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ABSTRACT

The following time-domain characterization of any rational
positive-real matrix is established: Let w(t) be an nxn matrix
distribution having its support bounded on the left and let W(s)
be its Laplace transform. The necessary and sufficient conditions

for W(s) to be a rational positive-real matrix are the following.

1. wle) =ksl(e) + x

k, 5(t) + w (t)

0

Here, k, is a real symmetric nonnegative-~definite constant matrix,

kn is a real constant matrix, and m(t) is a real matrix distribu-

_ tion whose elements consist of finite linear combinations of terms

‘of the form,

u(t) tYe 7T ,

where v is a nonnegative integer and & is a complex constant. -

2. Let

[w(t) + wi(-t)] .

_1
Z"h(t)"‘g‘ i s ,

. ES .
For every nxl constant vector y the quantity y w,(t)y is a nonneg-

ative-definite distribution.
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I INTRODUCTION

Let w(t) denote the distributional inverse Laplace transform
of a rational function W(s), where the corresponding region of
convergence is taken to be a half-plane extending infinitely to
the right. w(t) will be, in general, a distribution because of
the possible delta function and its derivatives at the origin.

If we assume, in addition, that w(t) is an ordinary function that
satisfies certain conditions on iﬁs integrability, then it can be
shown that a necessary and sufficient condition for W(s) to be
positive-real is that the even part wh(t) of w(t) be é nonnegative-
definite function [1,2]. Without this additiohal assumption, one
is forced to use distribution theory or an equivalent theory of
generalized functions in order to perform an analagous analysis.
Moreover, it turns out in this general case that the nonnegative-

definiteness of wh(t) is necessary but no longer sufficient for

W(s) to be positive-real.

The question arises, therefore, as to what additional condi-
tions must be imposed on w(t) in order to insure the positive-
reality of W(s). The answer is given in theorem 3 below. A
similar result for positive-real matrices is given in theorem L.
In view of the c&rrespondence between positive=-reality and the
passivity of physically realizable networks, these two theorems
give a complete time~domain characterization of lumped linear
fixed finite and passive n-ports. This is the objective of this

report.



More recently, é time-domain characterization for any
positive=-real function or matrix, which need not be rational,
has been obtained and will be presented in the next report. It
contains the results stated in theorems 3 and 4 below, as spe-
cial cases. The discussion for rational positive-real functions
or matrices that is given here is considerably more detailed than
the more powerful development of our next report. Indeed, we
present here a discussion of what types of distributions are gen-
erated at the poles of a rational function. As a result, we ob-
tain a specific relationship between the fact that a positive-
real function or matrix must have only simple imaginary poles
that satisfy a certain residue condition, and the fact that the
unit impulse response function or matrix generates a nonnegative-

definite distribution. (See lemmas 1 and 3 below.)

II SOME PRELIMINARY CONSIDERATIONS

This report uses the same notations and definitions that
were employed in some previous ones [3,4]. The elements of dis-
tribution theory that are needed for an understanding of this

work are summarized in the appendix of [3].

The definitions of positive=-real functions and matrices

that are employed here are the following.

The function W(s) of the complex variable, s = oo+ jw, is .
said to be positive-real if the following conditions are satis-

fied in the open right-half s-plane (i.e., for Re s > 0).



1. W(s) is analytic.

2. W(s)r is real whenever s is real.

3. Re W(s) = 0.

The nxn matrix W(s) is said to be positive-real if the
following conditions are satisfied in the open right-half s-

plane.

.
=

(s) is analytic.
2. W(s) is‘réal whenever s is real.
3. The hermitian part,

W, (s) é% [Wis) 4 H*(S)],

of W(s) is the matrix of a nonnegative-definite hermitian form.

~—

In the sequel we shall say that a matrix is hermitian and
nonnegative-definite if it is the matrix of a nonnegative-definite

hermitian form.

We shall subsequently make use of the symbolic expression,

=3

S e‘jwth(w) ,
where G{w) is the sum of a distribution G, (w) of bounded support
and a function Gz(w) of slow growth that is of bounded variation
*over every finite interval. It denotes the complex conjugate of
the distributional Fourier transform of G(w). This is the dis-

tribution of slow growth that assigns to each testing function

¢ in D the value,

<O . ©0 A .
S 6 Ww) « e39%] d()as + lin S 0(t) ! ed%ac (w)at .
" : —p 00 o



The following representations were established in [3,4].

