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Abstract 

A significant problem in the co~nputation of capacitances coefficients for VLSI intercon- 

nection and other electromagnetic trans~nissiou systems is caused by the singularities in the 

electric field at  the corners and edges of conductors. For two-dimensional models. a solution 

is given by the so called LLDunca~l Correction", which is based on a polar expa~lsion of the 

field. KO such exact expansion exists in the three-dimensional case. Recent research has 

led to some appropriate asymptotic expressions for those singularities? and these are used 

to - derke - algorithgs f~ r~cor rec t ing  co t~ven t imd  capacitance s o m p a t a t i o ~ ~  This cerrectklg 

factor accounts for the singularities a t  the corners of the conductors. Finally we present 

a few examples to illustrate the three-dimensional capacitance correction procedure and 

corny ut ational accuracy. 

'This research was support by the National Science Foundation under Grants MIP-9200'748 and DbG- 

9200738 



I Introduction 

This paper concerns the "interconnection lines of interconnect ion network" . One com- 

mon category of such netn-orks consists of the interconnection circuits on a \.LSI chip; other 

such systenls are power transmission networks and microwa\-e striplines. 

Much work has been done in the co~nputation of capacitance coefficients for tifro-dimensional 

models of interconnection lines and other conducting bodies. but much less has been ac- 

co~nplished for three-dimensional models. See [5], [6], [8], [9]. [15], [l'i], [20]-[2.j], (271-[30], 

[:32]:[34]. A major difficulty in the conlputation of capacitance coefficients arises from sin- 

gularities in the electrical field a t  the three-dimensional corners of a conductor. There are 

also field singularities along the edges of conductors, but their contributions to capacitance 

coefficients are readily determined by Duncan's correction [ i ] .  (321, which is based upon an 

exact polar expansion of the field. Since no such exact expansion exists in spherical coor- 

dinates, there is no exact three-dimetlsional analog of the Duncan Correction. Instead, we 

have sought an approximating asymptotic expression for the electrical field near a three- 

dimetlsional reentrant corner. There is a literature on this subject, see [2]-[4]. [Ill-[13], [l6], 

[18], [19]. Much of this work is of a very general nature dealing with a variety of differential 

equations and a variety of geometries. The paper of Beagle and Whiteman [3] appears to 

be the most pertinent one for our purposes. By using the results of that work. we construct 

a correctio~l factor for capacitance of three-dimensional conductors. The factor accounts for 

the singularities at the corners of the conductors. 



I1 Two-dimensional Capacitance Correct ions 

In order to calculate c.apacitance we first solved the Laplace equation using a finite- 

difference method. However, this method is less accurate in the vicinity of a co~lductor's 

reentrant corner because of a singularity in the electric field at the corner. Duncan [-7 ] cor- 

rects much of the resulting error for a two-dimensional corner by using a series approximation 

for the electrical potential in that vicinity. As is illustrated in Figure 1. He chooses a polar 

coordinate system u-it11 the origin at  the center. In our examples. Oo = 3 7 i / L ) .  Moreover, we 

shall choose the nodal array such that a node exists at the corner and the array's axes are 

parallel to the conductor's surface. 

Figure 1: A two-dimensional corner. 

According to the Duncan correction, we have 

If we sample (1) at M points in the vicinity of the corner node, we can determine the 

coefficients a,,, for the truncated series expansion for the electrical potential: 



In particular. since we haye computed V(T,O)  at several  lodes in the vicinity of the 

corner through our finite-differencr analysis, we can substitute hl of those values illto (2)  

to deter~nine approximately n l ,  . . . . n ~ .  Next, the normal component of VV along the 

conductor's surface can be determined by differentiating (2): which in turn determines the 

normal component of the electric flux density along the surface. By integrating the latter 

quantity along the surface from -Az/2 to the origin and then to Ax/2 (see Figure I ) ,  we 

finally obtain the charge at that part of the corner. 

