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ABSTRACT 

A new method, which improves upon the mean spherical approximation (MSA), is 

developed by including the ionic-pairing contribution using a recent theory of association. 

The association constant of the new approximation is obtained through the second ionic 

virial coefficient. In the simplest version of our theory, which we call the pairing MSA 1 

(PMSAl), we neglect the activity coefficient of the fully associated ionic-pairs, which are 

regarded as a separate dipolar species, and obtain the critical point (p;, T,*) at (0.025, 

0.075). In the second PMSA ( or PMSAB), we include the activity coefficient of these 

dipolar particles at the MSA level. The new critical point is located at (0.023, 0.073). In 

the third PMSA ( or PMSAJ), we further include the effect of the presence of the dipolar- 

particle cores. The final critical point is located at (0.0245, 0.0745). These critical points 

are considerably closer than the MSA result (0.014, 0.079) to the most recent Monte 

Carlo estimates of pz from 0.025 to 0.04 and Tz from 0.053 to somewhat over 0.057. Both 

PMSA2 and PMSA3 appear to improve the critical values of pressure and the degree of 

association significantly over PMS A1 . All expressions for the thermodynamic properties 

in the PMSA1, PMSA2, and PMSA3 are of simple analytic form. The equation of state 

in the PMSA3 reduces to the very accurate Camahan-Starling equation of state for hard 

spheres if the charges are turned off, and it reduces to an accurate equation of state for 

a mixture of hard spheres and hard dumbbells if the charges of the associated pairs are 

turned off. A comparison is made between our theory and that of a recent approach of 

1 



Fisher and Levin, which is in good agreement with the simulation results if the hard-core 

contribution to the thermodynamics is neglected, but which falls out of agreement when 

an accurate core contribution is included. A discussion of the importance of an accurate 

core term in the treatment of the restrictive primitive model is given. Finally, the most 

likely reasons that the Tz predicted by the PMSA is somewhat too high are briefly noted. 



I. INTRODUCTION 

Recent assessments of the critical point (p;, Tz) of the restricted primitive model 

(RPM) obtained by the Monte-Carlo computer simulation1 suggest that the reduced den- 

sity, p; , is between 0.025 and 0.04 and the reduced critical temperature, T,', is between 

0.053 and something over 0.057. Here, p* = 2poa3 and T* = kB~ra/(ze)2 with o, the 

ionic diameter, r, the solvent dielectric constant, z,  the ionic charge number, e, the elec- 

tronic charge, T, the temperature, 2p0, the total number density, and kB, the Boltzmann 

constant. Various theoretical methods were used to obtain the critical point of the RPM? 

One type of method, in which we are particularly interested here, is based on the mean 

spherical approximation (MSA).~ The MSA provides simple analytical solutions and cor- 

rectly treats the hard-core condition. However, the MSA is a linearized approximation 

which does not take into account ionic association. Various methods of improving it have 

been s ~ ~ ~ e s t e d . ~ P  One of the methods, due to Ebeling and ~ r i ~ o '  is to explicitly include 

the ionic pairing contribution via the second ionic virial coefficient6 and the mass-action 

law, using an elegant extension of the Bjermm theory7 of ionic association. 

In this paper, we will use instead an ionic association theory we have developed 

recently8 to include the ionic pairing effect into the MSA. The resulting approximation, 

which we shall refer as the pairing MSA (PMSA), considers only the contribution from 

the unlike ionic pairs at contact. This contribution is further normalized by ensuring that 

the equation of state gives the correct second ionic virial coeffi~ient.~ This normalization 

gives an association constant which is identical to the one suggested by ~ b e l i n ~ ~  and used 

by Ebeling and ~ r i ~ o . ~  Although the PMSA has more terms than the Ebeling and Grigo 

approximation (EGA)~, the PMSA's expressions for thermodynamic properties are much 

simpler. This is because the degree of association in the PMSA has a simple analytical 

form while the degree of association in the EGA satisfies a nonlinear algebraic equation, 

which requires a numerical solution. In Section 11, the general theory is presented in 
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the case of RPM. In the simplest version of our theory, which we call the PMSAI, all 

thermodynamic properties are obtained by approximating the dipole activity coefficient 

as 1. In Section 111, the electrostatic part of equation of state is expanded in term of 

reduced inverse-Debye length x. It is shown that our PMSAl equation of state, which is 

exact through order x4, also gives a near-exact result in order x5 at low temperature. In 

Section IV, a thermodynamic cycle is reintroduced in order to obtain an expression for 

the dipole activity coefficient. The approximation incorporating this result is PMSA2. 