Theorem 1: The function W(s) is positive-real if and

only if its inverse Laplace transform w(t) for the half-plane,

Re s > 0, has the symbolic representation,

o0

w(t) = a8l (6) + ult) S (1 +n?) cos 9t dK(y),

where A is a real nonnegative constant, K(n) is a real odd non-

decreasing bounded function, and u(t) is the unit step function.

Theorem 2: The nxn matrix ‘\ﬂ'(s) is positive-real if and

only if its inverse Laplace transform wit) for the half-plane,

Re s > 0, has the symbolic representation,

©0

wit) = Qs(t) + 48 (t) + ult) /(1 +n?) cos nt dKiy)

+ {: (%z.é. - 1) Lu(t) sin 5 t] dL(n) ,

where Q is a real constant skew-symmetric nxn matrix, A is a

real constant.symmetric nonnegative-definite nxn matrix, and

the nxn matrices, K(y) and E(Y)) are real and possess the fol-

lowing properties.

1. K(y) = - K(-y) , L(y) = L(-n)

A

2. K'(n) =K(n , LX(n) = - Ly

3. For every constant nxl vector y,

v LK(n) - SLinly

A

is a real nondecreasing bounded function of n .
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A distribution f(t) is said to be nonnegative-definite

if for every testing function @(t) in D the quantity,

f Ple)ler) - Pl -T)]dt £(v) « S PETP(t -7)at (2-1)

is nonnegative [5; Vol. II, p. 131]. These distributions can

also be characterized as follows. (For a proof see [1; Vol.

IT, pp. 132-133].)

The Bochner-Schwartz theorem: In order for the distribu-

tion f(t) to be nonnegative-definite it is necessary and suffi-

cient that symbolically

f(t) = fa,ejwtdB(w) , (2=2)

- O

where B(w) is a real nondecreasing function of slow growth.

As a very simple example, consider the delta functiqn

5(t). It is nonnegative-definite because

. [
J . - f )dt > 0.
_th) [§(r) p(t -2)]dt = ¢ )P(t

Moreover, its Fourier transform is the function that equals one
everywhere so that the corresponding inverse Fourier transform

assumes the form required by the Bochner-Schwartz theorem.

8(t) = 3=/ e Jqy . (2-3)

[+o]
Every nonnegative-definite distribution must be of slow
growth because the Fourier transformation is a mapping of S

onto S'.
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- n-2 )
= (-5)"1 (& Q__l dw - 3 1+ (-1™?70_7(0) J;
Eﬂo*‘{ v 'V"""'O ( ) ] q} l(n-'l ,]}) DN=l=o

(n = 1,2,3,00.)

(The summation on the right-hand side is absent when n = 1).

IIT CERTAIN FCURIER-STIELTJES TRANSFORMS

Cur objective in this section is to establish the follow-

ing lemma.

Lemma 1: Let W(s) be a real rational function of the form,

+ W, (s) , (3-1)

W(is) = kTs + kO

ere W (s) has more poles than zeros and is analytic for Re s>O0.

T 1

2

In order for the even part,

ne

wy (t) -21—

of the unit 1mpulse response w(t

[w(t) + wl-t)],
)

corresponding to W( ) to be

representable by the symbolic expression,

” ejwtho(w) R (3-2)

oo

=1_
Wh(t) 21 ‘.’:
where G,(w) is a nondecreasing ordinary function, all the imagin-
ary poles of W(s) must be simple and have real positive residues.

If we perform a partial fraction expansion on W1 (s), we con-

vert it into a finite sum of terms, each of which has the form,

a 3
(- - 39"

where a 1s, in general, a complex constant, « and /3 are real

constants with & nonpositive, and « is a positive integer. Be-
cause W1(s) has real coefficients, a must be real whenever B

is zero. In addition, when /8 is not zero, there will be another

7.



term in the partial fraction expansion whose pole is at
§ =« - jB and whose constant multiplier is a. Hence,

Wi(s) is a finite sum of terms, each of which has either the

form,

F(s) = _—"_5_777 ‘a real), (3=3)

or the fomrm,

H(s) a + a : (3=4)

(s = < 3B (s - &+ 5B)

]

(For definiteness, we shall assume henceforth that 8> 0.)