Now let's get the corrected charge for the two-dimensional corner. In Figure 1, along the 

surface at  6' = 0 and for 7. = Jm, z = 7* sin 0, we have 

ar a e 1 = sin 0 + r cos Oz  

Therefore, 

dV - - - - dV - - -- dVdr  dVd6' 
dn +-- dz ar d z  do dz 

- - dV d V  cos 0 
- s ine+  -- 
dr 86' r 

Hence, 

Note that r = x: so, the charge Qtop on the top surface between 0 and is 

where t is dielectric constant, and 6 = 8.85 * 10" farad/m in a vacuum. Also for the side 



Therefore, 

- - av -- i3V sin 8 
cos 8 + -- 

87' do 7' 

At 8 = 9. cos8 = 0, sin0 = -1; therefore 

Note that r=z; so, the charge Qside 011 the side surface between 0 and -5 is 

Thus t,he total corrected charge QtOtal a t  the two-dimensional corner node is 

We shall refer to this as the M-point Duncan correction since we have matched (2) at M 

points to obtain the first 

How does the Duncan 

ing each corner as a node 

M coefficients a,. 

correction affect our computed capacitance coefficients'? By choos- 

in our nodel array and using symmetric differences to compute the 



incremental capacitors of the grid, we in fact overestimated a conductor's edges because the 

i~lc.retllental capacitors at each corner node extend heyond the conductor's corner. Hence 

we have assigned too much charge to the conduc.tor. One possible correction is to reduce 

those corner incremental capacitors so that they do not extend beyond the edges, but this 

underesti~nates the total capacitance because the finite-difference method doesn't adequately 

account for the singularity in the electric field. The Duncan correction yields a capacitance 

value in between these two estimates. 

I11 Three-dimensional Capacitance Corrections 

We have conducted investigations into co~nputationally efficient means of determining 

capacitance coefficients for three-dimensional models of interconnection lines and other con- 

ducting bodies. 

A major difficult); in the computation of capacitance coefficients arises from siugularities 

in the electrical field at the three-dimensional corners of a conductor. Since there is no exact 

three-dimensional expansion for the electric field, there is no exact three-diine~~sional analog 

of the Duncan correction. Instead, we have sought an approximating asymptotic expression 

for the electrical field near a three-dimensional reentrant corner. By following some ideas 

in 121, we construct a correction procedure for the field singularities at  the corners of three- 

dinlensional conductors as follows. 

The coordinatr system: We wish to compute the surface charge density in the vicinity of 

a three-dimensional rectangular corner of a conductor. For our asymptotic analysis, we can 

assume that the corner configuration extends to infinite. We also assume that the conductor 

is held at  1V and that the electric field decays to 0 as infinite is approached outside the 

conductor. We choose spherical coordinates (r, 0, 4 )  with the principle axis passing through 

the vertex of the corner and remaining equidistant from the three edges of the corner. This 

is illustrated in Figure 2. A unit sphere centered at the origin will intersect the three plane 

surfaces of the corner along a curve r. We choose our coordinate system such that 4 equals 



0". 120°, and 210' at the three points where tlle edges of tlle corner meet the unit sphere. 

O n  I?, the minimum value of 6 is 125.26" and occurs at those three edge points. Also, on I?, 

the maximum value of 0 is 144.74" and occurs where 4 equals 60°, 180" and 300". 

Figure 2: Intersection between a three-dimensional rectangular corner and the unit sphere. 

Surface chargc density: According to [a], an approximate asymptotic expression for tlle 



potential i n  the  i-icinity of the corner is 

It is shown in Appendix A that (12) satisfies the Laplace equation. Moreover we note that 

the range of a is in (0, 11. Indeed, for cu < 0, the potential V(r,8,  4 )  -+ co as r -+ 0, which 

contradicts our boundary condition at r = 0. Also, for a > 1, the electrical field i 0 as 

r + 0; this does not account for the field singularity in the vicinity of the corner. 

In (12): P;3n(cos 0) is the associated Legendre funct,ion of the first kind of degree a and 

order -Sn. An appropriate value for cu depends on the chosen value of ZJ; it is estimated at 

a=.461 for S=2. as will be described later. ii = [no, nl, . . . , a ~ - ~ ] ~  is the eigenvector of B" 

corresponding to the zero eigenvalue, where Ba is a certain singular N x N matrix which is 

chosen as indicated below. 

For N=2, we have 

V(r, 0,4) - 1 + 1..461 [no P.:,, (COS 0) + al  cos 04 p.;i1 (COS o)] 

Therefore, the surface charge density will be 

where in the MKS units we have E = 8.85 x 10-l2 farad/m for a vacuum and 

From Figure 3, we have 

7 7 ~ ~  = 90' 

= - 180' ( 16) 

yn4 = 90' 

where the -fs are the angles between the outward nor~nal unit vector l,, and the three 

coordinate unit vectors. Substituting (16) into (Is), we get 

i3v - av - - -- 
i371 7-60 ( 17) 



Figure 3:  Angles between unit vectors. 

