
-- -- - ----- - - - ---

Lower Bounds on the IterationTime and the Number
of Resources For Functional Pipelined Data Flow

Graphs

Yuan Hu, Ahmed Chouse and Bradley S. Carlson

The Department of Electrical Engineering
State University of New York at Stony Brook

Stony Brook, NY 11794-2350
Phone: (,516) 632-8474

Fax: (,516) 632~8

Technical Rep t 666
College of Engineering and pp' Science

Abstract- An algorithm is presented to determine two lower bounds in functional
pipelined data path synthesis. Given an iteration time constraint T and a task initiation
latency, the algorithm computes a lower bound on the number offunctional units required
to execute the data flow graph of a loop body, and given resource constraint R and a
task initiation latency the algorithm computes a lower bound on the number of time
steps required to execute the data flow graph. The lower bounds not only greatly reduce
the size of the solution space, but also provide a means to measure the proximity of the
final solution to an optimal one. Since the bounds are computed in polynomial time, this
lower bound algorithm is very effective, especially for large DFGs. Experiments indicate
that the lower bound is very tight. For all of the test cases the difference between our
solution and the optimal solution is not greater than one.

I INTRODUCTION

In the behavioral synthesis of integrated circuits (ICs) the fundamental steps are the

scheduling and allocation of operations on functional (hardware) units. The synthesis is

commonly divided into a data path design and a control path design. Operation scheduling

and allocation are the most important steps in behavioral synthesis [1], since they can effec-

tively determine the time-cost trade-offs. The scheduling problem can be approached from

two perspectives: resource constrained and performance constrained. Resource constrained

scheduling is the task of minimizing the completion time given a fixed amount of resources,

and performance constrained scheduling is the task of minimizing the amount of resources

given a fixed completion time. A comprehensive survey of various scheduling and allocation

techniques can be found in [2].

A behavioral description often consists of loop statements, and the loop execution usually

dominates the total execution time. Optimizing the execution of the loop body is critical to

the performance of the design. Scheduling a loop body is quite different from scheduling a

straight-line code segment, since parallelism beyond the iteration boundaries can be exploited

by executing several iterations of the loop concurrently. If the loop body is treated as a data

flow graph, then the execution of the loop can be viewed as pipelining the data flow graph.

The type of pipelining where the entire data flow graph is pipelined is called functional

pipelining.

The research on functional pipelined data path scheduling is addressed in [:3,4, 5, 6, 7,

8, 9]. A common characteristic of these polynomial time heuristics is that they give only

an upper bound to the minimum number of functional units or time steps needed to meet

the design constraints. Although they obtain near optimal or optimal schedules on a few

test examples, these algorithms in the general case have no way of knowing the proximity of

their solution to the optimal solution. The lack of a tight lower bound is recognized as one

of the weaknesses in current scheduling algorithms [10]. Generally, the quality of a heuristic

solution for an NP-complete problem is proportional to the time spent in search for a good

solution; however, a quantitative measure of the quality of a heuristic solution can only be

obtained by measuring its proximity to the optimal solution. Therefore, tight lower bounds

are essential to providing a good measure of the quality of an algorithm when the optimal

solution is too expensive to compute. In addition, tight lower bounds can be used as a

starting point for many scheduling algorithms (e.g., branch-and-bound) because tight lower

bounds can greatly reduce the computation time of these algorithms.

1

Recent work has been done for lower bound performance estimation under resource con-

straints on non-pipelined data flow graphs [11]. In their work, a greedy algorithm is used to

obtain a lower bound. The technique will not work in the case of functional pipelined data

flow graphs, and it does not address the performance constrained scheduling problem.

The purpose of our paper is to present a new polynomial time algorithm to compute a

lower bound on the number of functional units required to finish all the operations of a data

flow graph under time constraint T, and to compute a lower bound on the number of time

steps required to finish the data flow graph under resource constraint R. The lower bounds

presented here can be used to develop new scheduling algorithms and to quantify the quality

of existing scheduling algorithms.