In Section V, the PMSA3 is defined by further including the effect of the hard-dumbbell 

cores of associated pain of ions. Results are discussed in Section VI where our treatment 

is compared with a recent treatment of the RPM by Fisher and ~evin.lO Concluding 

remarks are summarized in Section VII. 

11. THE THEORY 

Consider the restricted primitive model (RPM) in which cations and anions are 

modeled as charged hard spheres with same hard-core diameter o and opposite charge 

numbers (z, -z). The MSA result for the RPM is well known.3 Our goal is to find ionic 

association corrections to the MSA. The first question is how to define an effective asso- 

ciation length between two unlike ions that is characteristic of the distance between two 
\ 

ionic centers of the ions that are to be regarded as associated. It is clearly of order a. 

Many different ways of introducing such an association length have been proposed5*10-1 

since the Bjerrurn theory7 of ionic associations first appeared. In this paper, we shall 

simply identify it with a in order to utilize the expressions appropriate to a simple model 

of association in which a single effective length is introdu~ed.~ As we shall see below, by 

adjusting the ideal association constant, we effectively take into amount of a distribution 

of association lengths that extend somewhat beyond a. 

In a previous paper of ours8, the chemical association constant was found to be 

directly proportional to the cavity function. In the zeroth-order approximation8 the cav- 
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ity function of the associating particles in the presence of both free and bound particles 

is approximated by the cavity functions of a reference system consisting entirely of free 

particles. For uncharged particles, this approximation was considered earlier by Chandler 

and pratt,13 and it also follows from the Wertheim's first-order thermodynamic perturba- 

tion theory1* as well as our own simple interpolation scheme ( s I s ) , ~ ~  which we developed 

for both charged and uncharged particles.8 This approximation will be called the refer- 

ence cavity approximation (RCA) throughout this paper. In refs. 8 and 15 the RCA 

was developed only for the case of chemical association which was assumed to be the re- 

sult of a short-ranged interaction that is present whether or not an additional Coulombic 

interaction is also present. In the simple models considered in refs. 8 and 15 the associ- 

ating interaction was modelled by a contact potential that acts only when the particles 

are a distance L (=a) apart and we shall refer to the resulting association as contact 

association. These models were used as a convenient limiting approximation to a more 

general class of models in which the associating potential is assumed to act over a range 

L- I r 5 L+ and the association degree and association constant assessed by an integral 

over that same range.16 Using the RCA in this context ,8 the pressure contribution from 

association of ions into ionic pain at contact, with L = o, satisfies the following equation: 

where a is the degree of association, po is total number density of cations or anions (in- 

cluding both associated and unassociated) , y;e_f (r) is the cavity function between cations 

and anions of a fully dissociated reference system where r is the distance between ion 

centers and o is the ionic diameter. The reference cavity function can be calculated from 

a thermodynamic approach8 

where .y+ and 7- are the activity coefficients at the 
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complete disassociation reference 



limit for cations and anions, respectively, and TM+- (o) is the activity coefficient for an 

ionic pair at contact in the infinite dilution limit (i.e. an ionic pair in the unassociated 

reference ion system). 

The association degree a satisfies the law of mass action, which becomes, in the 

RCA, 

where K is the association constant and KO is its ideal limit. Although eqs.(2.1)-(2.3) are 

in the RCA, it is known that the RCA gives very accurate result for the case of contact 

associstion.8J4J5 

Here we want to apply (2.1)-(2.3) to ionic association, which occurs even in the 

absence of any chemical bonding. In particular, we wish to apply (2.1)-(2.3) to ionic 

association in the RPM. To do so, we must reinterpret the superscript "ref" as refemng 

not to a reference system but to a reference state, in which the effects of ionic screening 

are accurately described but the effects of ionic association are ignored. Put in more 

precise mathematical terms, this is the state described by the MSA, which correctly 

incorporates the linear response to charge that gives rise to screening but neglects the 

non-linear response that gives rise to ionic association. The nonlinear associating term 

is of significant strength only for a relatively short range of r beyond r = o, so we shall 

continue to use the functional form of the contact association equation (2.1)-(2.3) as a 

convenient approximation, with L = o. 