From (13)) (14) and (17)) we have 

Let cos 8 = rz: and dx = - sin 8d8 

From [lo,  page 1611 for -1 < x < 1, we have 

According to (20)) the surface charge density (1 9) becomes 

&7'-.539 
0 = -- { 1.46 1 no [COS 8 ~ . 0 , ~ ~  (COS 0) - P : ~ ~ ~  (COS 8)) + 

sin 0 
a1 cos 34[1.461 cos 04ii1(cos 0) - 4.461 PL:~~ (COS O)]} 



Detcrminatior~ of the rigr nvcctor ii with iV=3: Noting that the conductor is at I volt, 

we see that the summation in (12) should be zero: i.e., 

1." a,, cos JTLQP~'"(COS 6) E 0 

For each point on curve r' in Figure 2, 6 and 6 are determined and this yields a linear equation 

in the a, obtained by equating that su~nmation to zero. Upon choosing N different points 

on the curve r between the points where gj = 0" and 4 = 60". we obtain N simulta~~eous 

equations. With r= l ,  they may be written in matrix form as 

where a' is the vector of coefficients [ao, a l ,  . . . , aN-l]T and B" is an .V x N matrix obtained 

by collocating N points along curve I7 in such a fashion that BQ is singular. This yields 

a nontrivial solution for a': namely, the eigenvector for the zero eigenvalue. As mentioned 

above, at  the present time we have chosen N=2 and set o! = 0.461. To find values for 

and a, we collocate at  two points $o(80, c$,), $1 (61, 41) on curve r . Pairs(8, 4)  for points on 

the curve I-' can be given parametrically in terms of a variable w in the interval [O. a/4] as 

follows. 

See an Appendix B for the derivation of (24). From (22) we have 

a. P:(cos 80) + a1 cos 34, Pc3(cos 6,) = 0 

noP: (cos B1) + a1 cos Pc3(cos e l )  = 0 

We express (25) in matrix form 

Therefore 

&I B& P,O(COS 8,) COS 3b0 Pc3(c0s 6,) I = /  



Assuming that  det B" = 0. we get B&B; = BToB&. From 125).  the expression for the 

eigenvector is 

For (25) to have a non-trivial solution we require that  the determinant det BQ for N = 2 

remains as close to  0 as possible as (6,$) range over I' between the points (8,$) = (0") 125.26') 

and (6, d) = (60°, 144.74"). To this end, we choose a in the interval 0 5 cr 5 1 to minimize 

the maxi~nutn value of det Ba over the said range for (8, @). This was done numerically. 

We took increments of .001 for a and computed max { det BQ:(8. o) E I' }. The smallest of 

those maxima occured when cu = .46l. See Figure 4. 

Figure 4: Maximum value of det.Ba on curve I' for various value of a. 



Having determined o in this way, we now wish to determioe the eigenver-tor ii = (no, a l )  

for the eigenvalue 0 to within an arbitary constant. That is . we now want (1 .  a l l n o )  as the 

solution of Baa' = 0, using a0 as the arbitary constant. (ao in turn will be determined by 

matching the pote~ltial value at a point off the conductor but near the apex of the corner.) 

To pick up the best value of a l /ao  we consider the function 

we calculate its L1,  L2 and L,  nortn respec~ively, for various value of a l /ao.  We found the 

s~nallest value of these norms occurred at the same value nl/ao = -0.05 . See Figures 5, 6, 

and 7. 

Figure 5: L1 norm of the function $J ++ F(a l /ao ,  $) for various values of nl/no 



Figure 6: L2 norm of the function $ F(al/ao, $) for various values of al/ao 

We can conclude that the optimum eigenvector a' is: 

Thus we have a' with an arbitrary constant no, which in turn is determined by sampling 

the computed voltage at one point in the vicinity of the corner. That computed voltage is 

obtained from an initial finite-difference analysis of the given configuration of conductors. 

We next discuss how Pz(cos 6) and Pi3(cos 8) was calculated. From [14. page 623 ] and 



[ I .  page 3361, for - 1 < < 1, we have 

Figure 7: L, norm of the function $ F ( a l / a o ,  $) for various values of al /ao 

and 
" ( a )  n ( b )  n zn F ( a ,  b ; c ; z )  = - 

,r=O (c )n  n! 

