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ABSTRACT

A.modification was introduced to Hashin and Shtrikami's
variational approach to calculate the elastic moduli of
binary composites. The distribution effect of dispersed
phase was taken into account. As a first approximation,

a normal distribution was assumed. The calculations of
moduli of nine systems were compared with experiments for
concentrations up to 50%. The introduction of distribution

effect showed distinctive improvement.



Introduction:

Recent technological advances have produced composite materials of
many kinds. Some composites are made from combination of materials, and
they can be either ceramics in plastics (such as fiberglass reinforced
plastics), or ceramics in metals (such as dispersed oxide particles in
metasl), or plastics in ceramics (such as plastic impregnated concrete),:
or metal in ceramics (such as metal whiskers in ceramics). Some composites
are made from a single system in situ., These composites have been, in the
past, considered as single phase materials. They can be either pores in
single phase materials, or glass in crystalline materials (such as china-
ware or refractions), or crystals in glass (such as glass ceramics), or
eutectics in bulk matrix.

The physical properties of the composites are obviously related to the
corresponding properties of the individual phases in the composites. Only
a few properties, such as volume, and density, are additive, in that the lin-
ear combinations of properties of individual phases give the properties of
the composite,

All other physical properties such as elastic moduli, of the composites
are related to the corresponding properties of constituents when the following
factors are taken into account. The factors are:

1. volune concentrations of constituents

2. boundary conditions between phases

3. boundary shapes of phases

4, distribution of constituents

5. characteristics of interfaces

The last factor is a very significant factor. But it was not included in

any of the studies for the simple reason that the quantitative characteristics of
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interfaces, such as the wettability, adhesion, the chemical compositions,
volumes, density, and other physical properties of the interfaces, cannot
be determined and are therefore totally unknown.

The first factor is naturally the most dominant factor. It is always
accompanied by the third and fourth factors, which were not always considered.
Most studies dealt with the third factor, i.e. the shape factor, by the assump-
tion of a rigid spherical shape for the disperant.1 Some attempts were made
to consider the shape of the second phase as ellipsoidalz. Others treated the
dispersed phase as fibcrs3. Few studies considered the fourth factor, i.e., the
distribution of disperser at all.

The second factor took up the majority of studies. Up to now no formula
has been derived which is theoretically rigorous and fits experimental results
for the whole range of volume concentration. Reviews of these investigations
may be found elsewhere in the literaturcd. In lieu of the exact formula, upper
and lower bounds for the elastic moduli were obtained. In Paul's approachs, a
variational principle was used in which the same simple tension in matrix and
spherical particles was taken as the admissible stress system and a simple ten-
sion deformation for an admissible displacement field. This approach produces
bounds too far apart to be actually useful. A more satisfactory anproach was
made by Hashin and ShtrikmanG. It employed the variational onrinciple by consid-
ering the change in strain energy in a loaded homogeneous body due to the inser-
tion of inhomogeneities. In an arbitrary reference cube in the composite mat-
erial which is large compared to the size of the inhomogeneities, yet small com-
pared to the whole body, the volume average of a quantity such as displacement,
strains, stress or phase volume fraction is the same for the whole body and the
reference cube,

For quasi-isotropic and quasi-homogencous two phase materials, the lower

and upper bounds for bulk modulus are given by
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and Kl"= <K* <K2*. K is the bulk modulus, G is the shear modulus, and v is the
phase volume fraction. Subscripts 1 and 2 denote the phases, and asterick (¥*)
denote the commosite. Kz* is the upper bound and Kl* is the lower bound.

Most of the stﬁdies dealt with the fourth factor, i.e. the distribution of
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inhomogeneities, by assuming certain geometrical packings “’>7°°

such as hexaconal
arrays or a uniform random array. This paner extends the anproach of Hashin and
Shtrikman and applies a normal (gaussian) distribution of inhomogeneities with add-
itional assumptions. The calculations agreed well with experimental results of
several different comnosites.

IT.General Method:

The general method in this study adopts, to a large extent, the apnroach of

Hashin and Shtrikmanﬁ. They assumed that a reference cube exists in the body having
the same volune average of any quantity, such as displacement, strain, stress, or
phase volume fraction, as the whole body. This sthdy assunes that the body can be
subdivided into equal sized cubic cells. Within each cell i, there is a phase volume
fraction of phase 1’"(vi}i' Let (Vl)i be n., The distribution of the phase volure
fraction of phase 1 is f(p). In the case of continuous distribution, the normalized

condition hold such that _
o f(p) dp =1 (3)

Using Hashin and Shtrikman's upper bound expression for the modulus, eq.(2), the

effective bulk modulus for the composite is therefore
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Expanding the eq.(2) in a Taylor's series in terms of p, and substituting it

into eq.(4), it becomes
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In principle, .f(p) can be measured by the various quantitative microscopic methods7.
Then, the bulk modulus of the composite <K> can be evaluated directly with the use
of eq.(5).

