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A DTI{~lIC T~UISPORTATION MODEL*

A.H .Zemani an

State University of New York at Stony Brook

Abstract. A new and considerably different analysis of a

transportation network is presented, wherein a cammodity is

supplied at a n~~ber of locations to shippers who bulk and

transport it to various markets and then sell it to wholesalers.

Most, i~ not all, of the prior analyses of commodity transportation

networks use mathematical programming techniques to determine

prices and commodity flows under optimal conditions. In contrast

to this, the present work is a fully dJ~amic analysis. It

ciodels the supply and demand behaviors of the shippers and then
,

~ggregates those behaviors to obtain recursive equations that

determine price and commodity-flow variations under possibly

dynamic disequilibrium. The shippers base their shipment decisions

~pon price information and may store goods if prices appear to

be un~avorable. It is shown that this dynamic system has a

unique equilibrium state, which is asymptotically stable under

certain conditions on the slopes of the various supply, demand,

and storage schedules.

*This work was supported by the Rational Science Foundation under

Grant MGS 80-2038-6,.
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~amined herein is the day-by-day transportation and distribution

of a commodity fram spatially dispersed points of supply to other

spatially dispersed points of demand. The initial supply points

are characterized by.supply functions and the terminal demand points

by demand functions. The transportation betvleen these points

is the business of a variety of shippers who act as monopsonists

at each demand point (one shipper for each demand point) and are

able to ship the commodity to any of the demand points. The

principal distinction of the present work, as compared to prior

studies of such transportation problems, is that a fully dynamic

and adaptive model is constructed, one Wherein the shippers

individually decide from day to day how much of the COIT~odity

they will store and how much they will transport. The system

need never be in equilibrium even though the shippers behave as

profit-maximizing firms.

It appears that virtually all of the previous works on this

topic use mathematical programming, primarily linear or quadratic

programming, to detemmine how much of the commodity is transported

from each supply point to each demand point and how much is

stored over successive time periods. Thus, optimization tecr~iques

are used; for example, the cost of transportation and storage

might be minimized or alternatively some welfare function might

be maximized. Seminal works on this subject are Enke (1951),

Hitchcock (1941), Koopmans (1948), Samuelson (1952), and

Tramel and Seale (1959). A more recent and thorough exposition

is provided by Takayama and Judge (1971). As a result of the

.optimization approach, the thrust o:fthese prior works is toward
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the determination of a spatial and temporal equilibrium

analysis for the overall marketing syatem. The y provide

hardly any information about how the system would behave is

disequilibrium, despite the fact that marketing system as

a whole may quite possibly remain in disequilibrium as the

supply and demand functions keep varying with time. Horeover,

even when the supply and demand functions remain fixed with time,

these optimization models do not indicate how a transportation

system that is initially in disequilibrium may adjust itself

toward (or perhaps away from) the equilibrium state. In other

words, the mathematical programming techniques are unsuitable

for stability analyses.

One category of optimization analyses that take into account

the fact that the exogeneous determinants of the transportation

system might be varying with time is adaptive or recursive pro.

gr8lrillling; see Day (1973),Chapter 19 of Takayama and Judge (1971),

and the references therein. . The past and expected future supply

and demand schedules are assumed. An objective function is tksn

optimized to determine prices and commodity flows for future time

periods, and the computed commodity flows are then implemented

for the next time period. This process is repeated at each new

time period as more information about supply and demand is received.

In this w~y, time sequences in commodity flows are planned.

However, the shippers, who actually decide what the commodity

flows are to be, most probably do not plan their shipments in

this way, especially if there are two or more shippers. For one

reason, it is unlikely that they will know what the past and

present supply and demand schedules facing them are, not to
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mention their future schedules or the schedules other shippers

in dist~~t markets face. Usually, the only information about

market conditions that is readily available concerns past clea~ce

prices in the various wholesale terminal markets. Moreover,

the shippers do not plan in unison for an optimal allocation of

cor.rmodity flows in the entire tr~~sportation system. Instead,

they individually try to maximize their profits using whatever

information about past prices is available to them.