The MSA results for the RPM can be decoupled into two parts: the hard-sphere 

part and the electrostatic part. Since the hard-sphere part is known accurately, we shall 

first consider improving the electrostatic part only. Therefore, we write [c. f. eqs. (2.1)- 

ele ele 
[Y;"_r(o)]e" = v+ 7- 

&ele 



In (2.4) and (2.6) we have switched from 

a1 and a2 we s h d  introduce later. F'rom 

ref ele 
= KO[Y+- (41 

the symbol a to a0 to be in keeping with the 

the MSA, we have3 

where 

Initially we also assume the activity coefficient of an ionic pair is 1. 

It has been shown that this approximation is accurate only at low densities.17 

After substituting eqs. (2.5)-(2.9) into eq.(2.4), we have 

with 

where yo, obtained horn (2.2), (2.7) and (2.9), is 

It is obvious that eq(2.10) has only one unknown parameter KO. If one chooses 

the ideal association constant KO in such a way that eq.(2.10) gives an exact second ionic 

virid coefficient ,6 we have 

where the b = z 2 ~ / o  is the Bjerrurn length. 
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This association constant turns out to be the same constant chosen by ~ b e l i n ~ . ~  

In fact, if we neglect the second association term in eq.(2.4) we have 

which is the Ebeling-Grigo (EG) equation of state5 for the RPM, except that we are using 

a different yo to evaluate the degree of association, cug, and pMSA describes a reference 

state in which the density is taken to be the total ionic density and not the free ionic 

density used by EG. In the E G A , ~  the assumption is made that v ~ + -  = 1 and that 

only y+ and y- vary with the degree of association. Here, we have instead let yo be 

independent of the degree of association. This procedure has already been proved to be 

a very accurate one in the context of chemical a s s~c i a t i on?~ '~ -~~  We have also found 

recently that w varying with the degree of association a 0  is suitable for the case of ions 

associating into hard spheres (two ions of opposite sign overlapping each other with a zero 

dipole moment).17 Compared to the EG equation of state: our equation (2.10) is much 

simpler because the degree of association has a simple analytical form [eq. (2.11)] instead 

of satisfying a complicated nonlinear algebraic equation. As we shall see, it is also more 

accurate. 

The hard-sphere pressure can be obtained from the Carnahan-Starling (CS) equa- 

tion of state,18 which is known to be of high accuracy, 

where the packing faction q = rpOa3/3. The MSA @ves3 

Our final equation for pressure in the PMSAl 



where x is defined in eq. (2.8). Eq. (2.17) with (2. l l ) ,  (2.12)) and (2.13) provides a simple 

analytic equation of state for the RPM. In the PMSAl, the Helmholtz free energy also 

has a simple form8 

where a0 is calculated from eqs. (2.11)) (2.12) and (2.13). It is well known that (e.g. refs. 

3, 18) 

P A ' ~ / N  = BAO - 1 + lnpo (2.19) 

The activity coefficients for cations and anions can be obtained from 

where "YpSA satisfies eq.(2.7). With the CS equation of state18 as input, the expression 

of activity coefficients for hard spheres is 

The final equation for the chemical potential in the PMSAl is 

This formally completes the derivation of the PMSA1. In next Section, we will 

analyze the asymptotic behaviour of the PMSAl at low reduced inverse-Debye length. 



111. REDUCED INVERSEDEBYE LENGTH EXPANSION 

Expressing po in terms of x by eq.(2.8) and expanding the right-hand-side of eq. 

(2.17) in powers of the reduced Debye-length x, we have the excess pressure due to ionic 

charges in the PMSAl 

where T* is the reduced temperature defined as l / b  and 

The exact expansion for the excess pressure for the RPM idg 

with 

where 7 is the Euler constant (-0.577215665). The two equations (3.1) and (3.3) have 

identical terms through order x4 as expected. At order x5, the first term in the PMSA1, 

which is contributed by the MSA, is also identical to the first term in the exact series. 

The second term, 6T*S1, in the PMSAl is surprisingly similar to the exact second term, 

6T*S2. This illustrates that the PMSAl gives very good estimates for higher order terms 

with the known low-order terms. The third term, S3, in the exact expansion is missing 

in the PMSA1. This term has a characteristic ionic term 1m.- Numerical evaluation 

indicates that -3 + 6T*S1 and -3 + 6T*S2 - S3 are almost identical to each other at low 

temperature. 