In cases where f(p) was not experimentally known, a distribution form must be
assuned. As a first approximation, a normal (gaussian) distribution is therefore
assumed, It is (p_vl)z
fp) = —=  exp |- —— ke
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Where o is the standard deviation and vy is the mean. It is reasonable that the
standard deviation ¢ should be denendent on the mean phase volume fraction vy In
other words, the width of the distribution is a function of the mean value. For
this relationship, we assume that the variance c2 is the sum of an arithmatic pro-

gression which starts at zero, increases S/5000 at each step, and has IUOvl terms.

It is namely,
& _ 2_,) 9)
o —S(vl vy

This relationship fulfills the boundary conditions that o=0 when V1=1 ot Q5
which means no standard deviations for pure phase 1 or pure phase 2 body.
Combining eqs.(8) and (9) with eq.(5), one obtains the following expression after
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In order to compare results of eq.(10) with experiments, difficulties arise be-
cause most experiments measured Young's modulus <E> rather than bulk modulus <K>
of the composite. In a composite, the relationship between the bulk and Young's

moduli is difficult to ascertain. As a first approximation, we assume that

<E> EZ (11D

<K KE

and use eqs.(10) and (11) to obtain the calculated <E> values.

III.Results;
% We have calculated the Young's moduli of nine types of binary composites

and compare& the calculations with known experiments. In some of the experiments,

analytical expressions were derived from data. The simplest expression is the lin-

ear relationships, where

<F> = E2 1 -« E D) (12)

The other expression is of the exponential formg, where

B> = EZ exp (-Ap) ; {13
It is obvious that eq.(12) is only the Taylor's series expansion of eq.(13) in the
first leading terms. The elastic properties of the nine binary composite systems
are listed in Table 1.

Substituting the elastic moduli values into eq.(10) and using the assumptions

eq.(10) and eq.(11), and the Young's modulus of the comosite <E> can be calculated

for any given S. value. It was found that the sample correlation coefficient, as cal-

i : : 17 3 o8
culated from the two variables linear regression formula™', is not sensitive to the

variations in S values. Instead, the standard deviation for the % differences
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in Young's modulus, oy was found to be more indicative of the experimental fit,

and Ik is defined as

<E> - <BE> s
Op - z expt. calc. (14)
<}:"}expt.
Where <E> is the Young's modulus from experimental data, either from table,

expt.

figure, or analytical expression, and <E>Calc is the calculated Young's modulus.
In order to test the effect of normal distribution, one can substitute it with

a constant. In that case, the combination of eqs.(10) and (11) gives

E
2f.. 1 B . 2 )
<E>= — + ._4._.__33-»- - n + e - - (15)

"As s first approximation, it can be made to have the form of eq.(13), namely,

<E> = Ezexp (-A'p)
Al ,.‘—152 (16)

The degrees of experimental fit of the <E> values, calculated from either eq.(16)
or from eqs.(10) and (11), as indicated by their respective o values, are listed
in Table 2. The calculated <E> values for concentions up to 50% in the nine com-
posite systems are listed in Table 3:
Discussion:

As shown in Tables 2 and 3, the calculated Young's moduli <E> values from eq.(16)
in all cases have larger deviations from experimental data than those calculated
from eqs.(10) and (11). The former case assumes an uniform distribution of dispersed
particles, and the latter case assumes a normal (caussian) distribution of dispersed
particles, with a specific assumption about the standard deviation (eq..(9)). The
improvement of experimental fit, as showm in Tables 2 and 3, by the introduction of

latter assumptions is very evident.
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In view of the fact that these Young's moduli <E> values were calculated by
requiring only the knowledge of the elastic moduli values of each individual phase
material and the volume fraction of the dispersed phase and a minimum of adjustable
parameters, their agreements with experiments are all the more impressive, especially
in the low concentration regions.

In three cases, namely, pores in Y203 (system no.l), alumina in glass (system
no.6) and spherical tungsten in glass (system no.7), the Og values are small, i.e.,
less than 5%, whether they were calculated from eq. (16) or from egs. (10) and (11).
They represent the cases where the distribution of the dispersed phase is rather umi-
form, and the basic assumptions from the Hashin and Shtrikman's approach are essent-
ially fulfilled. As shown in Table 3, the experimental fits in these cases were very
good up to higher concentrations.

