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An analytical solution of the multidensity Ornstein-Zernike equation together
with the Percus-Yevick-like approximation for the model of polymerizing fluid is
obtained in closed form. The solution is illustrated by its application to the sticky
shielded shell model of Stell; it can be also easily utilized for a number of other simple

models of polymerizing fluids.



I. INTRODUCTION

Recently much effort has been focused on the development of integral-equation theories
for the description of equilibrium properties of polymer fluids [1-5]. Perhaps the most
promising among them are those which are based on the extension of the Wertheim’s theory
for associating fluids [1,4-6]. However most of the applications of these theories are restricted
to the case in which particles are associating on the dimer level only [7-12).

In the present study we obtain an analytical solution of the multidensity Ornstein-Zernike
(OZ) equation closed be Percus-Yevick-like (PY) closure conditions [4] for the shielded sticky
shell (SSS) model for polymerization {13]. The solution carried out for this model is also
applicable to a number of other models of polymerizing fluids proposed recently [1,5,15]
and their extensions, especially a two-species version of the totally flexible two-site model
of Wertheim [15] in the case in which each site is a sticky point randomly positioned on the
surface of an interaction shell of radius L. In this sticky two-point (S2P) model [15] the
shell coincides with the surface of the interaction shell defined by the repulsive core of the
monomers, but if instead it is shielded by a repulsive core of unit radius, with % <L <1,
our treatment of a two-species version of the resulting model, which we shall call a shielded
sticky two-point (SS2P) model, is virtually identical to our SSS development applied to the
range % <L < 7‘5, except for some minor changes. In this range, each monomer in the
SSS model can be associated with at most two neighboring monomers, which is also the case
in the SS2P model for all L such that ; < L < 1. Infact,for § <L < :}5, a two-species
version of the SS2P model and SSS model are thermodynamically identical (for L = 1 the
SS2P models reduce to the S2P models). We expect, on the basis of previous studies [12,14],
that the PY-type closure used below will be especially accurate for the SS2P model with L

near or at 1; for the SSS model its expected accuracy is harder for us to judge.



II. THE MODEL

The SSS model consists of a two-component mixture of species a and b of the same size
and densities p* = p® = p with a hard-sphere interaction between particles of the same
species and both hard-sphere and sticky interaction between particles of different species.
In this model the sticky interaction is presented by the sticky shell placed inside the hard-
core region at a distance 1L from the center of the hard sphere, which we take to be of unit
diameter [13,14]. The stickiness is introduced as a limiting case of the finite attraction under
the constraint that the second virial coefficient for the total potential is kept constant. In
this limit the Mayer function f;;(r) is given by

) = £y 4 O s e -
fi(r) = £ (r) + =3 (1= 6)b(r = L) (1)

where i and j stand for the species of the particles and take the values a and b, f,-(jh’)(r) is the
hard-sphere Mayer function, K, is the parameter of stickiness, and we assume % <L <1
One can easily see that the structure of clusters formed by this type of the model depends

on the specific choice of the value of L [4,14].

II1. INTEGRAL EQUATION AND CLOSURE CONDITIONS

The multidensity integral equation formalism for the model in question has been devel-
oped in [4]. Therefore we shall omit any details of the diagrammatical analysis and derivation
of the OZ equation and its closure and present here only the final result for the particular
case of the three-density version of the theory. This particular three-density case is very

similar to that proposed recently in [5].

The three-density OZ for the present model can be written in the matrix form as follows
H(k) = C(k) + C(k)oH(k) (2)

where [0];; = é;0, and the matrices H(k) and C(k) contain the elements which are the

Fourier transform of the elements of the matrices H(r) and C(r), respectivly. Here [H(r)};; =
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hij(r) and [C(r)];; = ¢i;(r). In turn hyj(r), ¢i;(r), and o; are the matrices which take the

form
hep(r) hey(r)  hi(r) oy oy af
hij(r) = | hi(r) h3(r) RE(r) |, oi=|0o o5 O
hio(r) hgi(r)  hiy(r) oi 0 0

where the lower indices a and 3 in ¢} and in partial correlation functions hgﬁ(r) and h;j[,(r)
denote the bonded states of the correspondent particle. The case of @ = 0 corresponds to
unbonded particle, a = 1 to a singly bonded particle and a = 2 to a doubly bonded particle.