IV. DIPOLE ACTIVITY COEFFICIENT 

An immediate conceptual improvement over the PMSAl comes from introducing 

the effect of the molecular activity coefficient of an ionic pair (dipole species) in an ionic 

solution at the infinite dilution of the pair. We consider a thermodynamic cycle introduced 

In Fig.1, AF2 and AF4 are the reversible work needed to bring two ions (i, j) 

horn infinity away to distance r apart in a vacuum and in a solution, respectively, AF1 is 

the free energy change when moving the fixed pair of ions from the vacuum to solution, 

and A 4  is the sum of two single ion solvation free energies. In our case here, the solution 

is an ionic solution. As has been shown,81~~ these four free energy terms can be rewritten 

as 

AFl= k g T l n 7 ~ ~ ~  lpii=o (4.1) 

AF2 = uij (r)  (4.2) 

where 7~~ l p i j = O  is the activity coefficient of the molecular species (ij pairs) at infinite 

dilution, UQ(T), nij(r) , gij(r) are the pair potential, the potential of mean force, and the 

pair correlation function between species i and j, respectively. It is obvious that AF1 is 

the term of our main interest. Fkom the thermodynamic cycle (Fig.l), we have8v20 

If one applies the hypernetted chain approximation (HNC) to obtain g u  (r) for the infinite 

dilute species in eq. (4.4), one finds8j20 

where hvSA(r) is the pair correlation function in the MSA for the infinite dilute species. 

Now, let the particle species i and j be identical to the cations + and anions - in the 
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ionic solution. The electrostatic part of eq. (4.5) becomes 

MSA ele - lwy&$- (r) = - [h+MA (r)leZe + 21n [r* ] flu$e (r) 

where the ionic solution has been treated by the MSA. Substituting eq. (4.7) into (2.5) we 

have, at r = a, 

MSA (o)~ele ~n[~.;ef(o)]"'" = pu+- (a) + h+- 

Eq(4.8) can be rewritten as 

This is because the cavity function is defined as eSu(+)g(r). E ~ ( 4 . 9 )  also follows from 

a well-known approximation - the EXP (for exponential) approximation21 - when the 

latter is applied to the RPM. It is known that the EXP-approximation result gives con- 

siderably better structural information for the RPM than the M S A . ~ ~  It appears that 

this thermodynamic cycle derivation gives further theoretical justification for the EXP- 

approximation result. We observe that the EXP-approximation expression (4.9) is at the 

same level of accuracy as the activity coefficient obtained through the energy route. 

Eq(4.8) provides a simple analytic method to calculate fef (o) which includes 

the effect of molecular activity coefficient. Although there are slightly more accurate 

analytical methods (such as to evaluate the contact value of pair correlation 

function for ions, we do not intend to use them here, because they do not yield as simple 

a picture with regard to correcting the MSA in terms of the thermodynamic cycle and 

cavity function. Moreover, the quantitative changes that would result from using a slightly 

more accurate contact value of pair correlation function are expected to be small, since 

the next dominant contribution should come from the n-mer formations (n > 2). 

F'rorn the analytical result of the MSA? we have [cf.(4.8)] 



Here, we have used the symbol yl to distinguish this quantity from the previous cavity 

function yo. Via eq. (2.5) and eq. (2.7), eq. (4.10) equivalently implies a molecular 

activity coefficient given by: 

Fisher 

obtain 

Huckel 

and Levinlo used a dipolar hard-sphere to approximate an ionic pair in order to 

the molecular activity coefficient. Their eq. (8) for fid, obtained from a Debye- 

level theory, yields in our not at ion 

where X i d  = noid, aid is the closest contact distance between ion and dipole [(oi+Od)/2], 

dhs denotes dipolar hard sphere and we also used ui (= 0) in order to clearly distinguish 

the ionic diameter, oi, from the dipole diameter, ad, and from Oid. In eq. (4.12) the 

density used in computing K is the free-ion density. It is interesting to compare eq.(4.12) 

with the MSA solvation free energy of a dipolar hard-sphere in ionic solutionn of density 

where v is the diameter ratio between the dipole and ion (= od/oi). In obtaining the 

above equation for a dipolar hard-sphere, we have assumed that the dipolar moment of 

the dipolar hard-sphere is same as the dipolar dumbbell (= zeui, two ions at contact). 

We see that eq. (4.12) and eq. (4.13) agree to 0($), but we believe (4.13) is a more 

accurate expression than (4.12) for x not small. -- 

In Fig.2, a comparison between various molecular activity coefficients is made. 

