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SOME COMMENTS ON THE SOLUTION OF LINLAR i

R.P. Tewarson &rd B. Remnatih

Abstract. Homogeneous, ill-conditioned and singular linear equations are
congidered and soms methods for their .s'olution are despfibe;_i.
1. Introduction. | |

Iet us consider the system of simultanepus li'near equations

| Ax = b s | “ (1.1)

whére- A is ean m x n matrix of rank r, x and b are column vectors with n‘and
m  elements respectively. The elements of A, x, b are all real. The tech-
ni ques for the solution of (1.1) depend on many factors, for example, if A
is sparse andm = n = r, then we can make use of the methods given in [1].
In casem>n = r, and if we want to find m;Lcn max (v - Ax)i |, where .(b . Ax)i
denotes‘ the it element of the residual vector b - Ax, then we can utilize
L=2]. Sg;rne of the other cases are considered in this paper. Te will dis-
cuss homégeneous equations (1.1) with b = O in section 2, ill-conditioned
equations%with r =m = n in section 3 and rank deficient sy_stems viz.,
r < min_(m,.'n), in section L.
2. Homogeneous Equations.

Taking b =O in (1.1), we have

Ax =0 s A (2‘1)

" “the solution of which is easy to find, if 7(A). - the null-space of A - is

kmown. Let § be an orthogonal matrix of order n such that

FThis research was supported by the National Aeronautics and Space
Administration Gpant No. NGR-33-015-013. ’
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A5 = (B, 0) , - (2.2)

AT "~ ~ : ’
where B is m x r and 88T = STS = I _, the identity matrix of crder n. Then

n}
it folows that

4= (3, 0)8T = B8, | (2.3)

where ér denotes the first r rows of éT. If the last (n - r) rows of §T are

denocted by 8T , then
n-r

w0

A A~ - . -&Th - . ’ .
r Sn?r 0 51nge S S' In. . ‘ . - (2'h)

~ Let B denote an arbitrary columm vector with (n - 1) elements, then in -

e

view of (2.1), (2.3) and (2.hj we have
Ax = 0 = Bégx =0 =x= én—rB .

In fact, the columns of én—r form an orthonormal basis for 7(L). The con-
struction of S in (2.2) as a product of matrices of the type I - 2ewl is
described in [3]. Notice that in (2.2), A is post multiplied by elementary
orthogonal matrices and column permutationé (which are absorbed in g) are
usually required, as the r linearly independent columms of A are not neces-
sarily the first r coluwms. If A is sparse, then the reader is referred to
section 5.0f [L]. In any case, the above-mentioned orthogonal triangulari-

zations are highly stable with respect to the rounding errors [3].' For an

alternative discussion of the solution of (2.2) see [5], where an opera-
‘ £

tion similar to the Gauss Jordan Elimination is applied to the matrix (I) .

’ "~
" In-othsr words,-S is computed as a monsingular but not necessarily orthogon-. .

al matrix. Unfortunately, the scheme is unstable with respect to the round-

ing errors.
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3. T1l-Conditioned Equations.

For any given A in (1.1), there exist orthogonal matrices Q and S such

' D 0 |
QA8=[ ]: (3-1)
, Lo 0

where D is a diagonal matrix with elements py, > pp > ..o > W, > 0, which

that

are called the singular values of A [6, 7]. If r=m= n, then the condi-

tion number of A is defined as

=

cond.(4) =-2>1 . _ (3J2).

P
lIi‘ A is normal, then Klinger [8] has proved the following theorem. We
shall prove it for an arbitrary non-singular matrix A,
Theorem 3.1. If A is nonsingular, then for any ¢ > 0, A is not better
" conditioned than A + e(AT) ™,
Proof: In view of (3.1), sincem = n = r, we have
sTTT = pT = gD s =D = qra + ¢ s =D+ €D .