The density parameters o, is related to the densities p, of a-times bonded particles by
oh=00=po, Oi=01=po+p, Oy=02=po+p+pa (3)

where the total density p' = p of the particles of species i is p = 0} = pg + p1 + p,. Here,

since @ and b species are indistinguishable, p2 = pb = p, and 02 = 0} = 0,

In this study we are using the PY-like closure conditions [4,6], which for the present

model reads
Yia(r) = gis(r) = cp(r) (4)

where g;’ﬂ(r) = hgﬁ(r) + 6000 and the functions yz[,(r) are the analogues of the regular
cavity correlation functions and are related to the partial pair correlation functions g;’[,(r)

by
9i5(r) = € (r)lyids(r) + (1 = boa)(1 = b0s)(1 — 8i;)Bac1p-16(r = L)] (5)

Here e}/ (r) is the Boltzmann factor for the hard-sphere interaction and Bgp = T’E}};y:jﬂ(L)

Combining (4) and (5) and using the properties of the hard-sphere potential we have

hg"ﬁ(r) = —600,603 + (1 - 600,)(1 - 605)(1 - éij)Ba~1ﬂ—l6(r - L)a fOT r<l (6)

Cf:jﬁ(") =0, | for r>1 (7)



Finally the relation between the densities p,, p and K is defined by [4]

pi(loo + Io1) + poprloo ~ pr = 0 (8)

1
po(T11 + To) + pgp1 110 + 5.0? +p1p0+ Po — ppo =0 9)

where Ig = Koy35(L).

IV. ANALYTICAL SOLUTION OF THE THREE-DENSITY OZ EQUATION

The OZ equation (2) together with the PY-like closure conditions (6), (7) and relation
between the densities (8) and (9) form a closed set of equations to be solved. Our solution of
this set of equations is based upon Baxter factorization technique [16]. The general scheme
of the analytical solution is similar to that presented in [17] and [12]. Since all the direct

correlation functions are finite ranged the factorization version of the OZ equation (2) can

be used
~ria(r) = laSa(r} = 27 ST s [ g 0)r = bl — et (10)
—relar) = dp ~ 20 S S owfor || g (0abicr + )t (1)

where 0. is the correspondent element of the matrix & = @, = @, and the Baxter functions
g25(r) is equal zero for r > 1.
An analytical expression for q,',’ﬁ(r) at 0 < r < 1 can be obtained now by analyzing

equation (10) in this range and utilizing the closure relations (6) and (7) together with the

boundary conditions
g1+ =0 (12)

This analysis can be simplified by using the properties of the symmetry of the model.

Since both species a and b are indistinguishable, any of the two-particle function which
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involves the particles of species a is equal to that which involves the particles of species b.

Therefore for simplicity we introduce the following notation

ap(r) = dhp(r),  1=0;
ap(r) = dap(r),  1=1
where ¢ denotes any of the two-particle function.
Due to specific properties of the density matrix o the solution of equation (10) for the

g-function can be obtained in three steps. First, equation (10) can be solved for the function
|
gsa(r)
Wy L2
Zao(T) 58al + bar + Ca, for 0<r<1 (13)

where

_aao_zwzaﬁz/qygﬁ dt, a—ZWEagZ/tqg)z_ﬁt)dt (14)

1=0
and c, is the constant of integration.

Since the coefficients a, and b, are independent of | and due to the boundary conditions
(12) we have ¢{3(r) = ¢{J(r).

Next, considering (10) for 8 = 1, we arrive at a set of differential-difference equations

for the function q ( )

~[g{)(r)) = 27L(01Boo + 00 Bro)gS(r + L) — ¢83(r — L)}+
+27LooBoolgy ™ + L) = ¢57(r = L)) + LBoobub(r — L) (15)

Here the functions q (r) are known from the previous step. Solution of this set of equations
can be obtained in a similar way as that used in [12]. We separate the total interval [0,1]
into three subintervals I = [0,1 - L}, I, =[1-L,L), I3 =|[L,1]. In each of these

subintervals we get

qg,)(r) = An, art 4+ Bainr + Corn + ual n COSWr + 1’21) WSinwr, rel, n=13 (16)
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gll(r)=cY, r€l. (17)

Here w = 270¢BooL, C",,l 2 1s the constant of integration and uo,1 » and val » are related to

the constants of integration u{! and v{) by

z t
"Li,l = ul), Uc(n),l = v,
ul) 3= —ulVsinwl — vV coswLl, i), =ul"coswl — v sinwl (18)

All the rest of the coefficients in (16) and (17) can be presented in terms of the parameters

which appeares in the expression (13) for the function q! (r)

