} €U for some r > 0 is said to be the quasiuniform-
ity of d. The left and right topologies and the bitopological space of U arx
said to be the left and right topologies and the bitopological space of d.

Let m be the quasimetric,for the reals R, defined by m(x,y) = max{y-x,0}.

Definition 4. For a subset A of R, the quasimetric m restricted to A is
called the usual quasimetric for A and the bitopological space of the usual
quasimetric for A is called the usual bitopological space for A.

Let K denote the closed unit interval [0,1] of the reals. We will also
denote by K the usual quasimetric space for K and the usual bitopological space
for K.

Definition 5. Iet (M,T,T’), (N,7,7') be two bitopological spaces and f
a funciion from M to N, Then f is seid to be continuous iff £ is T-7 continuoug
and T7/'-9 continuous. |

Definition 6. Let (h,T T') be a bitopological space and K the usual hitop-
ological space for the closed unit interval. Then M is said to be completely

gular iff
(1) A is a T-closed subset of M and Yy ﬁf A imply there is a contin-
uous function f from M to K such that fA = O and f(y) = 1 and
(2) Big a T'-closed subset of M and x ?IB imply there is a contin-
uous function g from ¥ Lo K such that g(k) =0 and gB = 1.

Thempuran (3,4,5) has proved that a bitoplogical space is cowpletely regular
iff it is the bitopological space of a quasiuniformity or s syntopogenous strue-
ture or a quasiproximity.

The object of this paper is to prove s stronger functional separation, for

a quasiuniform space, from which complete regularity will follow.
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continuous relative to Y,
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that (£(x), £(y)) € Vv for all (x, y) € U.
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(N,e) then

f is said to be uniformly continucous iff £ ies vniformly continuous relative to

the quasiuniformities of d and e.

and U’ the family of all inverses of members of U
formity of the usual quasimetric for the reals R.
Take £(x) = D(A, x) and g(x) = D(x, B) for x in M.

(1) £ is uniformly continuous relative to U % and

(2) g is uniformly continuous relative to %f, Ve

Proof.

Then

heorem 1. ILet (M, d) be a quasimetric spsce, Y the quasiuniformity of d
Denote by ¥ the guasiuni-

Let A,B be subsets of M.

(1) The family of 21l sets of the form V(r) = {(u, v): v-u<r, u, v € R},

r >0 is a base for ¥. For r > 0 let U(r)= {(x,y):d(x,y) <r, x, y € M}.

a(z, y) < d(z, x) + d(x, y) for ell %, y, z in M.

to z € A we get D(A, y) < D(A, x) + d(x, y). Hence (x, y) € U(r) implies

fly) - £f(x) < da(x, y) <r and so (f(x), £(y)) € v(zr).

continuous.

(2) Proof for g is similar.

Now

Taking infima with respect

Therefore £ is uniformly



From this it is easy to prov at s quesimetric space is normal, i.e.,

» 4 are the left and right topologies of a qussimetric and A, B are dis~

i Ll ' Lr " - P, L . b ¥ N 4 . s - - - 1,
Joint J-closed and J -closed subsels dmply there are disjoint sets el SHeH

that ¢ €J, D € JJ, ACD and B<CC, ¥First we observe that a uniformly con-
tinvous function is continuous and hernce it eessily follows that £ - g is &
continuous function from the gquasimetric space to the reals. Also, the
J-closure of a subset S of M is {x: D(S, x) = 0} and the J'-closure of § is

{x: D(x, 8) 0}. Consider the function h from M to the reasls defined by

h(x) = f(x) - g(x) where £(x) = D(A, x) and g(x) = D(x, B). Take C =
{x: n(x) >0} ana D = {x: n(x) <ol.

Lemma 1. Let (M, d) be a quasimetric space, £ a uniformly continuous
function from M to R and k > 0. Then %f is uniformly continuous.

Lerma 2. Let 4 be a guasimetric for M and k > 0. Then e defined by
e(x, y) = k a(x, y) for all x, y in M is a quasimetric for M and the quesi-
uniformities of 4 and e are the seme.