The organization of our paper is as follows. Presented in Section II is the lower bound

on the number of functional units for pipelined data flow graphs given the initiation latency

and total iteration time. Presented in Section III is the lower bound on the number of time

steps for pipelined data flow graphs given the resources and the initiation latency. Presented

in Section IV are the complexity analysis and the benchmark experimental results, and the

paper is concluded in Section V.

II LOWER BOUND ON THE NUMBER OF RESOURCES

The objective of this section is to find a lower bound on the number of functional units

needed to execute the operations of a functional pipelined data flow graph given the task

Initiation Latency (I L) and the iteration time T. As a prerequisite for computing the lower

bound the as soon as possible (ASAP) and the as late as possible (ALAP) schedules 1 must

be computed without pipelining under the assumption that there is an unlimited amount of

resources; furthermore, the critical path must be identified. The algorithms for processing

the data flow graph to find the ASAP and ALAP schedules can be found in [12]. The run

time complexities of these algorithms are O(E), where E is the number of edges in the graph.

The ASAP and ALAP schedules are used to compute the lower bound on the number

of functional units of each type required to execute the operations of the DFG within a

specified time. The final solution is a specification of the number of functional units of each

operation type. For example, Fig. 1(a) is a data flow graph with two types of operations:

addition and multiplication. In our method the lower bound for the number of multipliers

and the lower bound for the number of adders are determined separately and combined to

1A schedule is represented by the completion time steps of its operations.

2

Acnve Range Acnve Range

'.'.'.'.'+'.'.'.'.".'.'.'.E.'.'.".'.'.'.".'.'.'.'................................
:':':""*:":::::;:::'::::;:'::::::~::::::::;::::::'::

ttN:::::t:::~~::tr::

6-- 5

10
10

Time

4

2

456789

(c)

Time

(0)

0123456789

(b)

Fig. 1. (a) An example loop body data flow graph, (b) the list of active ranges for the
multiplications, and (c) the list of active ranges for the additions.

Table I. The ASAP and ALAP schedules of operations in Fig.l(a).

form the final solution. The ASAP and ALAP schedules.af each operation in Fig. 1(a) are

shown in Table I. In Fig. l(a) the operation identifier is shown adjacent to the node, an oval

represents a multiplication which requires two units of execution time and a circle represents

an addition which requires one unit of execution time.

Before the lower bound for functional pipelining is studied, we first discuss some of the

properties that are associated with a non-pipelined loop body data flow graph. Let m be the

total number of operations in the loop body data flow graph, Tj be the time for completing

the ph operation in the graph (j = 1,2, ..., m), and integer 8 the time required to execute

an operation. An m-tuple (TJ, T2, ..., Tm) of completion times for the m operations in a data

flow graph represents a schedule of the graph. Let Tj be the completion time of operation

j in the ASAP schedule of the graph, and let Tj(T) be the completion time of operation j

in the ALAP schedule. Note that the ALAP completion time Tj(T)2 depends on the total
iteration time T.

The time interval [Tj- 8, Tj] is called the active range for operation j. The active range

2Tj(T) is abbreviated as Tj in the sequel.

3

Operations 1 2 3 4 5 6 7 8 9 10

ASAP 2 3 4 5 7 9 2 3 2 :3

ALAP 2 4 4 5 7 9 4 5 6 7

for each operation can be listed in a Cartesian coordinate system as shown in Figs. 1(b) and

(c). For example, in the data flow graph in Fig. l(a) assume that the specified total loop

body iteration time is T = 9, and that two units of time (s = 2) are needed to complete a

multiplication operation, then (for multiplication 7) we have T7 = 2 and T7(9) = 4. Thus.

the active range of operation 7 is [T7 - 8, T7] = [0,4]as indicated in Fig. l(b).

Given a schedule (T1' T2,..., Tm) the activity of operation j in the graph can be described

by the following function.