These are the considerations that motivate what we believe

is a radically different analysis of a transportation system.

We build our model on an atomistic foundation by treating each

shipper as a profit~aximizing firm. We then aggregate their

~ndividual day-by-day activities to obtain an
,

4nalysis of the entire trans~tation system.

This procedure is similar to that used in

overall dynamic

our prior works

on periodic marketing networks (Zemanian 1979~ 1980~ 1981, in press,

~o appear), a system that is common in the rural underdeveloped

areas of the world. Our present analysis ccncerns a system that is

compatible with a developed industrialized economy, and thus

there are significant differences. The principal one is the

following. In our prior works we assumed that there was virtually

no market news and that each trader confined his activities to

a single pair of'markets or perhaps to a single ring of markets.

(This is not unusual in underdeveloped economies; see Jones

(l96B).) we now relax these assumptions. We assume that there

is considerable, if not complete, information about past prices

in the terminalmarkets and that each shipper customarilysends
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goods to several, perhaps all of the terminal markets. Indeed,

as price conditions change, each shipper generally alters the

proportions of the goods he allocates to his various terminal

markets and is in raot free to initiate or terminate a flow of

goods to any terminal market in the system.

~ Another difference concerns the storage behavior of the

shipper. In our prior works, we assQ~ed that each shipper

stored goods only in his terminal market. This is reasonable

when that shipper has only one terminal market, for then he will

be ready to use immediately his storage facility in accordance

with the variations in his terminal price. However, when he is

shipping to many terminal markets from a single initial market,

~t is also advantageous to store goods in this initial market,

f:or those goods can then be allocated to whatever terminal markets

offer the best price without necessitating a reshipment from

other terminal IT~rkets. In this work we allow the shipper to

~tore goods in any or all of his markets.

Still another difference concerns competition. As in our

prior works, we assume herein that the terminal markets are

perfectly competitive so that the shipper is a price taker in

everyone of his terminal markets. However, in contrast to

our prior works, we assume that the shipper is a monopsonist in

his initial market. (However, we did indicate at the end of

Zemanian (to appear) how that model c.an be modified to a.llow the

traders at the lowest leve.J.s to act aa monopsonists or monopolists.)

Such monopsonistic behavior might occur" i'or example, when the

commodity is an agricuJ:tural good.. . Each shipper might then establish

his buying operation .in Sodii'i'ere.ntg€ographic location so
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widely separated from the other locations that the farmers who

sell to him find it L~practical to sell to any other shipper.

1. The Transportation Network

Figure 1 illustrates the transportation network we shall

discuss in this work. Each ~m represents a location where

m~~y competing suppliers sell their goods to a single shipper~

a monopsonist. The ~ represent the terminal markets to whichK

the goods are sent by the shippers. The~. are the locationsJ

in the vicinity of the ~m at which the shippers bulk goods and

prepare them either for shipmentor storage. We treat the 'Y.J
as hypothetical markets which determine how much the shippers

atore in the vicinity of the ~m and how much they transport to

~he various Yk. The arcs between these markets indicate theI

possible ways good may flow from the ~ through the 'P. to them J

Yk.

We use the following numbering system for the indices m, j~

and k: m = 1, 2, ... , Mj j = M+l, M+2, ... , J; k = J~l, J+2,

... , K. Since each ~ has only one shipper and therefore onlym

one adjacent ~., we must have that J = ~I. Moreover, weJ

number the 0/. adjacent to a $ such that j = m+M. T.b~advantage ofJ 'm

this numbering system is that we can ascertain to which kind of

location a variable such as a price pertains simply by noting

its index. F or example, P denote s a pri ce in a ~ marke t ~lhere asm

Pk denotes a price in a Y market. This allows us to manage with

fevler sJ7!!lbols,an advantage since there are so man7 variables

}I 0"
,I..., ,! in this work. q Other assumptions are the fo~lowing. All the

markets (the 'fjas well) meet on all the marketL~g days. We

designate the latter by the di.scretetime variable t =... ~ -1,
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0, 1, 0... A single price P (t), P.(t), or Pk (t) is established in
m J