1
Aal,l = “5’\‘10’ Aa1,3 = Aal,la

A A
Bayg = —;(aa + wba), Baa= ;(aa — wh,),

A A
Ca11 = :)3[% ~(aeL 4 bo)w — caw?], Cap= ;;[ao,. — (agL — bo)w — cow?]

where A = (01 Boo + 00B10)/(00Boo)-
Finally, for 8 = 2 we have
~[g8}(r)) = 27L(01 Bor + 00B1)[gl(r + L) — q(r — L)}+
+27LooBa[¢S 7 (r + L) = ¢ (r = L)) + LBo16ub(r — L) (19)

where the functions q (r) and g (r) are defined by (13), (16) and (17).
Solution of this set of equation follows immediately after the integration in (19) is per-

formed in each of the subintervals I,

¢U(r) = Dagnt® + Agzr® + Bagwr + C .+

+u¢(3m coswr + vt(,l),,smwr rel,, n=1,3, (20)



¢$3(r) = ¢, rel,. (21)

Here Cf,z » are the constants of integration and the expressions for all the rest of the coeffi-

cients are

1
Da2,1 = ""3'7FL00P%, Da2,3 = —Da2,17 ’

A : A
Aaz,l = -—WLO'Q[P(bo, + aaL) + ;Bmaa], Aa2'3 = WLUo[P(ba -— aaL) - ;Bmaa],
A o
Baz1 = —27rLa(,[P(la‘,,L2 +bol +¢,)+ -—Bm(g— + ba )],

Ba23 = QWLUo[P( (Ic,L2 g b L + Co,) + BOI( + b )]

! Bo: I Box
51% 1= BOO u(al)’ vt(zg,l BOO ((Jt’)’

B . .
ul)s = -—Fol(u‘(,"”) sinwL + o0 eoswl), vl),= g—gl(ug‘” coswl — "D sinwl),
00 00

where P = (BooBi11 — Bo1B10)/Boo-
The expressions (13), (16), (17), (20) and (21) for the Baxter function ¢; )(r) involves,
via Bag, the values of the cavity correlation functions y,J)(L) for ¢ and 5 < 2, the densities
po and p;, and the set of the constants a,, ba, Ca, C§,’1’ 2 C (lz)n, ul), v{). Expression for

yf} )(L) follows from the closure conditions (4) in which (10) and (11) have been used

LyS)(L) = aoL + by — 2nboo(L),  Lyld(L) = ayL + by — 2n&10(L)
LyP(L) = 27 LooBoolg{s (0)A + ¢3(0)] — 27 (L) (22)

where the functions égo(L), £10(L) and £11(L) are presented in the Appendix. The densities
po and p; can be obtained from the set of equations (8) and (9). Expressions for a, and b,

(14) together with the boundary conditions imposed on the function qaﬁ(r)

¢y =0 | (23)
Na-L=¢0u-17), =12 (24)
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qc(xll)i(L_) = qu)a(L"L) ~ (1 = 6a0)(1 — 80)011 Ba-1p-1L (25)

form a set of
forty five linear equations for the unknown constants a,, b, ca, Cgl)'g, Cc(,g’n, ul), v,
After some algebra this set of equations can be presented as three sets of linear equations
coupled by the relation between the densities (8) and (9) and by the expressions (22) for

the cavity correlation functions ygp)(L)
zoMa = R, (26)

where
() (1) (0) C(l) C(O)

Zo = (o, bay €ay Cor.2y Car,2 Cazay a2,1r Ca22s

1 0
C£r2),2s 22),3a 00(112).3’ ugo)a ufxl)v v£0), vc(xl))

and the elements of the matrices M, and R, are given in the Appendix.

Thus the problem of solving the OZ equation (2) has been reduced to the solution of the
set of algebraic equations (8), (9), (22) and (26). With this aim an iterative method similar
to that used in [12] can be utilized. The set is first turned into a set of linear equations using
as an input estimates for the values of the densities and of the cavity correlation functions.
We start from the high-temperature limit, which give po = p, p1 = 0, yg,)(L) = ypy(L),
y((,ll)(L) = yﬁ)(L) = 0. Here ypy(L) is the cavity correlation function obtained from the
regular PY approximation. Solution of the sets of linear equations (26) for a = 1,2 and 3
is used then to get a new estimates of ygg,(L) from (22) and po, p1 from the solution of the
set of nonlinear equations (8) and (9).