' -1 € .
Therefore the singular values of A + G(AT) are py + ol i=1,2, ..., n
i

Now from (3.1) and (3.2), we have

€
} bz
cond [A + € (AT) l] = o El .
iy ) M

A

b . '
: . . '_E 3 if U’D Z P"q >
CoeTee mdre DoET ol u’q R

W
S._g—.,ifp <p,q'
Hp p

L T
But, -B < 2 oang 2 < Y , and therefore we conclude that
g~ Hr M T Er

-1 H.
Cond [A + E(AT) 1< p'l; = Cond (&) .
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Thuﬁ instesad
[a+ €D 7] x = v, | : (3.3)
€ being chosen reasonzbly small [8]. Now from (3.3) we have
-1 _-1 -1 )
x=Ma+eD) b =2t + e 2 . (3.1)
At a first glance this appears attractive, as it avoids inverting twice. Un-
fortunately it has a serious disadvantage, as is indicated in the sequel.

From (3.1) and the fact that m = n = r we have A = oTpsT ang clearly

pd + €

mTver- QT(ppT + € 1)Q.. This implies that Cond [AAT + € 1I] = ‘Eg*:“~'
‘ ' _ :

Hence it is easily seen that Cond (AAT + € I) < Cond A = € > pp. - Evi-
dently such a choice of € is not possible without significantly changing
the system (1.1). This technique can, however, be exploited as follows.

If the rows of A can be partitioned into two sets of rows such that

o
4

48 . . . .
P A= ,¥here P is an m x m permutation matrix and the rows in the sub-

matrix A, constitute the ill-conditioned portion of A. Such ill-conditioned
rovs can be isclated, e.g. by the Householder triangularization when the
norm of every one of the remaining trénsformed row'divgded by its initial
norm is small (compare [9j). Now, instead of solving Ax = b, we solve

A

1

T |x=EL T (3.5)
A €(a,A)) A,

‘In the next'seétibn'we shall prove that (1.1) is not bebter conditioned
than (3.5). ©Note that in solving (3.5), though two inversions are re-
quired, one of them does not require much computational effort because

T. :
A A" is usually a matrix of small order. If we were solving (1.1) vy
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s, sooitin,

Gaugsian-Elimination (camplete pivoting [3, p. 212]), then at some stage

R

‘ J
where U is an upper triangular matrix, H is a square matrix and x E[Z .

If H corresponds to the ill-conditioned rows of A, then at this stage we

replace H by H + €(HY) ™ before continuing on. The solution of Hz = f

can be written as z = (HTH + € I)-lHTf and if all the singular values of

H are less than one, then the choice € > uppq (where o and pq are the

_ smalles?t aﬁd the largest singular values of H respectively) is small

énough to give a reasonable solution. Faddeva [10] has suggested solv-

ing (A + € I) x = b instead of (1.1), if A is ill-conditioned. The meth-
od is simple but no general analysis, analogous to theorem 3.1 seemé pos-
sible. Replogle, Holcomb and Burrus [11] recommend adding constraints to
smooth the solution and then using linear programming to find it; this re-

quires a congldsrable amount of computational effort.
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ly.  Rank Difficient or Singular Systems.

In the previous section we assumed that n (1.1) r = m = n.
In this section we will comsider the situation when r < min (m,n)
and b may or may not lie in pP(4), the range of A« It is well known

[127 that in this case the solution of (1.1) is given by

x = Ab, (1, —;A+A) s | ' (L.1)

+ .
where A 1is the generalized inverse of A and v is an arbitrary

column vectgr of n elements and'In is the identity matrix of or-
der n. Any x given by (L.1l) minimizes |b - Ax|l, viz., the Euclid-
ean length of the residual, andlout of all such x's, x = A" has
the least Euclidean length viz., |x|, is minimum. In other words
x = A" is the vnique minimum norﬁ least squere solution of (1.1).
Various methods of COmpﬁting generalized inverses are available
e.g. [137], the explicit computation of A+ is not required when
solving (1.1). In eny case, if we define the condition number of
the singular matrix A as in (3.2) when r < min (m,n), then we can
staté fhe folléwing:

Theorem L.1: If A is an mxn matrix of rank r < min (r,n),
then for any € > C, A is not better conditioned than A + E(AT)—I-

Proof: From (3.1) we have ‘

D° 0 D 0
T.+
sTaTel = | = Qa)'s = , since DT =D
0O 0 0 0
Therefore,
oot D+e DT 0
ol o+ €(47) 18 =

0 OJ
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and by the same arguments as were used in the proof of Theoren 3.1
. - i -»5.’
the result follows.
In view of the above Theorem, we can now prove that in (3.5)
1% + Ty-1 s i .
the matrix Ay + €(A; Ay7) “A, is better conditioned than AL, . Since

A;T has full column rank (though i1l conditioned), it follows that

(131
(a1)" = (‘AQAE'I).—.:LAE = Ae. * ,E(AQAQT'.)—:LAE ,.= by ow €817,

which 1is better'conditioned (at worst it has the same condition
mumber ) then A, according to Theorem L.1. .

One of the problems in computing generalized inverses is the
determination of rank r. The pi"oblem becomes difficult if there are
singular values close to zero, viz., TRPS C. 1In this case, the fol-
lowing corollary to Theorem L.l is ‘useful.l

Corollary L.l: The minimum nonzero singular value of

A+ e(ah) ] > by

: € € - >
Proof: ILet min (p: +-—=—) = p_+ , then p Zp =p -p Z
R 1 g por P
. 0= - + _E,_ >0 =4 + £ > .
By T Wy o o -y _p’r
. . |
Thus we have seen that the perturbation G(AT) in A, even for
small €, moves the small singular valuest further away from zero.
Rosen [1l] introduced the concept of basic solution of (1.1)
.:Vii‘z'-, Tt most r elements of x in (L.1) ere nonzero. We give here
a method of computing a basic solution of (1.1). Analogous %0 (2.2),
let us construct an Orthogonal matrix Q such that
ve ' (4.2)

0 0

A R S—

s e .



. ition of A" due to Albert and Sittler (157 and the one implied by (3.1).

where U is an upper lrisngulsar rxr matrix and is nonsingular. Then,

N ~om , . ~
(U,0), where Q.0 deuoctes the first r columms of QL and A =

fm 4 S o-1n
z
1

Q. 1) U -
= 'b'-—- b. ()-L'3>
0 0 )

N g - . (U €>
But Qb = (h> (sav) :>Qrb = g and (L.3) gives x = K 0 /, in which
- the inversion of the upper triangular matrix U is easy. It is easy
to see that the COm?utation of a basic solution would be more ac-

curate than that of (L.1) or even the computation of A'b.

In passing, we show -the equivalence'of,the following defin-

Defimition: A = 1lim (ATA + gI)'lATc
€= 0
From (3.1), we have
D O D2+€I O
A o= QY st = AT + €1 =5 st
0 0 " 0 €T
, D+¢r 0][D ©
= (h+ e hT = s . Q
o =1l]0 ©
€
= (D2+eD)™ D 0
S Q
0 0
G 4
But lim (D®+€D) ™D = 1lim o 0
€ =0 €20 [M7TE,
o z'l”
+€
L. br |
r_}_ 0
e -
[ 2
© 1
0 -
8 /
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: 2 -1
m a7 lim (D?+€1) D 0
Hence 1im (A7A + €1 4 € =40 Q
€ 0 o . 0. , 0

[}
.

]
W
O
Hi
.

5. Final Remarks.

We have attempted to give an idea of some of the problems
one has to face.in the solutioniof simultaﬂedﬁs linear equations.
,the "a priorim.estimation of € in Sections 3 and h'is difficult
and theoretical as well as’computational‘work’in this areza 1s
uvery much needed? Also, simple methods for computing the rank of

A in the face of roundoff errors would be highly desirable.

August 7, 1968
State University of New York -

Stony Brook, N. Y., U. S. A.
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