each of the ~m' ~j' or Yk respectively for every t. At each t

every shipper is fully informed of the prior prices Pk(t-l),

Pk(t-2), ... in every Yk. It simplifies our notation still

further to aSSQ~e that each shipper can ship goods to every Yk'

and for this reason an arc has been drawn in Figure 1 from each

~j to each Yk. In the event that the last two assumptions do not

hold - that indeed because of a gap in market news or perhaps

some government regulation or SOIT£ physical barrier - he cannot

ship to a particular Yk' we can accomodate this situation into

our model by taking that shipper's minimum average variable

cost Tjk of shipping goods from his ~j to that Yk as exceedingly

~arge, say, -.

The reason we treat the f. as nodes distinct from the $ JJ .m

even though each ~j c~~ be identified with exactly one ~m' is

the following. We have to devise some way of deter.mining how

~uch of the goods each shipper buys in his ~m' how much he stores

at ~j' and how much he ships to each of the Yk8 Our model for

this purpose is based upon the theory of a profit-:maximizing

firm. On ~~e one hand, it takes into account the costs to the

shipper of buying, bulking, and preparing for shipment or

storage the goods he has bought in ~m. The marginal cost for

doing so depends upon the amount of goods he is processing

(i.e., transferring from ~m to ~j). This cost coupled with

the supply function in $ leads to a derived supply function atm

On the other hand, the marginal cost in shipping goods from'fl..J

'f'j to

along

a particular Yk depends only ~pon the amount being shipped

this arc, not on the total amount being sent to all of
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the y markets. At least, we assume this is the case. So,

in determining how the demand in a y, coupled with the cost o~K

shipping from f. to Yk is reflected as a derived demand in ~.,J J
we have to treat eac~ such shipment separately. To this end,

we use each ~j as a hypotheticalmarket where the derived supply

function from ~ is equated to the aggregate of the derived demand'm

functions from the Yk to establish a clearance price and the

quantities stored and shipped to the various Yk.
The clearance

price is taken to be the f.o.b. price at the supply locations.

This is the basic idea of our paper. We now turn to details.

2. A Shipper's Transfer Supply Function and Derived Demand

A shipper can be viewed as a firm that supplie the service

of transferring the ownership of goods over space and time. His

supply schedule can b~ derived in the standard way from his

marginal-cost and average-variable-cost curves. This in turn

leads to his demand curve in the market at which he buys the

goods he will be shipping. The derivation of all this has been

pr€sented in detail in Zemanian (1980, Section 2) and therefore

will not be repeated here. We will merely explain its ccnclusicn,

namely, the derived-demand curve shown in Figure 2, where as

usual p denotes price and q quantity.

Cop~ider two markets between which a shipper transports goods.

We let ~a denote the market where the shipper acquires goods and

call it his initial market. Similarly, ~b will denote the market

to which the shipper sends those goods; Pb will be referred to

as his final market. In our model there is no more th~~ one shi]per

operating between any two markets, and therefore we can specify
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a shipper by callir~ him the ~a:~b shipper.

pair ab identifies that shipper.

The curve in ~igure 2 is the shipper's demand schedule in

In fact, the index

his initial market ~. at time t. Taus, if at time t the pricea

in ~a is PaCt), then the quantity the shipper acquires therein

in ~ Ct).a

While .operating in ~a at tL~e t, the shipper maintains an

expectation Eab(t) .ofa price that thase gaads will receive in

his final market Pb at time t~ab' where ~ab is the time it takes

far gaads ta be shipped ~ram ~a te Pb. That expected price Lab(t)

is determined by a memary functian Mab .ofpriar prices in the

final market Pb:

(2.1) Eab(t)
=

Mab[Pb(t-l), Pb(t-2), Pb(t-3), ...1

That is, the shipper extrapalates fram past prices ta e~timate

a future price. . Actually, Mab may even depend upan past prices

in ether markets. Hewever, we wan't allaw this generalizatian

in .ourdiscussian even thaugh mast of the results .ofthis paper

extend readily in this way. We take Mab te be manetanically

increasing with respect ta each .ofits arg~~ents; mareever,

if all thase ~rguments have the same value, we assume that Mab

assigns that value ta Eab(t).