Proof. The result follows since{(x,y): e(x,y) <kr} = {(x,y):d(x,y) <r}
for each r > O.

Lemma 3. Let & be a quasimetric for M. Take e(x, y) = min {1, d(x,y)]
for all %, y in M. Then e is a quesimetric for M and the gquasiuniformities of

d and e coincide.



Proof, Obviously e(x, x) = O for esch x in M, To prove the triangle
inequality for e it is enough to prove thet if s, b, c are nonnegative num-
bers such that a £ b + ¢ then winil, a2} < min{l, b} + min{l, ¢}, If either
b or ¢ is = 1 then the result is immediste since min{l, a} is_S l. JIf both
b and ¢ are less than 1 then min{}, at £ a0 <h + c completes the proof of the
triengle inequality. Hence e is a quasimetric for M. Now the family of all
sets of the form U(r) = {(x, y): a(x, y) <r <1} for r >0 is a base for the
quasiuniformity of d and the fanily of all sets of the form Vir)={(x,y):

e(x, y) <r <1} for r >0 is = base for the quasiuniformity of e. It is
obvious that (x, y) € U(r) implies e(x, y) < r and so (x, y) € V(r); hence
U(r) € v(r). Also, if (x, y) € V(r) then d(x, y) < r as otherwise we get a
contradiction and so V(r) < U(r).

By combining Lemmas 2 and 3 we get the follcwing result.

Lemma 4. Let (M, d) be a quasimetric space and k¥ > 0, Define e by
e(x, y) = min{l, d(x, y)/k} for all x, y in M. Then e is a quasimetric for M
and the quasiuniformities of d and e are identical,

Let (M, d) be a quasimetric space and A, B subsets of M. Write D(4, B) =
inf {a(x, y): x € A, y € B},

Theorem 2, Let (M, d) be a quasimetric space and A, B subsets of M such
(that D(A, B) > 0. Then there is a uniformly continucus function f from M to K
guch thet fA = 0 and fB = 1.

Proof. Let D(A, B) = k. Then k > 0. Toke e(x, y) = min{1l, d(x,y)/kx}
for a1l x, y in M. Define E(A, u) = inf {e(x, u): x € A} for all u in M. Then
E(A,u) =0 for ell uin A, If x € A snd y € B then d(x, ¥) = k and so

dix, y)/k = 1; hence e(x, y) = 1. Trherefore E(A, u) = 1 for all u in B. For

u in M take f(u) = E(A, u). Then £ is a uniformly continuous function from



M to K such that fA = 0 gnd fB = 1.

Iet UC M=<Mend A ©M, Then we will write AU = {y:(x,y) ¢ U for some

Theorem 3. Let (M, U be e quasiuniform space and A, B subsets of M such
that AU N B = ¢ for some U € U. There is then s uniformly continuous function

f from M to K such that fA O end fB = 1.

Proof., Tnampuran (3) has proved that Y has a gage G. There is then &

gussimetrie 4 in G suck thot D(A, B) > 0. Hence there is a uniformly continu-
ous function f from (M, d) to X such that fA = 0 and £fB = 1. Since d is in
the gage of U this implies f is uniformly contimuous when f is considered ss
function from (M, U) to K.

Corollary. The bitopological space of a quasiuniform spsce is completely
regular.

Proqf. A uniformly continuous function is continucus. Letu (M, T, T') be
the bitopological space of Y. Then A is J-closed and y ﬁ A dwply AU N {y] = ¢
for some U € Y. Also B is J'-closed and x € B imply {x}V N B = ¢ for some
Y e

This corollary thus proves what had indeperndently been proved before.

The prgcedure used in this peper can also be employed to prove the anala-
- gous result for uniform spaces. If @ is a pseudometric for M then D(A, x) =
f(x) 1s a uniformly continuous function-— first we prove this. Next, we prove
that if (M, Y ) is & uniform space and A, B subsets of M such that AUN B = ¢
for some U in Y then there is a uniformly continuous function f from M to K
such that fA = 0 and fB = 1. Tt follows immediately that s uniform space is

completely repgular.
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