Although eq. (4. l l ) ,  eq. (4.12) and eq.(4.13) appear quite different from each other ana- 

lytically, they do predict similar trend of molecular activity coefficients. In particular, 
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the result of dipolar hard-spheres in MSA result agrees well with the dipolar hard-sphere 

DH result at  low concentration. However, both underestimate the effect of the molecular 

activity of dipolar hard-dumbbells. 

Once the reference cavity function is known, we can obtain all other thermody- 

namic quantities. The new equations, which we shall identify as the PMSAP, are obtained 

by using derivations similar to those given in Section 11, and we find 

where yl is evaluated from eq. (4.10) and KO is evaluated from eq. (2.13). 

V. THE EFFECT OF HARD DUMBBELL CORES OF ASSOCIATED IONIC 

PAIRS 

In the gas phase, ions are thought to be highly a s ~ o c i a t e d . ~ ~ ) ~ ~  Thus, to a first 

approximation, the ionic system can be expected to behave more or less like a dipolar 

hard-dumbbell system. In order to have an accurate equation state near the complete 

association limit, one must build in an accurate equation of state for the hard-sphere, 

haddumbbell mixture. This can be easily accomplished by including the hard-sphere 

part of the reference cavity f~nc t ion :~  



where yCS(o) is the contact value for cavity 

tion of state. 

function under the Carnahan-Starling equa- 

As a result, our equations in the PMSA3 are 

where yz is evaluated from eq.(5.1) and KO is evaluated from eq.(2.13). 

The rationale for these equations is that when x is set equal to zero in (5.4), it 

becomes an equation that is nearly exact 8J5 for a hard-sphere, hard-dumbbell mixture 

in which 2pg is total density, r]  is total volume fraction, and a2 is the ratio of dumbbell 

density to total density. 

VI. RESULTS AND DISCUSSIONS 

To investigate the critical phenomena, it will be easier to deal with the reduced 

parameters. The reduced pressure is defined as 

with T* the reduced temperature (= lib), p* 

osmotic coefficient [= /3 P/ (2po)]. The reduced 
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inverse-Debye length can also be expressed 



in terms of the reduced temperature and density through 

The critical density and critical temperature can be obtained by solving following two 

equations: 

The equations are solved by using IMSL routines for nonlinear algebraic equations. When 

the association terms in PMSA are turned off, we recover the lowestsrder gamma-ordered 

(LOGA) results given in Stell, Wu and ~a r sen :~  which are identical to the MSA results24 

when the hard-sphere contributions to the MSA and LOGA are evaluated in the same 

approximation.24 Our critical points in the PMSAl, PMSA2 and PMSA3 are compared 

with some of earlier theories and most recent computer simulations in Table I. Our theory 

is in an excellent agreement with recent simulation results for the RPM critical density 

while our critical temperature is about 40% higher than those results. The difference 

between the results of the PMSAl with those of Ebeling and ~ r i ~ o ~  provide a comparison 

between the RCA approach and EG's Bjerrum-like approach. We believe the Table I value 

they give for their (p:T,') is in error, and find instead (0.026, 0.0789), which is not far 

from our PMSA values. 

Although the critical temperature and critical density do not change much (< 8%) 

as one goes from the PMSAl to PMSA2 or PMSA3, the critical pressure is decreased 

about 35%. We also evaluate the critical compressibility zc (= P,'/pzT,*). We find that 

the critical compressibility in the PMSA3 is 0.101, which is in excellent agreement with 

the experimental average of 0.098:~ although the precise simulation value is as yet un- 

available. The corresponding values of zc for the PMSAl and PMSA2 are 0.14 and 0.104, 

respectively. It is obvious that significant improvements are made as one goes from the 

PMSAl to PMSA2 or PMSA3. 



As we see from Table I and Fig.3, Fisher and Levin's result lo of adding the DH, 

Bjerrum, and dipole-ion (DI) contributions is in good agreement with the computer- 

simulation results. We note however that this free-energy expression includes no hard- 

core term and hence does not reduce to a hard-sphere term correctly when the charges are 

turned off. The contributions of various terms in our own theory at the critical point are 

listed in Table 11. It shows that the ideal (ID) and MSA electrostatic (MSA-ELE) parts 

of the pressure determine the first derivative while the hard-sphere (HS) , MSA-ELE and 

ionic-association parts determine the second derivative. Thus, we view the hard-sphere 

term as a fundamental ingredient of a satisfactory theory of the RPM. 