T b is that critical expected price increment from ~ te ~ba .. a t"

below whiCh the shipper will not transport goods and abeve which

he will. Thus, for p > Eab(t) - Tab the shipper demands nothiI"..g

in his initial market" whereas for p <E b et) - T b he has a
8.. a.

positive demand. This demand function is symbolized by
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(2.2) q =
vab(Eab(t) - Tab - pJ

where Vab(x) is zero for x ~ 0, positive for x > 0, and continuous

everywhere. In fact, an examination of the operating costs facing

the shipper indicates that Vab shpuld have the step-like shape

shown in Figure 2 (Zemanian, 1980, Section 2). Note that, as

Eab(t) changes, the curve of Figure 2 shifts vertically by the

same amount.

3. A Shipper IS Storage Schedule

and the Corresponding Supply Funetion

In this paper we will be work:ingwith two different models,

one in which none of the shippers store goods ~~d another in

which at least some of them do. In the former case, each shipper

takes whatever price he can get in the market to which he delivers

goods; thus, his supply schedule therein is perfectly inelastic.

In the latter case, which we now discuss, his supply sC~dule has

some elasticity, for the less favorable the prices, the more he

will store. This storage behavior has also been discussed in

detail in Zemanian (1980, Section 4), and therefore in the

present section we merely define symbols and explain the

pertinent relationships.

We let Zab(q) denote the per-unit marginal cost of storing

the a.~ount q of goods at~b from one day to the next. For

0 < q ~ Bab' we assume that Zs;b isa ccntinuous, positive,

strictly monotonically increasing function with Zab(3ab) = lab;

herelB. denotes the maximum storag~ capacityatB..availableaD rb

to the "'a:I3bshipper, and lab denotes the per-unit marginal
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cost of storing at maximum capacity. For q > Bab' we set Zab(q) = -;

this insures in effect that the ~a:~b shipper will not store goods

at ~b in excess of Bab. Moreover, we allow Zab(O+) to be either

zero or positive.

Next, we define 'fJb on the interval Z b (O+) < P ~ I .a a aD

as the inversefunction of Zab; that is, Wab(P) = q for

Zab(O+) < P ~ lab if and only if p = Zab(q) for 0 < q ~ Babe

We then extend Wab to all real values of p by setting Wab(P) = 0

for p ~ Zab(O+) and Wab(P) = Bab for p ~ Iabo This makes Wab

a continuous function of p.

The goods the ~a:~b shipper has in storage at ~b mayor

may not be offered for sale by him depending upon the current

~rice in ~b and the price he expects in ~b one day hence.
In

qther words, the goods in storage provide a component of that

shipper's sup~ly schedule at ~b. More specifically, let Fab(t)

be the price the ~a:~b shipper expects to receive in ~~ at t+l

While operating in ~ at t. We assume that Fab(t) is determined

b:ya memory function Nab of past prices in ~b:

('3.1 )
F ab ( t )

=
Nab[Pb(t-l), Pb(t-2), Pb(t-3), ...]