The time function corresponding to (3-3) is

£lt) = —2 A1 o Xt y(y) (3-5)
(m=-1) .
and that corresponding to (3-4) is
h(t) = T%}%LITT g2 = L Xt g [pt + arg al ul(t) (3-6)
where u(t) is the unit step function
0 (t < 0)
u(t) = _;.;t=0)
1 (t>0).

Actually, we are interested in the contribution that (3-3)

and (3-4) make to the function

G (@) =S, Rewlc +1ix) ax (c>0) (3-7)

and we wish to determine what happens to these contributions as
¢c—0 + . We also wish to determine the effect of these contri-

butions on

1 Duls) e =% + w(-t) e ] = = o et ) (3-8)

in the limit as ¢c—0 + .
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When «< < 0, the contributions of (3-3) and (3=4) to
Gc(w) are bounded continuous (in fact,’infinitely differenti-
able) functions. Since the s = jw axis is in the interior of
the region of convergence of the Laplace transforms of (3-5)
and (3-6), these contributions continue to possess the same
properties when ¢ = O, For the same reason, if these contri-
butions are substituted for Gc(w) in (3-8) and the limit
¢c—+0 + is taken, the Fourier-étieltjés transform correspond-
ing to (3=2) will still be a valid expression. In other words,

in these simple cases there is no difficulty in interchanging

the limit ¢c—»0 + with the integration in (3-8).

Next, let us consider the terms corresponding to simple
imaginary poles of W(s). In this case, o¢ equals zero and 4
equals one. The corresponding contribution of (3-3) to (3-7)

is the principal branch of

a tan” Tw  (a real, ¢ > 0). (3-9)

Q

Replacing Gc(m) in (3-8) by (3-9), we obtain

._._e-Cit[-’-"-l_.f 1

[e ] .
a jwt -
S =J. e d(a tan

w_).
: c
Now, as ¢—0 +, the principal branch of (3=9) becomes the

single step function, -
- %‘I (w < 0)

arfu(w) - -;,_-]=*) 0 (0 =0) (3-11)
Can (w > 0)
2
N
9.

(3-10)



Inserting this function into the right-hand side of (3-10),

the resulting Stieltjes integral becomes a/2. But, ﬁhis is
precisely the value that the left-hand side of (3-10) becomes
as c—» 0+. Hence, here too we can interchange the limit d——;O+

and the integration on the right-hand side of (3-10),

Considering again the case where « = 0 and 4« = 1 and set-
ting a = a, + ja
(3-7) is

a, [tan~t Qlé-ktan'l w+B]+ a2 1n ————QSEQE (3-12)
w+ﬁ :

As ¢—» 0+, the first term in (3-12) becomes the monotonic step

, » we find that the contribution of (3=4) to

function,
..aT‘IT (w < - ﬂ)
QTﬂ[u(w - £#) +ulw +p) -1] = _a;ﬁ (w = - B) (3-13)
) | 0 (- B<uw<p
-
7w =p)

\&" (e>p)

whereas the second term approaches

azln,t‘)’ = g (3-14)

Now, (3-14) is a nonmonotonic unbounded function, having logar-

ithmic singularities at w = + 8. We shall use this fact later.

If we replace Go(w) in (3-2) by the sum of (3-13) and
(3=14) and if the resulting Fourier-Stieltjes integral is in-

terpreted in terms of distribution theory, the result will be

10.



the even part of (3-6). On the other hand, if a, =0, we need
not resort to distribution theory to obtain the even part of

(3-6); here again, the limit c—30+ and the integration in the
Fourier-Stieltjes transform can be interchanged in the classi-

cal sense.

Finally, we shall discuss the terms corresponding to the
multiple imaginary poles of W(s). For terms of the form q/s/t
(a real, M= 2,3,h,...) we have from (2-5) that

N

Re /1i a ;r§=j (3=15)
e{;;§0+ (c + jo)* ) | '

A
; -
i 2
. Fp a(=1)° (/Leven).
Therefore, as c—» 0+ the regular distributions corresponding to
Y Re —2a
O (e + gx)*

approach the generalized functions,

a (~-1) 2 6(/1 —2)(&)) (}i odd), (3-16)

/L ,
71 >
F éilli—f— . (M even). (3-16a)

11.