In this regard, it is worth noting the sensitivity of the RPM thermodynamics 

in its critical region upon not just the presence of a hard-core contribution but also 

upon the accuracy to which that contribution is approximated. To assess the hard-core 

contribution, Fisher and ~evinl '  advocate adding to the free energy a free-volume term 

of simple logarithm form [their eq. (3)]. Using the free-volume form, Fisher and Levinlo 

found that its addition to their DH + Bjerrum + DI result significantly changed the 

shape of the (p*,  T*) coexistence curve, bringing it in somewhat poorer agreement with 

the simulation data over a broad range of densities above the critical density pz as a result 

of its substantially more negative slope for p*. Guissani and Guillot have found28 that if 

one exactly follows the Fisher-Levin prescription but replaces the freevolume form by the 
- - - - - - - - - - - - - - - - - - -  

- - - - - - - - - - - - -  - - - - -  

far more accurate Mansoori-Carnahan-Starling-Leland ( M C S L ) ~ ~  hard-core contribution 

for a binary hard-sphere mixture, the resulting coexistence curve departs much more 

substantially in the same direction from the simulation data. We further find that there 

is negligible change in this result if we replace the MCSL term by any other hard-core 

contribution to the free-energy that is known to have good accuracy over a broad range 

of fluid densities (e.g. the scaled-particle/Percus-Yevick (PY) compressibility term that 

is often used in liquid-state studies) or vary somewhat the way the effect of association 

on the core contribution is handled. In Fig.3, we compare some of the results that have 
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led us to this conclusion. We show there, in addition to the Fisher-Levin and Guissani- 

Guillot coexistence curves, two more coexistence curves that otherwise follow from the 

Fisher-Levin prescription but treat the hard-core contribution to the free energy in ways 

that deviate from that prescription. The curve that is closest to the coexistence curve 

computed by Guissani-Guillot and slightly below it treats the core of an associated pair of 

ions just as we do in the PMSA3. In other words, the core is that of a diatomic dumbbell 

formed from two hard spheres in contact, with each sphere having the diameter of an ion. 

The remaining curve shown in Fig.3 (by a dashed line) results from making no distinction 

between the core contribution of ions that are free and those that are part of an associated 

pair; the core contribution is computed using the Camahan-Starling approximation for a 

system of equal-diameter hard spheres of reduced density p*. (We note that the critical- 

point shift common to all these treatments yields (&, Tz) values that are not worse than 

the coreless FL value.) 

These last two treatments of the hard-core term nicely complement one another 

with respect to the way they handle the effect of association on the core term-they 

represent the two extremes of assuming maximal core proximity between associated ion 

pairs and of ignoring the effect of association altogether, in both cases preserving the 

spherical symmetry of the individual ionic cores. It is reassuring that they yield results 

in relatively close agreement with each other and with the core treatment of Guissani- 

Guillot . In fact, as Fisher has noted to us in private communication, if one uses an exact 

hard-sphere B1 in the FL eq. (3) with B2 = 2B1 as the sphere-dumbbell contribution, 

one obtaines a hard-core contribution that is quite adequate over the coexistence region 

at issue; it too yields a coexistence-curve correction close to the ones we have developed. 

However the very different values of Bj actually used by FL are instead based upon a 

crystal-packing structure appropriate to a free-volume theory tailored to do justice to a 

high-density regime. In light of the fact that the addition of an adequate core term to the 

coreless version of the Fisher-Levin approximation destroys its good agreement with the 
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simulation coexistence curve, we conclude that the agreement may be due to the presence 

of compensating errors. 

We note in passing that the anomalous "banana" shape of the coexistence curve in 

the DH + Bjerrum approximationlO~ll becomes even narrower when one adds an accurate 

core contribution to it, an effect Fisher has also noted in private communication. The 

"banana" shape appears to be the result of the combined presence of the DH and Bjerrum 

approximations; it is not found when a core term is added to the simple DH result nor is 

it found when the MSA is combined with the Bjerrum approach as in the Ebeling-Grigo 

work5. We also note that sensitivity to the accuracy of the hard-core contribution is not 

confined to the DH + Bjerrum + DI starting points. As one of us has already remarked,2d 

it occurs as well when one adds a hard-core contribution to the Debye-Hiickel limiting 

law term. (Compare in ref. 2d, the critical values in eq.(2.1) with those given a few lines 

above (2.5)). 