In system no.Z, namely, pores in glass, the o, values are moderately low, i.e.,
10.098% and 7.392%. The good agreements at low concentrations testify to the correct-
ness of the elastic moduli values used for glass in these calculations. The increases
in the deviations, from the eq.(16) calculations, at higher concentrations demonstrate
that the wniform distribution of the dispersed phase, namely, pores, becomes a progress-
ively unrealistic assumption with the increasing concentrations of pores. In other
words, the effect of distribution is definitely significant in this case. This is con-
firmed by the lower og value from eqs. (10) and (11). However, the assumptions used
about the normal distribution are not completely correct. Hence, the O value is not
small. It is therefore shown that this type of calculation is more than an attempt to
curve fit the data. Rather some additional information can be learnt about the composite
even when the data fits are not good.

In system no.3, pores in Mg0, the O values are very large. The extremely poor
agreements at the lowest concentration are probably due to the fact that the elastic
moduli values used for Mg0 in the calculations are different than those of Mg0 in the

experiments. The effect of distribution of pores is evident by the comparison of Ok



values.

In the case of pores in alumina, experiments e 1

showed two different fit-
ting parameters, A' of either 4.36 or 3.95. This is a clear confirmation of the
‘distribution effect of pores. Unfortunately, the elastic moduli values for alumina
are probably also different than those in the experiments. But, the inproduction
of distribution is definitely an improvement, as shown in systems no.4 and no.S5.

In the case of C in ZrC, eﬁperiment 16 showed different moduli behaviors for
the parallel or perpendicular cases of hot press directions., This is another demon-
stration of the effect of distributions of the dispersed phase. The improvements in
o values by the eqs. (10) and (11) calculations confirm this effect. However, the
hot press operation may have also introduced an orientation effect. In that case,
the distribution must be highly anisotropic. The assumption of normal distribution
is obviously inadequate. This is also confirmeé by the large op values.

In the eqs. (10) and (11) calculations, the adjustable parameters S were selected
at the minimum o values. The dependence of og on S values is shown in Table 4.
This type of dependence was not found to be a sharp function of S. Therefore, the
above discussion does not depend on the specific S value selected.

In summary, it can be concluded that;

1) The introduction of a distribution to Hashim and Shtrikman's approach
is a valid improvement, i.e. eq.(5).

2) The introduction of a normal distribution is a valid first approximation,
namely, e.q. (8).

3) In place of experimental ¢ vs. v, relationship, the assumed relationship,
namely, eq.(9), is workable, but™ it requires improvement.
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Table 1
Elastic Properties of Binary Composites

Young's Bulk Shear Ref. No.
Systems Phase Phase Modulus (Kilobar) Modulus (Kilobar) Modulus (Kilobar)
3 pores Y203 0 1715.0 0 1354.7 .0 665.0 <E> = 1715.0 (1-2.02v1) 10
2 pores  glass .0 805.0 .0 442.8 " %0 336.3 <E> = 805.0 (l-2.0v1) 11
3 pores  Mg0 0 3177.9 .0 1564.1 .0 1795.9 <E> = 3177.9 exp(-4.74v;) 12
4 pores  Al,0 .0 4110.4 .0 2448.0 .0 1635.0 <E> = 4110.4 exp(-4.36vy) 9
S pores A1203 .0 4110.4 .0 2448.0 .0 1635.0 <E> = 4110.4 exp(-3.95vl) 13
0 AlEUs glass 4110.4 805.0 2448.0 442.8 1635.0 35643 Table I of Ref. 8 and Ref. 14
7 W glass 3550.0 805.0 2366.7  442.8 1481.0 336.3 Table II of Ref.8 and Ref. 15
8 C LYl 103.5 4750.3 69.0 2142.8 45.4 2030.1 Figure 8 of Ref.8 and Ref. 16
( ] Hot press) . '
direction
9 C ZxC 103.5  4750.3 09.0 2142.8 45.4 2030.1 Figure 8 of Ref.8 and Ref. 16

{ || Hot press)
direction



Table 2

Comparison of Experimental Fits

-?ystems Phase ?hase O S S - 9g
No. 1 . from <E>calcu. value used in from <E> calculated
from eq. (106) eq. (10) from eqs. (10) & (11)
1 pores Y,0, 2.543% 0.0095 * 0.0025 1.554%
2 pores glass 10.098% -1.015 * 0.005 7.392%
3 pores Mg0 162.287% 0.997 #* 0,001 71.046%
4 pores AL,0, 113.098% 0.227 * 0.0002 37.009%
3 pores AL,0. 83.821% 0.1845 * 0,0005 27.360%
O AlZUS glass 2,.795% 0.2005 * 0.0005 2,261%
7 W glass 1.903% 0.012 * 0.003 1.480%
8 C ZrC 39.891% 0.873 * 0,003 25.882%