€
ke



- dicyand, ur;bounqied T4 order. to obt_f‘.,'

Similarly, for terms of the form

a + a (a =a, + ja)
(s = 3p)° (s + 3p)° ' :

The corresponding limits of the regular distributions, gener-

ated by

f' -
.f R a + a ax
ei[c+3x-p)]/u [c+j(x+ﬁ)]’u‘

as ¢c—»0+, are

A fan | _ . |1
- t/*i-m {?(ﬂ ) w-p) ‘?-(/l Dwsp)] - F"“/“" (w- F’ﬂ—
1
‘ (m odd) (3-17)
(wep) P 4

and

ayT (n-2) _ (n-2

(-1 " g AT TRTTT to-pl=
( even) .

(3-17a)

None of the expressions given by (3-16), (3-16a), (3-17),
and (3-17a) are ordinary functions and, for all w (except the

singular point, w = * ), the térmg Fp L/w 2 ‘ﬁ) are ronnonoton-
Hinithe evenparts, ol (3-5)or
' (3 l{)‘ Ie‘sp‘e"ctlvalv

(3~'>) by suhsﬁltut’nng (3 16) (3 std)'}

fOI‘ Go(w) in- (13—2),": we must use \notrlbutlon theorv, the classl*.-;v '

cnlu‘oh,eory bel‘ng, v,:..rg;;s.giequate in this case. '

. 1
The time function corresponding to k. s is k16( )(t) and

. the corresponding contribution to G (w) is k ,ca, which approach-

(1 )( )

es zero as ¢ -——»0+, This is reflected in the fact that &

1z.
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is an odd distribution.
Similarly, the time function for the constant term ko in (3=1)
is koé(t), Its contribution to Go(w) is kqw; 8(t) is an even dis-

tribution.

Turning now to the proof of lemma 1, let us first observe

that for any real rational function W(s) the function,

Golw) = Lim  G.(w) = 1lim  J” Re W(c + jx) dx (¢ > 0),
c. -0+ c -0+ 0

is & finite sum of terms of the forms (3-1l), (3-13), (3=1%4), (3-16),
(3-16a), (3-17), and (3-17a), plus possibly kow. Furthermore, we

may relate the even part wh(t) of the unit impulse response to
GO(w) through (3-2) if we interpret (3-2) as a symbolic expression

for a distribution.

For Go(w) to be a nondecreasing ordinary function, it is clear-
ly necessary that terms of the form (3-14), (3-16), (3=1l6a), (3=17),"
and (3-17a) must not appear in Cfo(u))c This means that every imag-
inary pole of W(s) must be simple and the corresponding residue
must be real, In fact, from (3-1l), (3-13), and (3-1L4) we see that

these residues must be positive. This establishes lemma 1.

IV FUNCTIONS WHOSE LAPLACE TRANSFORMS
' ARE POSITIVE-REAL

-

Weé shall now develop the properties of w(t) which completely
characterize the faét that W(s) is a rational positive=-real func-

tion. The precise result is as follows.

Theorem 3: Let w(t) be a distribution having its support

bounded on the left and let W(s) be its Laplace transform. The

necessary and sufficient conditions for W(s) to be a rational

13,
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W function are the following.

1o wie) =k 8l (6) < x(e) +w (6)

Here, k, >0, ko is real, and w, (t) is a real distribution that

consists of a finite linear combination of terms of the formm,
[ro—— pri—— Souso——— —— S Ot SECE—C——

u(t) tMhe= 7t | (4=1)

where x is a nonnegative integer and » is a complex constant.

2. The even part wh(t) of wlt),

wp(t) 2 2 Dwl(t) + w(-t)], (4=2)

is a nonnegative-definite distribution.

Note that condition 2 above does not suffice to insure the
positive-reality of W(s) since aégz)(t) is nonnegative-definite
and yet its Laplace transform -s% is not positive-real. This is
in contrast to certain special cases where a classical analysis

is possible [1,2].

Proof: Necessity: Assume that W(s) is rational and positive-

real., Since W(s) is real for real s in the region of conver-

o

gence, W(s) = W(3) there and, consequently, w(t) is real. Further-

more, if W(s) has a pole at s = o, it must be simple and 1ts
residue k. must be positive. Expanding W(s) into partial frac-
tions and-applying the inverse Laplace transformation, we COm=
pletely establish condition 1.

Furthermore, w(t) has the form stated in theorem l. Taking

1ts even part, we obtain

w, (t) = 57 eI

- 00

i
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where H(:) is the real odd nondecreasing function of slow growth

given by

H(n) =.g.f;7(1 + 2 2) d K .