{
It E h - 8, Tj]

f(Tj, t) = 0 otherwise

f(Tj,t) is called the active function. f(Tj,t) is the actual representation of an operation

in a schedule (T1' T2,..., Tm), while the active range [Tj - 8, Tj] represents the freedom of an

operation among all possible schedules. Furthermore, the active function of the entire loop

body data flow graph without functional pipelining can be described as the sum of the active

functions of the individual operations.

m

F(T1, T2, ..., Tm, t) = L f(Tj, t) [14]
j=1

F is the active function of the entire data flow graph with respect to the schedule

(T1, T2,..., Tm) and is an indication of how many operations are being executed simultane-

oU81yat an instant of time t without considering function~! pipelining.

In functional pipelining different initiations of tasks may share the same control steps.

If we look at the loop body data flow graph, thes~ operations are separated by I L control

steps. In other words, operations in a loop body data flow graph that are I L control steps

apart will be executed in the same control step when functional pipelining is utilized. To

illustrate the idea of functional pipelining we use the example in Fig. l(a). The data flow

graph is viewed as the loop body data flow graph in a functional pipelining situation. In the

example successive iterations begin their executions two control steps apart, i.e., I L = 2;

therefore, after every two units of time a new task is introduced, and operations that are

two control steps apart will be executed in the same control step in the final schedule.

A partition is formed on the operations of the loop body data flow graph. Operations that

are I L control steps apart belong to the same partition, and there are I L different partitions.

The active function of partition i is represented by 2:J~ 1 F(T1, T2, ..., Tm, t + i x I L), where

0 ::; t < I L. The active function reflects the consideration of all the operations in a partition.

Formally, given the task Initiation Latency I L and the iteration time T, we are to find the

4

minimum number of functional units (nfp) and an optimal schedule (T{", T;, ..., Tr~Jsuch that

r?~1
nfp = max "" F (TI*,T.2*,...,<.t+i X IL)

'Vt E [O,IL] is;; 1/0'

r?~,1

mln max "" F (
.

'V(rJ,T2,...,Tm) ED 'VtE [O,IL] L...t TI, T2, ..., Tm, t + l X I L),,=0
(1)

where D is the schedule space.

To find a feasible schedule under these conditions is an NP-complete problem, but there

is potential to find a tight lower bound by relaxing the constraints. There are four major

constraints: the precedence relationships between operations, the active ranges, the task

initiation latency I L and the iteration time T. We construct a relaxation by eliminating

constraints for the precedence relationships, but keep the active ranges of operations and

other constraints. As a result of this relaxation each operation can be considered indepen-

dently. We define the minimum load for an operation j in the time interval [tl, t2] ~ [0, I L],

denoted <J>j(tl,t2), as the minimum overlap between the active function f(Tj, t) of operation

j and the time intervals uIlt 1[t1+ i X I L, t2 + i x I L]. The minimum load is given by

rh 1

1
t2+ixIL

<J>j(tl,t2) = min L f(Tj, t)dt.
'VT} i=O tl+ixIL

(2)

The integral itself indicates how much of the active function f(Tj, t) of operation j will

be present in the time interval uIlt 1[t1 + i x I L, t2 + i x I L] for a given completion time Tj.

Therefore, <J>j (tl, t2) is the minimum portion of the active function which must be present in

the time interval uIlt 1[t1 + i x I L, t2 + i x I L] among all schedules. The collective effect of

the <J>j(tl,t2)'s of all the operations is an indication of the minimum number of functional

units needed to meet the time constraint.

In this formulation an entire partition is taken into consideration; therefore, instead of

calculating the minimum load in a single time interval, we must calculate the minimum load

for all the time intervals I L units apart. The computation procedure of <J>jis illustrated in

Fig. 2 where the overlap between two time intervals A and B is denoted by IA n BI. Note

that in the outermost for loop in Fig. 2 Tj is from Tj to Tj + I L only, because beyond Tj + I L

the time step will belong to one of the partitions already considered. Consequently, the lower

bound on the number of functional units required to complete the functional pipelined data

flow graph given the initiation latency I L and the iteration time T is stated in the following

theorem.