Finally, the partial pair correlation functions g2(r) can be calculated by utilizing the
iterative method of Perram [18). With this aim equation (10) is to be used. For the sake of

numerical convenience we present equation (10) in the following form

r9.5(r) = 6po(Ga + ba) + 27(1 — b40) ; 25(1 = 6;)(1 — 850)04Bs-1 p-1gir,(r — L)+
¥
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421D 0as /r—] qg‘.,(t)(r t)ok (r —t)dt, for r>1 (27
k ~6 0 ’

Application of the Perram scheme requires the knowledge of the contact values of g:;’ﬂ(r)

The latter follow from equation (27) at r = 1%

955(1%) = (aa + bp)bgo + 27 (1 — 5;30)22(1 — 8i5)(1 — 650)046 Bs-1 p-19(1 — L)  (28)

7]

The total pair distribution function g;;(r) is related to the partial correlation functions

gis(r) by

gij(r) = 26 00,955(r)0s0 (29)

V. APPENDIX

11
€oo(L) = 2Eaaa{ aqap(l — L) + 3l52a(asl + bp) + bagp)(1 ~ LY+

+=[ba(asl + bp) + caag)(1 = L)? + calagL + bg)(1 — L)},

l\Dli—‘

1 1
€io(L) =2} aaﬁ{ZAal,laﬁ(l -L)'+ 31Aara(apL + bg) + Barsag)(1 — L)+
af

1
+51Bata(agl + ) + Caraap)(1 ~ LY + Cara(apL + bs)(1 — L) }+
ulllag 1 1, vWag 1)

g (V) _ 214 2eBBrls 1 D)
+§Zﬁ Tas{ L[ (- Ly =) =2 (1 - D))+

el 0 — o - 1),

1 1
En(l)=2) Uaﬁ{gAal.lAm.s(l - L)'+ '3'[Ac-x,1(2Am.3L + Bp13) + 2Bar1Apy 3)(1 — L)+
of

1
+'2-[Ba1,1(2A;31,3L + Bp13) + 2Ca1,1Am 3)(1 = L)? + Ca11(2451,3L + Bpr,3)(1 — L)}‘l'
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1 2 2(1-L 2 2(1-1 2
+ZZ"aﬁ{Aal.lug)[((l—L)z";;)tﬁ”*i"L—w——liﬁ”]“‘al.lvg)[(g—(l—ll)z)tﬁl)-f-—Lw——)ti”—EH

=0 af
(1) a_ Ly oot ) M,y (1)
+B01.1{u ["““ + (1 L)t, - ;] + vﬁ [—(:)— - (1 - L)tc ]} + C,,],][Uﬂ t_, - ‘Uﬁ (t£ - 1)]+

2403, ot e Ly ot 0
+ w {ua[w +(1-L)ts —w2]+va [_;_—:(I‘L)tc ]}+

+2Am,3l;)+ B3 O — o0 - 1))+

1
0PI + 201 - 2]+ 000 = 1)) + o0 {1~ 1) + ofl(2(1 - L) - ]},

Here

t) = sinw(l — L), t{8) = sin 2w(1 — L),
tM = cosw(l ~ L), 1 = cos 2w(1 — L).

The nonzero elements of the matrices M, and R, are

Ma(1,1) = 1+ 20 + 4mdoy(1 = L)AL — 202 = 2) + 1 (2 = L))+
‘ 3 6 ww
1 2 1 Ui 2 2 2
+27a0(1 — L)[EKL(L -L+2)+ '3'(I€L + ;)(L -2 -2)+ L(L*+ ;—5],
Ma(1,2) = 2m—4m,A(1-L)—41mo(1-L)(xL+%’7), Ma(1,3) = 4ros+87(1—L)(xooL~Acr),
Mo(1,4) = 2701(2L—1), Ma(1,5) = 2101(2L—1), Ma(1,6) = 2roo(1—L), Ma(1,7) = 2rae(1-L),

M.(1,8) = 2r00(2L—1), Ma(1,9) = 2roo(2L~1), Ma(1,10) = Ma(1,6), Ma(1,11) = M,(1,7),

Boo

Ma(1,14) = 00— i)+ B2o0), Ma(1,15) = (1= o - )01 + Bo),

B B
Ma(la 12) = -wl(tsl) - tf:l) + 1)(01 + ‘B‘E::U())v Ma(la 13) = f(til) - t¢(:l) + 1)(‘71 + "—01'00)’