By the Bochner-Schwartz theorem, wh(t) is a nonnegative-definite

distribution.

Sufficiency: Assume that w(t) satisfies conditions 1 and 2.

Since w(t) is real, W(s) is real for real s in the region of

convergence. Moreover, W(s) is a rational function of the form,

S W(s) = ks +k, +W(s),

0]
where W] (s) has more poles than zeros in the finite s-plane.

W .(s) cannot have any poles with positive~real parts. For, if it
did, w(t) would contain at least one term of the form (4=1) such
that Re = > 0. This would mean that Wh(t) could not bé of slow

growth and, therefore, nonnegative-definite, which would violate

condition 2. Thus, the region of convergence contains the open

right-half S~plane, which implies the analyticity of W(s) there-

°

lno

We can convert the distributional inverse Laplace trans-~

form of W(s) into the symbolic equation,

3 [w(t) e Pu(1)e®] = L /= o3%grcx o + ko * ;o)1 (4-3)

(C>O) )

where

Gy lw) = SO Re W, (c+ j2) dn. (4=)

1c

As ¢ —p O+, the left-hand side of (3) converges in D' to wh(t)o

Interchanging the limit process c-— 0+ with the integration on

15.



the right-hand side, we obtain the symbolic equation,

(6) = L J_ eMPalkw + ¢ (w)],

Wh =

where

G (w) =1lim G
13 C"-;‘O'*' ?C

(w) .

By condition 2 and the Bochner-Schwartz theorem, kow + G]o(w) is a
nondecreasing function. It now follows from lemma 1 that W(s) has
simple poles on the s = jw axis with positive residues. Also, at
every point on the s = ju axis where W, (s) is analytic, G10§w) e @
primitive of Re W (ju). Thus, : A

k. + Re WT(jw) >0 .

0 ,
Applying the maximum-modulus theorem to ko + Re W1(S) over the

right-half s-plane in the usual way, we see that k, + he W1(s) >0

for Ke s > 0. Hence, k. + Wl(s) is positive-real. Since k. 20,

0
W(s) is also positive-real. Q.E.D. -

V THE FOURIER-STIELTJES TRANSFORMS OF CERTAIN MATRICES

We now turn to the extension of these results to matrices. We

shall subsequently make use of the sufficiency part of the following

known result.

Lemma 2: Let W(s) be an n x n matrix whose elements are ratiomn-

al functions. The necessary and sufficient conditions for W(s) to

| be positive-real are the:following.

et

1. W(s) is analytic for Re s > O and real for s real.

2. Every imaginary pole (including the possible one at s = o0)

is simple so that W(s) is a finite sum of terms of the form,

PRSI S

a a a
| = =0 Y, YLy (5-1)
| W(s) = ks + ky + —3 B N TN W, (s), |

b
+ 2
v

~ where the @, are real and positive and W, (s) is analytic for Re s 20

16.
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neighborhood of s = o and for every y if # > 1.

s ————— Sr——
— ————— S—

\
)
and has a zero at s 7} . Furthermore, g} and "9 are nonnegative-

P

definite real symmet{ic matrices and the ay, (v=1,2,...,p) are non-
¥ - -

- . N { . . .
- negative~definite heimitian matrices.

=
jw fhe hermitian part of ky + W_(s), given by
i

AR
T
z Lk * kg

A8 a nonnegative-definite hermitian matrix.

1

3. For s

+ Wa(jw) W F(qw)],

The first condi=-

Proof: Necessity: Let W(s) be positive-real.
tion holds by the definition of positive-real matrices.

If W(s) has a pole of multiplicity « at s = oo, the following

asymptotic expression holds as 8§ — 00 .

W(s)~ k, s

e

Here, the matrix of coefficients k, is real since W(s) is real for

gl

S real. The hermitian part E{\Ih(s) of _W(’s) is given by

W (s) = [W + W;e

Letting y be any n x 1 constant vector, we have that as s—rco the
hermitian form y*_vgh(s) y is asymptotic to

%L.y*k4¥(<j + Ju) o+ ty kj‘ y (o - jw)/u] (5-2)

Since y*kTy is the complex conjugate of yﬁkﬂz, (5-2) is equal to
Re [y™k,y (¢ + ju)™] (5-3)

and this expression cannot be nonnegative for Re s > 0 in every
On the other hand,

if _# =1, (5-3) is nonnegative for Re s > 0 in every neighborhood of

S = o and for every y if and only if ku is a nonnegative-definite

real symmetric matrix. Therefore, for y*W y to be a nonnegative-

definite hermitian form for Re s > 0, it is necessary that any pole

17.
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of W(s) at s = o be simple and that the corresponding matrix of

residues k1 be a nonnegative-definite real symmetric form.