5

algorithm <Pj(t1,t2, Tj, TJ)
<Pj= maximum integer;

for each position of Tj between Tj and Tj + I L do
SUM = 0;

for i = 0 to r I~l do
SUM += l[t1+i x IL,t2 + i x IL] n [Tj- S,Tj]l;

end_for

<Pj = min(<Pj,SUM);
end_for

return(<Pj);
end_algorithm

Fig. 2. Algorithm to compute <Pj.

Theorem 1 Given a functional pipelined data flow graph) the task initiation latency I Land

the loop body data flow graph iteration time T) the minimum number of functional units

required to complete the functional pipelined data flow graph is n fp' A lower bound on n fp is

r.
Lj~l <Pj(t1,t2)

lnfpL = rnax .
V[tl, t2] S;[0,IL] t2 - t1

Proof: If Tj*represents the completion time for operation j in an optimal schedule, then from

the definition of <Pj

U;'1

1
t2+ixIL rI~1

1
t2+ixIL

<Pj(t1,t2) = min L f(Tj,t)dt:::; L f(Tj*,t)dt.
VT) i=O tl +ixIL i=o tl +ixIL

Note that Tj* is part of the optimal schedule for the entire data flow graph,

necessarily the minimum Tj with respect to <Pj(t1,t2).

Taking the summation on both sides

and it is not

m

L<Pj(t1,t2) <
j=l

U;'1

1
t2+ixIL m *

= L . Lf(Tj,t)dt
i=O tl+2xIL j=l

m rl;' 1

1
t2+ixIL

L L . f (Tj*, t) dt
j=l i=O tl+2xIL

rI~1

1
t2+ixIL

= L F(T;,T;,...,<"t)dt.
i=O tl +ixIL

Using a variable transformation with tf = t - I Lxi, we have dtf = dt and t = tf + I Lxi.

Therefore, from (1),

m rTL1 t2

L<Pj(t1,t2):::; L1 F(T1*,T;,...,T)7"t+ILxi)dtj=1 i=O t1

6

t2 r[~1

-1 LF(TI*,T;,...,T7~"t+/Lxi)dttl ,=0

< n fp(t2 - td.

Hence, the lower bound is

nfpL = [max Lj7~11>j(t1,t2)
V[tl,t2] ~ [O,IL] t2 - tl l.

(:3)

.
Since the total number of partitions is / L, only the time intervals [tl, t2] that are subsets

of [0, / L] need to be considered. The number of sub-intervals in the time interval [0, I L]

is I L(I L + 1)/2; therefore there are I L(I L + 1)/2 different Lj~1 1>j(t1,t2)'s to compute in

order to determine n fpL'

A special case of Theorem 1 is presented in Theorem 4 of Sehwa [6]. The lower bound in

[6] can be obtained from (:3) by setting t1 = 0, t2 = I Land s = 1. From the definition of

1>j(tl, t2),

rl~1

j
IL+iXIL .

i
T

1>j(O,/L) = min L j(Tj,t)dt = j(Tj,t)dt = s = 1;
VT] i=O ixIL 0

thus,

n L = rLj~1 1>j(t1,t2)l = rm X sl = r~ l-
fp t2 - t1 I L / L

Example

Assume for the example of Fig. 1 that T = 9 and I L = 2. For multiplication the
. LIO <I>j(tlh) "

maxnllum J=:2-tl occurs at [tb t2] = [0,1]. Note that the maXImum may not be ulllque.

The following 1>j(O,l)'s are needed3 to obtain the lower bound.

1>1(0,1) = 1>3(0,1) = 1>5(0,1) = 1>6(0,1) = 1>7(0,1) = 1>9(0,1) = 1

Thus, the lower bound is

= r
E}~1 1>j(O, l)

l = r~l = 6.
nfpL 1 - 0 1

Similarly, for addition

nfpL = 2.

If we schedule the graph as shown in Fig. 3, then the lower bounds for addition and mul-

tiplication are the same as the upper bounds, and therefore, the lower bounds are optimal.