Returning to our own PMSA approach, we find sensitivity to the hard core term 

there too. In particular, we are unable to find a critical point in our PMSAl if the hard- 

sphere part is turned off. With respect to sensitivity on the ion-dumbbell term, although 

PMSA2 includes a contribution from the ion/dipolar-dumbbell interaction, as does the 

Fisher-Levin approximation, we find that the effect of the molecular activity coefficient is 

not as significant on our level of approximation as it is in DH-level theory of Fisher and 

Iievin.l0 

The phase diagram of the RPM can be calculated through the constructions in- 

volving the intersection of the Gibbs free energy and pressure at each temperature3' The 

critical point obtained from this approach is in perfect agreement with the results ob- 

tained through eqs. (6.3) and (6.4), as it should be. The phase diagrams in the PMSA1, 

PMSA2, PMSA3 are compared with the most recent simulationld in Fig.4. Although our 

critical temperature is higher than the simulation data, the shapes of our curves do show 

correct qualitative features as expected. 
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In Fig.5, the degree of association is plotted as a function of reduced density at 

various temperatures in the PMSA3. While the degree of association approaches zero at 

the zeredensity limit, it increases to a maximum at a medium density and then decreases 

at a high-density region. The degree of association increases as the temperature decreases 

at low densities but decreases at high densities. Similar phenomena were also found in the 

E G A . ~  Fig.6 shows that the PMSA3 and PMSA2 give a much higher value of degree of 

association than the PMSAl at the high density region. The degree of association along 

the coexistence curve is plotted for PMSA2 in Fig.7. In the gas phase, ions have a high 

degree of association. In the liquid phase, about 50% of ions are associated. This is in 

agreement with the results of Friedman and ~arsenl l  and of Ebeling and ~ r i ~ o . ~  

In Fig.8, the reduced pressure is plotted as a function of the reduced density at 

various temperatures. In Fig.9, the reduced chemical potentials in the PMSAl, PMSA2, 

and PMSA3 are compared with the MSA and computer simulation data.la*ld As the 

figure shows, our theories provide a much better agreement with the simulation data than 

the MSA, in particularly, at low temperature. The PMSA2 and PMSA3 are significantly 

better than PMSAl at low temperature, but slightly worse at high temperature and high 

density. 

VII. SUMMARY 

In this paper, we have shown that the combination of the MSA with our RCA 

theory of chemical associations8 yields a better description of critical phenomena for the 

RPM than the Ebeling-Grigo approach5 combining the MSA with an extension of the 

Bjermm theory of association? although both approaches build in an exact second ionic 

virial coefficient. The advantages of the PMSA3 are summarized as follows: 

1. It is a simple analytic theory free of nonlinear equations, 

2. It has built into it near-exact hard-sphere fluid and hard-dumbbell/hard-sphere 
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mixture pressures, 

3. It treats the hard-core condition accurately, 

4. It includes an exact second ionic virial coefficient, 

5. It is readily extendable to asymmetrical charged hard-sphere systems and mixtures 

of having more than one anion and cation species. 

There are two factors we have not discussed that are potential sources of error in 

our theory. One of them is our neglect of association into n-mer clusters (n> 2). The 

primary effect to be expected from such neglect is an overestimate of the fraction of free 

ions, and hence the free-ion density. This tends to give rise to underestimate of both 

p: and ac. While it is true that our pr is at the low end of the simulation range and 

our ac is considerably lower than some other theoretical estimates? our values are not 

inconsistent with current simulation results or known theoretical facts. This suggests 

that our neglect of association into larger clusters is not a serious source of error. It 

further suggests that our overestimation of T,* (by perhaps 40% higher or so, according 

to current simulation estimates) cannot be primarily attributed to that neglect, although 

considerable uncertainty remains in this connection. On one hand, it is found in Fisher 

and Levin's worklo that the contribution of n-mers (n > 2) to the critical point are very 

small (less than 1% of the dipolar part), and our own preliminary investigation based 

on the extended PMSA also finds that effects of trimers seem to be small. From such 

considerations, it would seem reasonable to believe that the effect of n-mers, all n > 2, 

would be less than the effects of dimers, which lowers the critical temperature from 0.079 

(MSA) to 0.075 (PMSA). That would suggest that at most, the effects of higher n-mers 

would further reduce Tr fiom 0.075 to 0.070, which is still much higher than the most 

recent simulation value of 0.053-0.057.~ On the other hand, otherstudies of the effects of 

ionic clustering suggest that the population of higher n-mers at the critical point may be 

large.31-33 The extent of higher-order clustering revealed in the recent simulation result 

of Bresme et. is particularly striking and we hope to incorporate the results of the 

21 



study into an extension of our theory. 34 

An important second factor that may well result in an overestimation of Tc is 

the mean-field nature of our theory, which neglects the critical fluctuations that would 

be found in an exact treatment. In mean-field treatments of Argon of a comparable 

level of sophistication as our PMSA's, this neglect also results in a critical temperature 

significantly higher than the true Tc but a critical density of good accuracy (as in, e.g., the 

Baker-Henderson perturbation theory35). Although the source of error due to neglecting 

of critical fluctuations does not seem easy to remove, we aspire to at least estimate its 

magnitude in further work. 