If W(s) has a pole at the origin, we can come to a similar
conclusion by constructing essentially the same argument in the vi-
cinity of s = 0,

Now, let us assume that W(s) has a pair of imaginary poles at

5§ = J'fﬁv (@v‘ > 0) of multiplicity # o The contribution of the pole

6 s = as e ]
at s = jf, to y]@h(s)g is

36 ¥ X

y»@‘iy ,.._.+»Y§VX

25 < 35,07 ’ (5-4)

2(s - jg,)"

and, as S—-—PJ@V » u Wh(s)g is asymptotic to this expression. Since

¥, 3&
¥y a 'y is the complex conjugate of y%_a y, (5=4) simplifies into

A

2
Re L.8uL (5-5)
(s = jﬁv)/u

As before, this expression is nonnegative for Re s > 0 in every

neighborhood of s = jB., and for every y if and only if 4 = 1 and &,
1s a nonnegative-definite hermitian form. The same result holds for
the pole at s = =3B, -

Since W(s) is a rational, the conditions developed so far show

that it can be expanded into a finite sum of terms of the form (5-1).

Thus, condition 2 is completely established.

To verify the last condition, let us first note that we have

from
érae,wh(s)y >0 (Re s > 0) (5-6)

by continuity that, at all points of the s = jw axis, except possib-

ly at the imaginary poles,

18.



yﬁvh(jw)y >0, (5-7)
Referring to (5-5) and using the fact that y?gvy is real and pos-
itive, we see that the contribution of the partial fraction for any

simple pole at s = j@,

, to Wyljw) is zero, By the same argument, this

assertion holds for any simple pole that may occur at either s = 0,
S = ~JB,, or s = ®. Because of these results, it follows that,

whenever W(jw) is analytiec,

.3 T s
T )y = T [ + X + W, (0) + W (j)Iy 2 0

This result can be extended to all imaginary values of s because of

the continuity of W,(jw).

Sufficiency: Because of condition 1, we need merely show that

(5-6) holds. Let v be any given constant n x 1 vector and consider
a closed path consisting of a portion of the s = jw axis and a semi-
circle in the right-=half s=plane of radius r and center at the ori-

gin.. Since'wa(s) is rational and wa(aa) is zero, the quantity,

% 2
Yo Digls) + . (s) Ty

-

* " B
wy Wah(s)g o

unifiormly approaches zero on the semicircle as r—soo . Furthermore,

since W_(s) is analytic for Re s > O,

r ! (5-8)
- Lo + ko + Wyls) +1,(s) y -
is a finite linear combination of harmonic functions for Re s > 0.
By condition 3 it is nonnegative on the s = jw axis and approaches

the nonnegative quantity,

19.
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If +the point 8 = C is taken large enough to be in the region of con-
vergence of the Laplace transform l/)[(s) and if y is any n x 1 con-

stant vector, we may symbolically write

(e o]

v - T, .y cta. _ jwb
L opyle)e™® +w (-6)e®ly = =/ e?aG (v), (5-9)

vhere Gc(w) is any primitive of y*j{}lh(c + Jw)y.

If W(s) has a simple pole at the origin, its partial fraction
expansion will have a term of the form go/s, where a_ 1is a matrix of

~

real constants. The corresponding contribution to EJh(s) is

(a, + aT) ( aT)jw
a. -
-0 0" _ =0 -0 (5-10)
2(® + =) 2(0% + w*)
1
is < —»0+, this converges in D to
T T 1
7 (39 * gplelw) + 2 (ag - a))Fp — (5-11)

Jw
This can be ascertained from (2-5).