11
M,(2,1)= ‘2'7f0'2 +4roA\(1 - L)[;'i - Z(l - L+2LY))+
amoo(l - DL+ 1)~ 2eL+ 1)1 - L4217 + %KL(L"’ —L+1)]
Mo(2,2) = =1+ 3707 — drou\(1 ~ D)5 (207 = L +2) - =

droo(l — L)[%KL(Z —L+1Y- -§-(ch + g)(z ~ L+2L%)],
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Mo(2,3) = 270, — dwo M1 — L) + 8mookL(1 — L),
M,(2,4) = 701(2L-1), Ma(2,5) = 701(2L—-1), Ma(2,6) = moo(1—L)?, M,(2,7) = moo(1-L)?,
M.(2,8) = mao(2L~1), Ma(2,9) = m0o(2L-1), Ma(2,10) = wao(1—-L?), M,(2,11) = woo(1-L?),

Ma(2,12)——2-7—r(01+—B—0100)[t(1)(1 W)+t (w—wL+1)-14+wL], M,(2,13) = M,(2,12),

M,(2,14) = Z’-’(al + 5‘1‘-ao)[t“>(1 +w) +tV(~w+wl —1)+1], M (2,15) = M,(2,14),
M,(3,1) = 5, M,(3,2)=1, M,(3,3)=1,
Mo )= -+ -l M2 =xaE-1), Ma(4,3)=-
o ’ - w w 2 ’ al? - w ’ a\'% -
M,(4,13) =), M,(4,15) = —t(1),
M(51)—A[l(1—L+l)—l] M(sz)—,\(l-l) M,(5,3) = —
o ] - w w 2 ) a\Ysy - w b oa\Yy -

M,(5,12) =1, M,(5,14) = —t(V,

1
Ma(6,1) = A(;l—z—%L’), Mo(6,2) = M==L), Mo(6,3)= =, Ma(6,4) = =1, Ma(6,15)= -1,
M(1,1) = N5 =317 Ma(1,2) = No~L), Mu(1,8)= =), Mu(7,5) = =1, M.(7,14) = -1,

Mo®1) =N - 1) =301, Mo(8,2)=-M1-L+3), Mof8,3) =)

M,(8,4) = -1, M,(8,12) =tV  M,(8,14) =,
ikl Ta_ —_A1-L+1 -
Ma(9,1) = A=(==1) = 5(1= L)), Ma(®2)=-A1~L+=), Ma(9,3)=-),
ML(9,5) = -1, M,(9,13) =),  M,(9,15) =V,
Ma(1o,1)=n(%-L+L2)+%(%—1), Ma(10,2) = x(1— 2L)-———, M.(10,3) = 2x,

M,(10,10) =1, M,(10,13) = B°‘t“> M,,(m,15)=_§91t9)
By Boo

Ma(ll,l)=n(%—L+L2)+-”—(3—-1), Ma(11,2) = x(1- 2L)-——- Mo(11,3) = 2x,

w w

M,(11,11) =1, M,(11,12) —g‘ﬂtm M,_.(11,14) = ..-gﬂtg’)
00

Ma(12,1)=%xL3+%—(%—-L), M.(12,2) = —LIxL(L+2)+ :)-], M, (12,3) = 2xL,
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Bu

00

M,(12,8) = -1, M,(12,10) =1, M,(12,15) =~

1 L2

M(13,1) = 3s 2+ 22 1),  M.(13,2) = -L[nL(L+2)+%?~], M, (13,3) = 2xL,
Ma(13,9) = =1, M,(13,11) =1, Ma(13,14) = —22
By

M,(14,1) = (1-L)[§~(1+L+L2)+g(1—L+%)], M.(14,2) = (1= L)[x(1+ L)+ gw’l],
Box

M,(14,3) =2xk(1 = L), M,(14,6)=—1, M,(14,8)=1, M,(14,12)= --é—tg”,
00
M,(14,14) = —Efltﬁl’,
Boo

1 2
M,(15,1) = (1-—L)[-gn(1+L+L2)+%(1—L+;)], M,(15,2) = (1-L)[n(1+L)+-2u—?- ,
M,(15,3) =2x(1 - L), M,(157)=~-1, M,(15,9) =1, Ma(15,13)=——g-°1t9),
00

M, (15,15) = ~ 224D,
00

Ra(]-) = 600:, Ra(7) = "(1 - 600)Ba—1 OL’ Ra(13) = “'(1 - 600)Ba—1 lL

Here

k =wLPos, n=mwnLlop
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