Note that r now denotes the standard Gamma function rather than the curve l? of Figure 

2. According to  (30) and (31))  we get 

1 - cos 6 P , O ( C O S O )  = ~ ( - ~ ; ~ + i ; i ;  
2 i 



1 - cos 6 
= CTL ( 

1r=O " 

where F is now the hypergeometric series and 

( a ) ,  = a ( a  + l ) ( a  + 2 ) .  . . ( a  + n - 1 )  

( -a  + 1~ - 1 ) ( a  + r z )  
cn = C 7 L - ~  

n2 

The 

nificant 

use of 130 t.errns in the sununation ( 3 2 )  produces a convergence to within five sig- 

figures . From ( 3 0 )  and ( 3 1 ) ,  we obtain 

where 



and n 3  are direction cosines of 0 2 ,  then  we have 

x = EIX $. l2Y + 1 3 2  

y = rnlX + rnzY + m3Z 

z = nlX + n2Y + n3Z 

Figure 9: Rotation of coordinate system from that of Figure 8 to that of Figure 2. Again 

the conductor is in the octant x < 0, y < 0, z < 0. 

The position of the new coordinate system can be determined by the three socalled Euler 

angles. We define these tliree angles as follows, also see Figure 10. 

Thc colatitude arlgle Bo is the angle between OZ and Oz along the positii-e directions (0 5 

17 



I Bo < n). 

Thr longitudr anglr ilo is the angle between OA and Ox, viewed iu the positive direction 

of the Oz axis. starting from the Ox axis in counterclockwise direction, where O h  is the 

intersection line between OXY and Oxy (0 5 $0 < 27~).  

The rotation angle q50 is the angle between OA and OX, viewed in the positive direction of 

OZ axis, starting from the OX axis in couuterclockwise direction (0 2 do 5 2 ~ ) .  

Figure 10: Relative positions of Euler angles 



Accordi~lg to [:)-I, page 3:) 11. we have the relationships between the direction cosiues and 

the Euler angles as follows, 

l1 = cos $0 cos do - c,os go sin t j 0  sin do 

12 = - cos 7b0 sin - cos 0, sin $ J ~  cos oo 

l3 = sin Oo sin $0 

ml = sin cos q50 + cos Oo cos I,LJ~ sin oo 

7 7 ~ 2  = - sin $0 sin + cos O0 cos $O cos 00 

7n3 = - sin Oo cos Go 

nl = sin O0 sin $0 

n.2 = sin Oo cos do 
n3 = cos 0, 

Substitutitlg (35) into (34), we get 

Therefore 

and also 



D ~ t c r m i n a t i o n  of thr  arbitary constant  no: K i t h  ( 3 6 )  to (38) i n  hand, we can determine 

the arbitary constant no of the eigewector G .  From (13) and (29) .  we have that 
? 

We wish to use the sampled voltage located at a point near the corner in the diagonal 

direction along the Z coordinate, that is, at a point Ax = Ay = Lz > 0 in order to estimate 

the value of ao. At first, we need to determine the spherical coordinates of this point. If we 

choose the origin of Oxyz at the apex of the corner, and Ax = l y  = Az = 0.5 in the finite 

difference analysis, then the Oxyz coordinates for this point are x=O.5. y=0.5, ~ = 0 . 5 .  

From (37), we have X=O: I'=0 and 2=0.8660. From (38)) we get r = 0.8660,9 = 0° and 

4 = 0". From (32)) (33) and cos 6 = 1, co = 1: we finally obtain PO,,, (cos 0") = 1 and 

P.&(COS 0') = 0. Substituting these values into (39)) we get 

Here V ( r ,  0 ,  Q) is obtained from our initial finite-difference analysis. 

Corrected charge at a rectangular corner: We now calculate the charge at the corner. 

From (21) and (29)) we have the charge density 

o ( r ,  0,Q) = -r-.539ao{l A61 [cos 8 P~:,, (cos 0)  - P..,,,(cos O ) ]  - 0.05 cos 34 

[ i .m  cos ~P.;;,(~OS e )  - 4.461 ~ c : ~ ~  (COS @)I} /  sin 9 

The corrected charge at  the corner is equal to the charge densitj- 0 integrated over the region 

shown in Figure 11.  We can divide this region as region 1 aud region 2 in Figures 12 and 

Figure 13. Region 1 is composed of three equal fanlike areas on the corner whose boundary 
- - -  - - - -  - - - -  - - - -  - - - -  - - - - -  - - - - -  - - - - 

is a t  r=.5, while the region 2 is the rest of the region shown in Figure 11: We will calT tlie 

charge on region 1 as Q1 and the charge on region 2 as Q2. 