If W(s) has a pole of multiplicity « at the origin, the term

it

0
s~
will appear in the partial fraction expansion of W(s). From (2-5),

its contribution to _I/jh(s) as c—0+ is found to be

T
lim 120, % 9_2 34T (1) o
e O+ 2 [s ' s ! 2{90 &u -1 6 (w) + Fp "‘”—(jw),u]
Torl=) T (ut)
. = [W &7 Hw) 4+ F SR
x _-?____\1‘1 M=1 (=1 ] AT : b5
s I e T

21.
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Similarly, if W(s) has a pair of single imaginary poles at
s =2 Jp, (5, > 0), then the following expi. .ion will appear in its
partial fraction expansion.
kI 1Y (5-13)
s-Jfy s+
where a., is an n x n matrix of constants. The contribution of

(5-13) to W, (s) is

- % T
I é? + a“‘/ By 4 By (5-14)
2 "s-JB, s + 3By =3B, s+ 38,

We again see from (2-5) that, as c—»0+, (5-14) converges in

D to
—lay+a 6 (w- By + (a + 5@?) & (w + 7))
- T 1
1 -a ) P, - Fr e ] (5-15)
’ 2] [(‘a“'l} = ) Ty w. - ‘(3})+ (‘? 2y) By w + By

Assume, more generally, that these poles have a multiplicity of M so
that the terms,

2y . 2y
(s - J‘{iy)’ﬂ (s + By )/

appear in the partial fraction expansion of W(s). Here, a_, de-

. . " . . 4 >
notes a matrix of constants. Their contribution to llmm‘ O+Wh(6 jw)

—
is
c A= ;
J __m 4 M =T, X 6(«"“"1)(0) -8 )
-+ [%}14‘ (-'l )-"u-]a‘{?] 6(/M “1)(“) + @'))) ‘;m (5-16
N - _’_/
2la s (-)Ma : + 13 + (-1)%a T]FF"“”‘J‘”TT?(
Tzl R | 2 = ~ w5 )
2w T s T e g VR (ju+3F
22,
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The desired extension of lemma 1 is given by

Lemma 3: Let W(s) be an n x n matrix whose elements are ration-

al functions that are real for s real. Also, let W(s) be of the form,

W(s) = k. s t koo W (s), (5-17)

e ~ 1 o~

vhere k. is a real symuetric constant matrix, k, 1s a real constant

matrix, and W, (s) is analytic for Re s > 0 and has more poles than

to be represent-

able by the symbolic expression,

@ .
% jwt
v (t)y = L {:3 dG, (w), (5-18)

6]

(w) is a nondecreasing or-

for gvery n x 1 constant vector y, where GO

dinary function, all imaginary poles of W(s) must be simple and the

matrix of residues at each such pole must be a nonnegative-definite

hermitian matrix.

Proof: The proof of this lemma is almost the same as that of

lemma 1.
Let

G = lim G (w)
0 c—p0 + ¢

where again G, is any primitive of y™W (¢ + ju)y (c > 0).

The partial fractions corresponding to poles of W(s) that lie in
the open left-half s-plane contribute terms to Go(w) and to Gc(w) that
are continuous bounded functions and for these terms we may exchange

the 1limit c¢—+0 + with the integration in (5-9) to obtain (5-18) in

the classical sense.

23.



To do the same thing for the imaginary poles of W(s), we shall
resort to distribution theory (as we must if these poles are mul-

tiple ones or, in case they are simple, their residue matrices do

not satisfy the conditions stated in the lemma). If W(s) has a

simple pole at the origin, its contribution to W, (s) is given by

(5-10). Forming a hermitian form out of (5-10), then constructing
& primitive (any primitive will do), and finally letting &—0 +,

we find that the contribution to Go(w) is

T 1 T
= v (ay + ag) v [u(w) = =7+ %5 ¥ (ag - ap) v log |u]

If a5 1s not symmetric, this pole cannot contribute to Go(w) a mono-

tonic function., On the other hand, if 24 is symmetric, this pole

contributes to Go(w) the bounded function,

T
TET“‘Z*(?O *ag)y [u(w) - 2]

and this expression is nondecreasing if a, is nonnegative-definitg.
The contribution of the multiple pole ”ac/s’" to Go(w) is com-
That i1s, we construct a hermitian form out

puted in the same way.

of (5-12) and then take one of its primitives. This yields for

__a"i!’( = 2’_ 3, ll', eoo

y
(/A.&-‘l).'..?. ~ -~ -~
T 1
- 1 *la + (-1 alyF .
23 a-1) 2 “fo ~0 P (jw)’”"
21&0




So, when_4¢ > 1, this contribution does not correspond to a non-

decreasing ordinary function.