We assign the same monotonicity and constancy properties to Nab

as we did to Mab. Moreover, Nab may also depend upon prices

in other markets, but as with Hab we won't allow this generalizationo

It follows that, if the current price Pb(t) in Pb is less than

Fab(t), the trader will store at least some goods rather th~

offering them for sale. Indeed. le t A . (t-l) be the amo1.J.."'lt the, aD
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~a:~b shipper has in storage from t-l to t.

will offer only the amount

Of this amount he

(3.2) Aab(t-l)
-

Wab[Fab(t) - pJ

for sale if the price in ~b is p because Wab[Fab(t) - p] is the

amount he will store in ~b from t to t?l. Thus, (3.2) is that

component of the shipper's supply schedule in ~b at t resulting

from his storage behavior. This is illustrated in Figure 3.

For p above Fab(t), the shipper offers all of Aab(t-l) for sale.

On the other hand, at PI he offers for sale only the portion ql

from the goods in storage, and, if PI is truly the clearance price,

he stores

Aab(t)
=

Aab(t-l) - ql

from t to t+l. At a still lower price P2' (3.2) may take on

the negative value q2. This simply means that the shipper wishes

to add the amount q2 to his stored goods ~~d exhibits this as

a.negative supply, that is, as a positive demand.

Subsequently, we will add (3.2) to another supply component

arising from the goods the shipper brings into ~ at the beginning

of day t to obtain his overall supply schedule in ~b at t,

4. Dynamics in ~m and Derived Supply

The amount U (t) of goods acquired by am

~m is determined by the standard theory of the monopsonist.

in 'f.J
shipper from his

This is illustrated in Figure 4. S (p, t) is the exogeneouslym

given aggregate supply function of all the suppliers to <b at t.ill

For p and q related by this curve, 'the marginal cost 1-1C (q, t)m
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to the shipper of acquiring q goods in ~mat t is p + qdp/dq;

the' inverse function of MC with respect to q ia denoted bym

MC:l(p, t). We assume that Sm is an increasing function of po

Consequently,MC is.situatedabove S as indicatedin Figure 4.m ill

The marginal cost of acquiring the ~~ount u (t) is R (t), butm m

the price paid to the suppliers is P (t).m

In accordance with Section 2, the shipper's demand

function D (p, t) in ~ at t is given by (2.2).
, m m Now, however,

we replace the expected Price in ~. by the f.o.b. Price P.(t)
- - J J .

at which 'P. clears. P.(t) is determined by the dynamics in '-P.,

J J . J
a matter we discuss in the next section. Assmae for the moment

that Pj(t) is known. This locates Dm(p, t) within Figure 4.

The resulting intersection of D with MC determines U (t) andm m m

Rm(t), and the vertical projection onto Sm determines Pm(t).

In symbols, we have

(4.1) Dm (p, t)
= v . [P.(t) -T . - P

]mJ J mJ

so that

(4.2) U (t)m
=

MC:1[Rm(t), t]
= v .rP . (t) - T . - R (t )]mJL J mJ m

and

(4.3 ) u (t)m
=

Sm[Pm(t), t].

'Witb Pj (t) given, (4.2) implicitly determines Rm(t) and thereby

U (t). ~en, (4.3) implicitlydeterminesP (t).m m

This constructiondeterminesarelatioIJ.shipbetween

corresponding pairs p =Pj(t) and q -= Um(t), which we denote by

q :: Xj (p,t) . Xj s'erves as a.derived supply function in o/j.
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In view of the ass~~ed shaDes of D and MC I X. has the form
m ill J

indicated in Figure 5.

Before leaving this section, we should cOIT~ent on the

shipper's ability to .determine the amount Um(t) he will buy for

a given P.(t) in accordance with this construction. To do so,J
he must know what MC (q, t) is, but this may not be the case.m

It appears to be more realistic to assume that the shipper simply

tries to act optimally as a monopsonist. In this case, we should

replace MC by what the shipper believes it to be.m u (t) ism

then determined from the given P.(t) by the intersection ofJ

Dm with the shipper's estimate of MCm. He then pays the price

dictated by (4.3) in order to acquire his desired U (t).m This

may alter the derived supply function X'J but otherwise our analysis
: J
~eillains the same.