Because of the syxnnletries of the region 1, to calculate Q1 we oulx need integrate 0 on 

one fanlike area,. Furthermore, we only need to integrate a on half that area. We call the 

20 I 



result Qj,: thus Q1 = 6Q,,. For a more detailed explaination of this: see Appendix C. As for 

Q,,, from ( 4 1 )  we see that 

QI = / . ( i . ,e ,4)pdpd7b (42) 

Figure 11: The incremental areas on a three-dimensional corner. 

Note here that $ is the same a s  in ( 2 4 )  and that ( p ,  $) are the polar coordinates of the zy 

plane. So we have x = p cos $, y = p sin $. Substituting (37) into (38), we get 

In the Oxy plane, z=0. So from (43), we get r = p. Also note that by ( 2 4 )  , ( 4 2 )  becomes 



F(L!)  = F(6,d)  

= (1.461 [COS eq;G,(~os e) - P ; ~ ~ ~ ( C O S  011 - 0.05 COS 3b 

[1.461 cos O P . ~ ~ ~ ( C O S  6) - 4.461 P;,~,,(cos O)]}/sin 6 

Figure 12: The three fan-like regions within the three incremental areas of Figure 11. 

For the integral so' F($)d$ in the (44) we incremently integrate by using the trapezoidal 

rule with a uniform partition. According to that rule, we have 

where zi = a + i h , i  = 0 ,..., N,XN = B. 



Figure 13: Region 2 beyond the fanlike region of the incremental areas. 

111 our problem, xo = 0 and xi = ih ,  z~ = :. If we choose N=100, then h = $o. Therefore, 

we have 

Substituting (47) into (44), we get 

Therefore the char5e on region 1 is 

Next we calculate the charge Qz on region 2. Region 2 consists of three identical areas 

because of the symmetries of the region 2 (see Appendix C). Indeed we only need to compute 

the charge on the one of the three areas; let us indicate it by Qt. Thus Q2 = 3Qt. In order 

to get Q t ,  we need to get the charge density o(A) at the point A half-way along the curve 

I?. Then Q t  = o(4 x (0.5' - ! x ?r x 0.5') = 0.053650(A). For the point A,  we know that 

z = -0.5 cos 45" = -0.3536, y = -0.5 cos 45" = -0.3536,- = 0. From (D'i) and (38). we 

have the spherical coordinates of point A as follows: 



7. = 0.5: 0 = ll-L.T-LO, 4 = 60'. From (32) and ( X I ) ?  we get 

(COS 141.N0) = -. 181 7, Pf.461 (COS 144.74O) = - .3295 

P.T& (cos 144.74') = 4.2590, PL,"~~ (COS 144.74') = 1.6770 

Substituting these values into (21); we have o ( A )  = - 0 . 1 7 6 4 ~ ~ .  Therefore Qt = -O.OOg.iao, 

Thus we have 

Q1 = 3Qt = - 0 . 0 2 8 3 9 ~ ~  (50) 

Finally the  corrected charge a t  a three-dimensional corner is 

IV Numerical Results and Comparison 

Figure 14: A rectangular conductor. 

In order to  verify the three-dimensional capacitance correction procedure and computational 

accuracy, several comparisons are made with exist data. 



Example A 

Consider the single conductor, show~i in Figure 14, of 5 units length, 5 units width, 1 

unit tllickuess and 2 units above a conductiug silicon plane. If we ignore the singularities of 

the electrical field at corners and edges, but allow incremental areas of the finite-clifference 

method to extend beyond edges, the value of capacitance C/eo is 49.1 F .  If incremental areas 

extending beyond edges are deleted, the result is 34.8F. On the other hand, if we consider 

botli factors. i.e., in the most accurate case where singularities are considered but extended 

areas are deleted, we get Cleo equal to 41 .$I?. This result can be compared to the capacitance 

value gii-en by Ruehli and Brennan in [23] by interpolating in t,heir F i g 2  Their result is 

42.5F. 

Example B 

Figure 15: A right-angle three-dimensional bend. 