( | to Hot press direction)

b

0.005 29.0445%

i+

9 C ZrC 62.280% -1.70
( ||to Hot press direction)



System No.l

P <E}expt
® {Kilobar)
0.02 1647.0
0.04 1579.0
0.00 iSll.U
0.08 1443.0
0.10 1545
.12 1307.0
0.14 1239.0
0.16 1171.0

<k

1630.
1550.
1473.

1401.

Calculated Moduli from eq.(16) and from eqs.(10) and (11)
Phase 1 = Pores Phase 2 = Y,0

>
calc,
Trom eq. (16)

4
1

Baxpt “FRalc. eq. (16)

1.005%
7
2.
&
I
S

<
".

<>

expt.

833
473
913
L35
120
841

. 2068

S = 0.009

<E

from eqs. (10) & (11)

1632.0
1554.0
1481.1
1413.3
1350.6
1293.0
1240.4

1193.0

>
calc.

(Eéxpt.'<EEalc.
eqs. (10) § (I1)

g

<ngpt.
0.911%
1.581
1.976
2.056
1.775
1.075
-0.116
-1.882

= 1.554%



System No.2

E2xpt

Kilobar

304.8

804.2

'803.3

800.9

Phase 1 = Pores Phase 2 = Glass

B> a1 Fexpt_~MRalc. eq.(16)
from eq. (16) {héxpt.
804.8 -0.001%
804.2 -0.004%
803.4 -0.007%
801.0 -0.019%
728.8 -0.936%
659.9 -34243%
597.5 -7.409%
£10.6 -14.2835
489.8 -25.446%

op = 10.098%

S = 21,01

<EEalc.
from eqs. (10) § (11)

804.7

803.4
801.8

797.1
664.5
559.9
487.8
444.5

426.6

(Eéxpt. “<BRalc!
eqs.(10) & (11)

E2xpt

0.019%

0.095%
0.190%

0.473%
7.977%
12.397%
12,307%
6.088%

-9.258%

op = 7.392%



System No.3 Phase 1 = Pores Phase 2 = Mg0 S = 0.997

<E> -<E>
fﬁéxpt <E2alc. fﬁagpﬁ “<Baic. eq. (16) Fzalc. quf?ié) &c%igi

p Kilobar from eq. (16) <E5xpt. from eqs.(10) & (11) chéxpt
0.05 2507.4 2925.8 -16.688% 3045.2 -21.449%
0.10 1978.3 2693.7 -36.161% 2838.7 -43.495
0.15 1560.9 2479.9 ~58.884% e5T1d -64.761
0.20 Y2335 2283.2 " -85.399% 2257.0 ~83.271
0.25 871.6 2102.0 -116.338% 1907.7 -96.334
0.30 760.0 1935.3 -152.441% 1536.7 -100.454
0.35 604.9 L7887 -194.569% 11572 ~01.3512
0.40 477.2 1640.4 -243.727% 782.0 -63.860
0.45 376.5 1510.2 -301.089% 424,2 -12.660
op = 162.287% op = 71.046%



System No. 4

0.05

0.10

2.25

0.35
0.40

<E>

espt

Kilobar

3305.3

2657.8

2137.2
1718.6
1382.0
1111:3
893.6
718.6
577.8
464.6

Phase 1 = Pores

<Eéalc.

from eq. (16)
3696.4
3324.1
2989.3
2688.2
2417.5
2174.0
1955.0
1758.1
1581.0

- 1421.8

Og

<E>

_Phase 2 = Alzos

expt.'<EEa1c. eq. (16)
<>

expt
-11.833%
-25.067
-39.867
-56.418
-74.927
-95.627
-118.776
-144.665
-173.617
-205.995
113.098%

S-= 0,227
fEéxpt.'<EEalc.