3 All IL(I L + 1)/2 timeintervalsneedto be computedin orderto determinethe maximum.

7

- -,
2 AcUve Range Active Range

4

10

4

Time Time

(a)

0123456789

(b)

0123456789

(c)

Fig. :3. (a) Schedule for the functional pipelined example, (b) the control step assignment
for each multiplication, and (c) the control step assignment for each addition.

III LOWER BOUND ON THE ITERATION TIME

The objective of this section is to derive the lower bound on the loop iteration time given

the number of resources R and initiation latency I L. The lower bound derived here can be

further used in the development of other scheduling algorithms for functional pipelined data

flow graphs. Some recent research on functional pipelined data flow graph scheduling [9]

used the ASAP schedule under unlimited resources as their lower bound for refinement. If a

better lower bound is used, the computation time will be reduced.

Given a data flow graph, a set of resources (R~s) and ir:Ltiation latency IL, our objective

is to find the lower bound on the loop body iteration time. Care must be taken to make sure

that the relationship between I L, R and the total number of operations m satisfy Lemma 2;

otherwise functional pipelining is not possible.

Lemma 2 Suppose there are m operations with execution time s in a data flow gr'aph) and

the task initiation latency is I L and the number of available resources is R. If

rm x sILl> R

then functional pipelining is not possible.

Proof: If rn~lsl > R, then each partition needs more than R resources.

increased, functional pipelining is impossible.

Unless I L is

.

In our method a lower bound is computed for each type of resource, and the final solution

IS the maximum of all the lower bounds of every type. For each type of operation the

relationship between the lower bound on T, the number of resources R and the initiation

latency I L is stated in the following theorem.

8

Theorem 3 Given a functional pipe.lined data flow graph, the number of available resourcc,;

R and the task initiation latency I L, and assuming I L, Rand m satisfy Lemma ;1!,the

minimum rwmber of time steps required to complete the functional pipelined data flow gmph

is T. A lower bound on T is

TL = Tc+ tlt,

where Tc is the critical path time,

tlt = [max {L'J~1 <I>j(tl'tz)
\I[tl' t2] ~ [0, lL] R - (tz - td}l,

and <I>j(t1,tz) is defined in (2) with T = Tc.

Proof:

Given the time interval [tl, tz] ~ [0,I L] and the number of resources R, the maximum

operation load that can be executed by R resources in the time interval uI:ft1[t1+ i x I L, tz +

i x I L] is R(tz - td. On the other hand, as discussed before, the minimum operation load
.

1
..

I rh 1[
.

IL
.

IL] ' ",m ffiC
(t)III t le tUlle Illterva Ui=o t1 + Z x ,tz + z x IS L...j=1'i'j 1, tz .

The operation load that can not be executed by R resources for the time interval uI:ft 1[t1+

i x IL,tz+i x IL] is m

L:<I>j(tl,tz) - R(tz - td;
j=1

therefore, the minimum time increase 8(tl, tz) due to this uncovered operation load is

8(t1, tz) = L'J'=1<I>j(tl,tz) - R(tz - t1)
n.

",m <I>C(t t.)
= L...J=1~ 1, Z - (tz - td.

Note that if L'J'=1<I>j(tl,tz) < R(tz - td, then 8(t1,tz) < 0 and R resourcesare sufficientto
satisfy the computing requirements in the time interval uI:ftl [t1+ i x I L, tz + i x I L].

If we consider all time intervals, then

tlt = max {8(t1,tz)}.
V[tl,t2] ~ [O,lL]

Therefore, the lower bound on time is

TL = Tc+ tlt.

.
There are I L(I L + 1)/2 different Lj~1 <Pj(t1,t2)'s to compute in order to determine TL.

9

Example

Assume in the example of Fig. 1 that the task initiation latency I L = 2, R+ = :2 and

R* = 6. For addition, L;~l <Pj(t1,t2) - R+ x (t2 - td is always less than 0 which means :2

adders are sufficient for pipelining with I L = 2. Similarly, for multiplication 8(t1, t2) = o.

Therefore, the lower bound TL = Tc+ 0 = 9.