Consider now a right-angle bend 2 units above a silicon chip. Its dixne~~sions are shown 

in Figure 15. If we do not consider the singularity of the elect,rical field at corners and 

edges but allow overextending incremental areas, the value of capacitance Cleo is 106.1 F .  If 

overextending areas are deleted, the result is 73.9F. On the other hand, if we correct botli 



factors. we get C/ ro  is 83.1 F. This result can be compared to the capacita~lce i-alue given by 

Ruehli and Breunan in [20] by interpolating in  their Fig.9; this value is 101.2F. 



Appendix A 

I11 this appendix. we will show that ( 0 ) I ( 1 2 )  is the solutiori of the Laplace 

equation. I11 the spherical polar coordinates. AV = 0 becomes 

Let V(r ,  0,d)  = R(r)Lr(O, 4). After separating variables. we have 

and 

[Ai+ o(a + 1)1] l J ( @ )  = 0 

where I is the identity operator and A; - is the Laplace-Beltrami operator defined as 

6' 1 d2 
(sin 0-) + -- 

d0 sin2 6 802 

where @ = (0 '4 ) .  In our problem R(r)  = rff, U (e) = c:-' a,  cos 3ndP;""cos 6). It's 

obvious that R(r)  satisfies (53). Therefore we only need to prove that 

Bt9(@) = a,, cos ~ ~ L ~ P ; ~ ' ~ ( C O S  0) (56) 

is the solution of (54). i.e., 

[A, - + a(a + 1)1] By(@) = o 

Let us denote the left-hand side of (57) as L; then 

1 d L -- 
d 1 d2Bp(e) 

[sin 0- Bq(@)] + - 
do 

+ a(a +- 1)B:iBi 
sin 0 80  sin2 0 d@ 

where 

- - 1 
P;~'"COS O)(-9n2) cos 3124 

sin2 0 



C:onsider now the first term A.  From [ 3 O ,  page 1611. for - 1 < r < 1: we have 

Sate here x = cos 8. we have 

a sp (8) - 8 6' cos 8 - 
do 

cos : 3 T ~ ~ ~ , - 3 7 y ~ ~ ~  0)- 
d cos 8 88 

= -sirlOcos3Z~4 
1 

1 - c.os2 8 
[(a + l)x~i"(x) - ((I + 3n + I )P,;R;(x)] 

and therefore 

d 
- (sin 0 

a B? (6)) a 
86 d0 

) = sin 0 cos 3n4- [(a + 1)z P;~"(X) - (a + 3 7 ~  + 1) ( J)] dx 
d P ~ ~ " ( x )  

= sin 8 cos 3n4 (0 + 1) P;~"(X) + (a + 1)x - (a + :372 + 1) 
dx cls 

where we have 

- - (a + 1)x 
1 - 2 2  [ (a  + l)xPi3"(, - ((I + 3n + l)p:;(x)] 

and 

From [34, page3:34]. we have 



Therefore 

Sulxt i tu t ing  (67 )  into (65). we get 

So, from (64) and 168), we have 

From (63) and (69). we have 

(a  + 1)'x2P;""x) . (a  + I)'  - 9nZ 
( a  + l ) ~ ; ~ ' ~ ( x )  + 1 - x z  - 1 - x 2  

Finally. we have 

So we have showed that  V ( r ,  0 , 4 )  in (12) is the  solution of the Laplace equation. 

Finally, let us note that  V ( r , 0 , 4 )  is only an asymptotic solution. This is because 

V ( r ,  6,4) + oo as r -+ oo rather than V ( r ,  0, $) + 0 as r --+ cm . \\'hen r-t  0. V ( r ,  0 , 4 )  -+ 1 ,  

as needed. So t r u l ~ . .  V ( r ,  0.4)  is only an asymptotic solution valid for I *  -+ 0. 



Appendix B 

The purpose of his appendix is to show that (24) holds, i.e.: 

From (37) i n  the paper, we have coordinate transforms as follows. 

and we also have 

X = r sin 0 cos 4 
Y = 7- sin 0 sin 4 

= 1' COS 0 

ail d 

x = p cos $J 

y = p sin $ 

Assume that a point A on the curve r bas coordinateso(. Y :  2) in the coordinate system 

OXYZ, and the  coordinates (x, y, 0) in the coordinate system Ox>-Z. 111 the Oxy plane. we 

have x = - p  cos u,  y = -psi11 + for + E [O, a/4].  Note p = 7. for point on the curve I'. 