“Raic. egs. (10) § (11)
from eqs. (10) § (11) Bt
— -12.548%
3316.3 24,775
2905.0 -35.,921
2491.5 -44.974
Soni -50.631
1681.0 “aleihd
1295.2 S48.H50
929.7 -29.387
590.4 - 2.173
282.7 39,158

op = 37.009%



System No. 5 Phase 1 = Pores Phase 2 = Al,04 S.= 0.184
<E> -<E>
fEExpt ERaic. <."::‘3xpt. “Eaic. eq. (16) FZaic. ez‘sax%;(]) E‘ce&g)

b Kilobar from eq. (16) <E€xpt from eqs.(10) & (11) <B€xpt.
0.05 3373.7 3696.4 -9.564% 3713:6 -10.073%
0.10 2769.1 3324.1 -20.043% 3310.5 -19,553
0.15 . -2272.8 2989.3 -31.524% 2905.8 -27.850
0.20 1865.5¢ 2688.2 ‘ -44.103% 2504.0 -34.226
0.23 1531.1 2417.5 -57.885% 2109.5 -37.775
0.30 1256.7 2174.0 -72.986% 1727.1 ~37.430
0.35 1031.5 1955.0 -89.530% 1361.3 -31.970
0.40 846.6 1758.1 -%07.657% 1018.5 -20.305
0.45 594.9 1581.0 -127.518% 699.9 -0.725
0.50 570.4 1421.8 -149.278% 411.5 -27.847

O = 83.821% | Og = 27.366%



System No.6 Phase 1 = .al\lzlf)3 Phase 2 = Glass S = 0,201

= <E> -<E>
<E> <E> _expt calc.
2 SEzal 3 -
, s fron q. (16) “Expt. }:Ec’:alc. eq. (16) ;Eféalc. eqs. (10) § (11)
<
. éxpt rom eqs.(10) & (11) <Ee>rxpt.
0.10 924.0 925.4 -0.147% . 941.9 «1.957%
0.20 1071.0 1063.7 0.680% 1095.7 -2,310%
0.30 +1228.0 1222.8 0.427% 1264.6 -2.980%
0.40 1447._0 1405.6 2.863% 1446.5 . 0.035%
0.45 1585.0 150750 4.922% 1541.7 2.730%
0.50 1678.0 1615.7 3.711% 1639.5 2.294%
= 2,795% Op = 2.261%

Og



System No.7 - Phase 1 = W . Phase 2 = Glass S- = 0,012
< <E€ -<E>

. xpt calc
Eexpt Ra1c “Fxpt. FRalc. _eq.(16) Eaic. eqs. (10) & (11)
P Kilobar from eq. (16) q%;mt from eqs.(10) § (11) <ngpt.
_— — 923.7 -1.618% 9024.3 -1.681%
0.20 1055.0 1059.9 -0.466% 1058.8 -0:358%
0.30 1180.0 1216.2 -3.068% 1208. 4 | -2.405%
0.40 1375.0 1395.5 -1.494% 1373.0 0.147%
oi = 1.903% op = 1.480%



System No.$8 Phase 1 = C Phase 2 = ZIxC S = -0,875
( | to Hot press direction)

: <Eéxpt ~<EZa1c
P- <E$xpt ERaic. <E:éxpt “<B2aic. eq. (16) <EEa1c. egs. (10) & (11)
3 H 3 3 ; I
Kilobar from eq. (16) <Léxpt from eqs.(10) § (11) <E3xpt

0.20 2694.4 3387.3 -25.715% 2920.0 -8.372%
0.25 2277.8 3112.7 -36.655% 2683.9 -17.831%
0.35 1722.2 2628.5 -52.621% 2415.8 -40.270%

o = 39.891% og = 25.882%



System No.9 Phase 1 = C Phase 2 = ZrC S=-1.70

( || to Hot press direction)

B - Bxpt ~Raic
P Eaxpt “EZailc. “Bxpt “FRalc. eq.(16) Eeaic. eqs. (10) § (11)
Kilobar from eq. (16) <E§xpt from eqs.(10) § (11) <E>éxpt
0.20 .  2277.8 3387.3 -48.711% 2482.6 -8.994%
0.25 ~2000.0 BT ~ -55,635% : 2275.3 -13.765%
0.35 1472.2 2628.5 -78.538% 21722 -47.543%
op = 62.280% op = 29.044%



Systems

Table 4

Dependence of o, on'S Values

Phase Phase
1 2
pores YZOS
pores glass
pores Mg0
pores A1203
pores ; Alzo3
A1203 glass
W glass
C ZrC

( | to Hot press direction)

C ZrC
( ||to Hot press direction)

°E
from eqs. (10) & (11)

3.100%
3.096%
3.516%

15.440%
14.452%
14.775%

71.714%
70.691%
71.899%

38.304%
37.009%
37.495%

28.400%
27.364%
27.389%

3.336%
2.261%
2.901%

1.907%
1.857%
1,912%

37.142%
36.182%
37.245%

31.622%
30.517%
31.600%