IV COMPUTATIONAL COMPLEXITY AND EXPERIMENTS

A C:omplexity

For Theorem 1 we have to consider I L(I L + 1)/2 sub-intervals, and the complexity of

computing <I>j is r h1 x I L. Therefore, the total complexity is h x I L x I L(I L + l)m =
O(m(I L)2T). For Theorem 3 the complexity is O(m(I L)2Tc), since only Tc is considered.

The worst case performance is a conservative estimate, because normally at each step the

number of computations is much less than m. The lower bounds for all types of operations

can be computed together by going through I L(I L + 1)/2 sub-intervals only once, at each

step different types of operations can be computed independently and the total number of

operations rn is the sum of the numbers of all types of operations.

B Experiments

We have implemented the algorithm in a C program running on a SUN SPARCstation

2. The average CPU time for computing the lower bounds is 20ms. The lower bounds

are compared with existing upper bounds found in recent research on functional pipelined

scheduling algorithms [9]. Experimental results show that our lower bound is tight.

BI 16-Point Digital FIR Filter

The results presented here are for the functional pipelined 16-Point Digital FIR Filter

example adopted from [6]. Table II tabulates the lower bound on resources under a per-

formance constraint. The initiation latency and iteration time are given, and we compute

the lower bounds for the number of adders and the number of multipliers. We also give the

difference between the upper bound from [9] and our lower bound for each type of resource.

Table III lists the lower bound on time steps given the number of available resources and

initiation latency. The lower bound on time is computed for addition and multiplication

10

separately, and the maximum of these two is the final lower bound. \Ve also compute the

difference between the upper bound given in [9] and our lower bound on time steps.

B2 Fifth Order Elliptical Filter

The second benchmark is the fifth order elliptical filter example from [1:3]. It contains 26

additions and 8 multiplications. Table IV lists the results of the lower bound on the number

of adders and multipliers as well as the difference between the upper and lower bounds.

Table V tabulates the lower bound on time steps due to addition and multiplication, the

final lower bound, and the difference between lower and upper bounds [9] on time steps.

V CONCLUSION

In this paper we have presented a new algorithm to compute lower bounds for the prob-

lem of performance constrained and resource constrained scheduling for pipelined data flow

graphs. The lower bound is of great importance in optimal scheduling algorithms when the

number of different operation types is large or the data flow graph is large. The results

obtained here are not limited to the techniques used in high-level synthesis and their appli-

cations can be found in other areas of computer design where functional pipelining is utilized.

Since the bounds are tight (shown by experiments and c9.!nparison to upper bounds), the

lower bounds can be used to develop an efficient branch-and-bound algorithm, or they can

be used in other scheduling techniques. Moreover, the lower bounds can be used to evaluate

the quality of heuristic algorithms for the scheduling problem. Without the lower bound

only a relative comparison between heuristics is possible.

The algorithm tends to a global optimization since it is not an iterative approach by

nature, and has a complexity of O(m(I L)2T). The algorithm achieves excellent results as

well as being the only one so far to provide a good lower bound for functional pipelined data

flow graphs. The algorithm has the advantage of well defined bounds for optimal solutions

such that it can effectively guide the design process and also provide a means to measure the

quality of the solution while other methods can not. Although we do not have a theoretical

proof of the tightness of our lower bounds, the experiments clearly indicate that they are

very tight. Furthermore, much more information is considered during the computation of

our lower bounds compared to previous work. Therefore, our bounds are tighter for arbitrary

graphs. Future work may involve the development of a new scheduling algorithm using the

lower bound discussed in this paper.

11

Table II. Lower bound on resources for 16-point digital FIR filter.

Table III. Lower bound on iteration time for 16-point digital FIR filter.

Table IV. Lower bound on resources for fifth order elliptical filter.