From (73) and (74) we have 

sinBcos4 = f i c o s $ -  %sinu, 

cos B = -1. cos - 2 sin 3 fi 6 

Therefore, from the secoxld equation we have cos 0 = - m s i n ( c  + ~ 1 4 ) .  From the first 

Jj cos ++COS e equation we have cos 4 = 
Jis i l l ,  

, where ?,b E [0, x/4]. 



Appendix C 

I11 this Appendix we explain the sym~netries of the region 1 and the symmetries of the 

region '.(See Figures 12. 1:3). We first examine region 1; it cousists of three equal fanlike 

areas. To get the charge Q1 we will integrate the charge density 01 1. .  6 , d )  over these areas. 

Thus r,  8, o must be expressed in terms of p and $,, where that ( p .  c) are the polar coordinates 

of the  0 x y  plane, or Oyz plane, or Ozx plane. Substituting (37) into (38), we get the 

relationship between ( r ,  8, Q )  and (x, y, z) as follows, 

In the  Oxy plane, z = 0 and (77) becomes 

{ 6 = arctaa 

Note that  we have x = p cos $, y = p sin th. Therefore (78) is 

In the  0 x 2  plane. .r = 0 and (77) becomes 

Also note t,hat we have y = p cos $, z = p sin +. Therefore (80) is 

fi sin 41-cos t+b 6 = arctan si~~d,+cosd, 
1 

&(I -cos sin 4) 2 0 = arctan 
cos $+sin 4) 



111 the Ozs plane. y = 0 and ( 7 7 )  hrcomm 

Finally note that we have z = p cos $, z = p sin $. Therefore (82 1 is 

fi cos .J, 4 = arctall coS . ~ , - 2  sin 4 

fi I -cos .J, sin dl) 4 
= arctan (cOs ++sill d, 

From (79). (81) and (83), we cat1 see that in the Oxy, Oyz. Ozx plane, r and 0 are the 

same functions of ( p ,  G), but 4 is not. However, this will not make any difference when we 

integrate a(r ,  0 , d )  over the fanlike area in Oxy, Oyz and OZX plane respectively. We can 

explain this point as follows. 

If we locate three points on the Oxy, Oyz and Ozx plane respectively such that they have 

the same coordinate values ( p ,  $), then by using above equations we can get the values of 

4,,, +,, , ol, for these three points. 

Therefore. 



and 

tan h,, - tan 02. 
- 4zx) = 

1 - tan 4,, tan dzz 

From (8.5) and (86). we get 

In the charge density (41): we only need 34. This means that 

Therefore. we conclude that these three fanlike areas have geometric symmetry as far as (41) 

is concerned; that is? charge density varies in exactly the same way on all these areas. 

Furthermore we need to integrate o on only half of a fanlike area to  get Q,, and then 

Q1 = 601,. We can prove this as follows. For ?+b E [O. ~ 1 4 1 .  we have 

cos 0 = -@ sin(+ + 7r/4) 

COS 4 = fi cos ++COS e 
fi sin 8 

?,b E [O. 7/41 

We can calculate F ( $ ) d v  using the same method as given in the above section, Corrected 

charge a t  a rectnagular corner. The only difference is that (0. o j  is determined by (89) rather 

than b ~ .  (24),  where F ( $ ) ' s  expression is the (45). When we implemented this calculation 

in the computer. ire found that 



Let us noiv rza i~ninr  the symmetries of region 2 sl ioi~n i n  Figure 13. For t811r part of 

the region '2 in the  Ox? plane, call the charge on it Q t l .  Let -4 be the point on r w i t h  the 

coordinat,es ( r :  y.  z )  = (-  .3 cos 45") -.5 sin 45") 0). Then we have 

For the part of the region 2 in the  Oyz plane, call the charge on it Qtz .  Select a point B 

with the coordinates ( z ,  y . z )  = (0, -.5 cos 4s0, - .5 sin 45"). Then we have 

For the part of the region 2 in the  Ozx plane, call the charge on it Qt3.  Select a point C 

with the coordinates (x ,  y ,  z )  = (-.5 cos 4 j 0 ,  0, -.5 sin 45"). Then we have 

Using (R7), (38) and (41): we get 

Therefore 

Q t l  = Qtz = Qt3 = Qt 

and Qz = 3Qt. 
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