In the same way, it can be seen from (5-15) that a pair of
simple poles at s = + 3569/ (ﬁv > 0) contributes a nondecreasing
ordinary function to Go(m) if and only if the corresponding matrix
of residues a, is a nonnegative~definite hermitian form. Further-
more, (5-16) indicates that a pair of poles of multiplicity
A(M> 1) at s = + jf,) cannot contribute a nondecreasing function

to Go(w),

In the vicinity of each imaginary pole of W(s), the contribu-
tions of all the other terms in the partial fraction expansion of
W(s) to Go(m) are bounded ordinary functions, whereas this pole
contributes singularities of the form, sl -2) and/or .'J./w"u"1 if
it does not fulfill the conditions stated in this lemma. Hence,
for Go(w) to be a nondecreasing ordinary function these conditions
must be fulfilled. The proof is completed by noting that we may

interchange the limit process C-—+0 + with the symbolic integration

in (5-9) to obtain (5-18). Q.E.D.

VI MATRICES WHOSE LAPLACE TRANSFORMS ARE POSITIVE-REAL

The t-domain characterization of a rational positlve-real ma-~

trix is as follows:

Theorem 4: Let w(t) be an n x n matrix distribution having its

support bounded on the left and let W(s) be its Laplace Transform.
rational

The necessary and sufficient conditions for W(s) to be a

positive~real matrix are the following:
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1. w(t) = k. 5(’)(t) * ko 8 (t) +_y}(t)

Ead ot

F
s
]

) 51 is a real symmetric nonnegative-definite constant mg&ziz,‘go

ds a real constant matrix, and yh(t) is a real matrix distribution

whose elenents consist of finite linear combinations of terms of the

form

u(t)tVe “7F

where < is a nonnegative integer and » 1s a complex constant.

2. Let

w(t) = L Tw(e) + wl(-t)] . (6-1)

for every n x 1 constant vector v the quantity y w (t) v is

negative-~definite distribution.

Proof: Necessity: Assume that W(s) is a rational positive-real

matrix. Since W(s) is real for s real and positive, the reflection

principle [6;p. 155] shows that ﬂ(g) = W(s)] for at least Re s > O.

Consequently, w(t) is real. The rest of condition 1, including the

broperties of k], follows from lemma 2, a partial fraction expansion

Of‘}Y(s), and an-~application of the inverse Laplace transformation.

To verify condition 2, substitute the representation for y(t),

given in theorem 2, into (6=l1). Using the properties of the various

matrices in this representation, we may simplify the resulting ex-

pression for wy(t) into

wolt) =1/ eI +n2) a [K(m) + 5L (] .
Hence,

oo

(L vy 20K + SOy Iy

R6.




Since y;e[fg(?;) - J'I:(T})Jy is a real nondecreasing bounded function of

S

7} for every choice of Y5 Y*LK("}) + JL( ') )] Yy , ¥ must have the same

ot

properties. Condition 2 now follows fr-om the Bochner-Schwartz theor~

e,

Sufficiency: Assuming that conditions 1 and 2 hold, we see first

of all that W(s) is real for real s in the region of convergence
since w(t) is real. Also, W(s) is rational and is of the fomm,

W(s) = ETS + AISO + W (s),

where ?ﬂ (s) has more poles than zeros in the finite s-plane. All
the finite poles of W(s) must have nonpositive real parts because,
otherwise, Y*Wh y would grow exponentially as t—so00 for at least
one v This would mean that _Y*.Wh( )2, is not nonnegative-definite

in violation of condition 2. We conclude, therefore, that i‘J(s) is

analytic for Re s > 0,

Now, by condition (2) and the Bochner-Schwartz theorem,

Ygﬁ h( )y can be represented symbolically by (5-18), where GO(w) is

a nondecreasing function. Hence, by lemma 3 every imaginary pole

of Y_V(S) is simple and each corresponding residue matrix is hermi-

tian and nonnegative-definite., Also, using the notation of lemma

2, we can decompose Go(w) into a step function due to the finite

imaginary poles of W(s) and an infinitely differentiable function

that is a primitive of

Cy3 T 3 )
321- [Z‘f +}~CO +»Wa(jw) +Ea(jw)]z . (6=2)

Since G _(w) is nondecreasing, (6-2) is nonnegative for every choice
of y. We now conclude from lemma 2 that W(s) is positive-real.
RQe.E.D.
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