5. Dynami cs in 't' .J
In addition to the derived supply function X.,J

to the shipper the supply function ar-isingfrom his

we assign

storage

behavior at 0/., as was explained in Section 3.J

in Figure 5 by the curve labelled

This is displayed

(S.1 )
Amj(t-l) WmjlFmj(t) - p],

where Fmj (t) is the f.o.b. price in"Yj the shipper expects to

have at time t+1:

(5.1)
Fmj ( t)

:: N. rp. (t-l) ,P. (t-2 )'P j (t-) ),... 1mJLJ .. J

The sum of the two supply fun.ctions -yields the total supply

function in cr. a.t t:
J



15

(5.3 ) S.(p, t)
J

::: x. (P, t)
J ? Amj(t-l) - vJ .[F . (t) - PJmJ mJ

On the other h~~d, as was indicated in Section 3, the shipper

has a derived demand-function (see Figure 2) for each of his

shipments to the Yk. We obtain the shipper's aggregate demand

function D. (p, t) in ~. by summing over all k:J J

(5.4) D.{p, t)J
::: L. V., [E'k - TJ'k - p]k JK J

Here,

(5.5 )
Ejk(t) ::: Hjk[Pk(t-l), Pk(t-2), Pk(t-3) ."]0

Upon equating (5.3) to (5.4), we get an implicit equation for

the shipper's f.o.b. price P.{t):
. J
,
(5.6 ) SjlPj(t), tl = D.[P.(t), t1J J

Then, the substitution of p=P.(t) into the various supply and. J

demand functions determines the various ~~ounts of goods shipped

or stored. In particular,

(5.7)
Ujk(t)

= V'
k [E' k (t) - T' k - P.(t)]J J J J

is the fu~Ount shipped out of ~ at t toward Yk' and

(5.8 ) U. (t)J
=

2.. U'k(t)k J

is the total amount shipped to all the Yk. As was stated before,

(5.9 ) U (t)
ill = Xj[Pj(t), tJ

13 the amount processed for shipping or storage at time t.

Furthermore,
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(5.10) A . (t)
mJ

= W .

[
F .(t) - p.(t)l

mJ mJ J'j

is the amount stored from t to t+1. Also, if A .(t-l) - A .(t)
mJ mJ

is positive (negative), it is the amount taken out of storage

(respectively, added to storage) at t.

Let us reiterate why this determination of prices and

ccramodity flows reflects reasonable behavior on the part of a

shipper who wishes to maximize profits. We invoke standard

marginal analysis, but a complication arises in our dynamic

model in that the shipper cannot know what prices his goods will

fetch when they reach their destinations; he can only work

with expected prices. Now, the price dictated by the demand

function D. is the marginal per-unit revenue the trader expectsJ
to receive for shipping goods from his warehouse in t'. to aJ

Yk' for it is the expected price the goods fetch in the Yk minus

the marginal cost incurred in shippingthose goods from ~. toJ

the Yk. This expected marginal revenue decreases as the quantity

shipped out of ~. increases. (Note also that by hypothesis theJ
y markets function under perfect competition with many shippers;

Therefore, Ejk(t) does not depend upon the ~~ount of goods being

shipped from Ifj to Yk.') On the other hand, the price dictated
by the derived supply function X. is the marginal per-unit costJ
of buying goods in ~ and making them availablefor shipmentm
from 0/. 0

J Moreover, the price dictated by the storage supply

function (5.1) is the expected per-unit opportunity cost of

not storing the marginal good in ~j. Both of these costs

increa.se as the cp8.."ltity supplied in If'.increases. By standardJ

marginal ana.lysis,under the indicatedforms for our supply and

-
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demand functions (we precisely define these forms in Section 7

below), profit maximaization occurs where the net marginal revenue

on an increment of shipment is zero. 30, the shipper maximizes

his expected profit from his operation in ~j and ~m by processing

the amount of goods dictated by the clearance equation(5.6).