12

Ini tiation Iteration n L for nu for nu - nL nL For nu for nu - nL

Latency Time Adder Adder for + Mult s Mults for *

1 6 15 15 0 8 8 0
2 6 8 8 0 4 4 0

:3 6 5 5 0 3 :3 0
4 6 4 4 0 2 2 0

5 7 3 :3 0 2 2 0

8 10 2 2 0 1 1 0

15 16 1 1 0 1 1 0

Ini tiation Resource TL Resource TL Final Upper Upper Bound
Latency Adder Due to + Mults Due to * Lower Bound Bound - Lower Bound

1 15 6 8 6 6 6 0
2 8 6 4 6 6 6 0
:3 6 6 3 6 6 6 0
:3 5 6 3 6 6 6 0
4 4 6 2 6 6 6 0
5 :3 7 2 6 7 7 0
8 2 10 1 10 10 10 0
15 1 1.5 1 10 15 16 1

Initiation Iteration nL for nu for nu - nL nL For nu for nu - nL
Latency Time Adder Adder for + Mults Mults for *

16 18 2 :3 1 2 2 0
17 19 2 2 0 2 2 0
19 21 1 2 1 1 1 0

Table V. Lower bound on iteration time for fifth order elliptical filter.

REFERENCES

[1] D.D. Gajski, N.D. Dutt and B.M. Pangrle, "Silicon Compilation," In Proc. IEEE 1986 Custom

Integrated Circuits Conf., pp. 102-110, May 1986.

[2] M.C. McFarland, A.C. Parker and R. Camposano, "The high-level synthesis of digital sys-

terns," In Proceeding of the IEEE, pp. 301-318, 78(2), Feb. 1990.

[3] P.G. Paulin and J.P. Knight, "Force-directed scheduling for the behavioral synthesis of

ASIC's," IEEE Trans. on Computer-aided Design, pp. 661-679, vol.8, no.6, June 1989.

[4] Miodrag Potkonjak and Jan Rabaey, "A scheduling and resource allocation algorithm for

hierarchical signal flow graph," In 26th ACM/IEEE Design Automation Conference, pp. 7-12,

June 1989.

[5] Ki-soo Huang, et. aI., "Scheduling and hardware sharing in pipeline data paths," In Proceeding

of IEEE, pp. 24-27, 1989.

[6] N. Park and A.C. Parker, "Sehwa: A Software Package for Synthesis of Pipeline from Behav-

ioral Specifications," IEEE Trans. Computer-Aided Design, pp. 3.56-370,Mar. 1988.

[7] D.J. Mallon and P.B. Denyer, "A New Approach to Pipeline Optimization," Proc. European

Conf. on Design Automation, pp. 83-88, Mar. 1990.

[8] C.T. Hwang, Y.C. Hsu and Y.L. Lin, "Scheduling for Functional Pipelining and Loop Folding,"

Proc. 28th Design Automation Conf., June 1991.

[9] T.F. Lee, C.H. Wu, D.D. Gajski and Y.L. Lin, "An Effective Methodology For Functional

Pipelining," Proc. 29th Design Automation Conf., June 1992.

[10] Roni Potasman, Joseph Lis, Alexandru Nicolau and Daniel Gajski, "Percolation Based Syn-

thesis," In Proceedings of the 27th ACM/IEEE Du,ign Automation Conference, pp. 444-449,

June 1990.

[11] Minjoong Rim and Rajiv Jain, "Lower-Bound Performance Estimation for High-Level Synthe-

sis Scheduling Problem," Proc. ICCD, Oct. 1992.

13

Ini tiation Resource TL Resource TL Final Upper
Upper Bound ILatency Adder Due to + Mults Due to * Lower Bound Bound - Lower Bound

16 :3 16 :3 17 17 18 1

16 :3 16 2 18 18 18 0

17 2 18 2 18 18 19 1

19 2 18 1 21 21 21 0

[12] Robert Tarjan, Data Structures and Network Algorithms, SIAM, 1983.

[1:3]S.Y. Kung, H..J. Whitehouse and T. Kailath, VLSI modern signal processing, Prentice HalL

pp. 258-264, 1985.

[14] A.B. Barskiy, "Minimizing the number of computing devices needed to realize a computational

process with a specified time," Engineering Cybernetics, No.6, pp. 59-63, 1968.

14