In recent work by Zhang and it is concluded that asymmetric charged 

models have mean-field like critical exponents. If this is true, the extension of our PMSA 

to an asymmetric charged hard-sphere system, which is trivial, might yield much better 

agreement with simulation than in the RPM case. In this connection, recent simulation 

results for ~ a ~ l ~ ~  indeed appear to be more consistent with typical mean-field behaviour 

that the RPM simulation results, but further results will be needed to elucidate such 

points. 
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Table I Comparison of different theoretical results with simulations. 

Theory Ref. T,' PE p,' CYC 

DH 

DH+Bj+DI(FL) 

Pad6 

MSA 

HNC 

MSA+Bj (EG) 

PMSAl 

PMSA2 

PMSA3 

MC, 1994 

MC, 1994 

MC, 1992 

t This work 

Table 11. Contributions of various terms at the critical point in the PMSA3 

ID HS MSA-ELE ASSOCIATION 



FIGURE CAPTIONS 

Fig. 1 The thermodynamic cycle. 

Fig.2 Logarithm of the reduced dipole activity coefficient, T*ln'yM, as a function of 

reduced inverse Debye length x (the infinite dilute dipolar species in an ionic 

solution). The dipolar dumbbell in the MSA (-), the dipolar hard-sphere in 

the MSA (- - -), and the dipolar hard-sphere in the DH approximation [ ref. 101 

(- - -). Here the diameter ratio of dipolar hard-sphere to ion, r = od/oi, is 1.324 

which is the value used by Fisher and Levin [ref. 101. 

Fig.3 The phase diagram of the RPM in the Fisher-Levin approximation (DH + Bjerrum 

+ Dl, - - -); the Fisher-Levin approximation plus the Fisher-Levin hard-core 

term(- - - -); the Guissani-Guillot result (- - - - -); the Fisher-Levin approxi- 

amtion plus a hard-core term of PMSA3 form(-); the Fisher-Levin approximation 

plus a hard-core term of Carnahan-Starling form(- - -). See text for further details. 

The simulation datald is indicated by the square symbol (a). Critical points in 

various approximations are indicated by dots (e). 

Fig.4 The phase diagram of the RPM in the PMSAl (- - -), PMSA2 (- - -), PMSA3 

(-) and by simulationld (0) .  The critical points of the PMSA's and simulation 

are indicated by the symbols + and 0 ,  respectively. 

Fig.5 The degree of association CY as a function of the logarithm of reduced density (lnp*) 

at various reduced temperatures in the PMSA3. T*=0.08 (-), 0.075 (- - -), and 

0.07 (- - -). 

Fig.6 The degree of association a as a function of the logarithm of reduced density 

(lnp*) in various approximations at T*=0.075. PMSAl (- - -) , PMSA2 (- - -), 
and PMSA3 (-). 

Fig.7 The degree of association a along the coexistence curve in PMSA2. The cross sign 

indicates the location of the critical point. 
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Fig.8 The reduced pressure P* as a function of reduced density p* at various tempera- 

tures. PMSA3 (-), PMSA2 (- - -) and PMSAl (- - -). F'rom top to bottom, 

T*=0.10, 0.075, and 0.070, respectively. 

Fig.9 The reduced chemical potential, &' = ~ n ( ~ ~ c r ~ ~ ) ,  as a function of the logarithm 

of the reduced density (logp*) at various temperatures. The PMSA3 (-), PMSA2 

(- - -), PMSAl (- - -) and the MSA (- - - -) results are compared with 

simulation data p (Tt=O.147, ref. la); o (Tt=0.07 and 0.045. ref. Id)]. F'rom top 

to bottom, T* =0.147, 0.07, and 0.045, respectively. 



~ Zhou, Yeh and Stell, Fig.1 



Zhou, Yeh and Stell, Fig.2 


