6.
D:ynami cs in Y k

We assume that in each terminal market Yk there is perfect

competition between many local buyers and a variety of shippers

bringing goods into Yk from the various o/j. The aggregate demand

f~~ction of all the local buyers in Yk at time t is denoted by

Dk(P, t) as in Figure 6.
In our model it is assumed to be given

exogeneously. On the other hand, each srup~r who transports goods

out of f, and into Yk is characterized by a supply function like
I J
that of Figure 3 with however the following alterations. The

s~bscripts ab are replaced by jk. The shipper has on hand in

Ykat t not only the amount A'k(t-l) of goods that were i~ storage. J
f'rom t-l but also the amount

(6.1) U'k(t-t'k)J J
=

Vjk[Ejk(t-~jk) - Tjk - Pj(t-tjkD

that he just transported into Yk. Hemce, his total supply curve

is shifted horizontally to the right by the amount (6.1) to give

a supply curve l~ke the one in Figure 3 except that Aab(t-l)

i£ replaced by Ajk (t-l) + Uj,k(t ~ jk). B'urthermore, the price

F jk (t) he expects in 'Y'kat t+l is given by the memory fUJlction

(b..2)
Fjk(t)

=
NJk[Pk (t400l),Pk ( t- .2), Pk (t- 3), . . .1.

:ms~bol.s ,tb:s.tshipper tssupply function in Yk at t is
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(6.3)
Sjk(P, t) == Ajk(t-1) + Vjk[E.jk(t-'rjk) - Tjk - Pj(t-'rjk)]

- Wjk[Fjk(t) - p]

The aggregate supply.function of all the shippers in Yk at t is

therefore

(6.4) Sk(P, t)
== L S Ok (p, t).

° JJ

The clearance price p == Pk(t) in Yk at t is the solution of

(6.5 ) Sk(P" t)
==

Dk (p, t),

and the total amount exchanged is

(6.6) ~(t)
==

Sk[Pk(t), t] == Dk [p k (t), t J .

This is illustrated in Figure 6. Finally, Sjk[Pk(t), t] is the

amount the ~j: Yk shipper sells in Yk at t and

(6.7)
Ajk( t) == Wjk[Fjk(t) - Pk(t)]

is the amount that shipper stores in Yk from t to t+l.

It can happen that the price Pk(t) is so low that, for

some of the shippers with high expected prices, Pk(t) is

situated as is P2 in Figure 3. Those shippers will then buy

goods from shippers with lower expected prices and will add

those goods to their storage from t to t+l.

7. Assumptions and the 110de~

We now gather togetherande-'Cpli:C'Ertealltheassumptions

we impose on the vari ou.scharac'tecristicsaIJ..:d 1''UI'lctions 31: our mod:e~.
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COllditions I. For each fixed t, Sm(p, t) is an exogeneously

givBn, continuous, nonnegative function on 0 ~ p < ~ such that

S (p, t) = 0 for 0 ~ p $ P-(t) and S (p, t) is strictly increasingm m m

for P-(t) ~ p < -. Moreover, MC-l(p, t) exists, is continuousm m

on 0 ~ p < -, and is strictly increasing on P-(t) ~ p < ~.m
- -1

(It folloHs that, for each p > Pm(t), ~ICm (p, t) <~Sm(p, t)o)

Conditions II. For each fixed t, Dk(P, t) is an exogeneously

given, continuous, nonnegative function on 0 < P < ~ such that,

as p-4-O+. Dk(P, t)-,)...~.It is strictly decreasing for 0 < p:;; P~(t)

and is equal to zero for P;(t) ~ p < ~.

Conditions III. Vab is a Lipschitz continuous, nonnegative

function on the real line such that Vab(x) = 0 for x ~ 0, Vab(x)

is strictlyincreasingfor 0 ~ x < -, and Vab(x) tends to a

f ini te limi t as x.--:;.-0>.

(The Lipschitz continuity of Vab was used in the proof of

Theorem 2 of Zemanian (1979), a result we invoke in Section 9 below.)

Conditions IV. Wab is a continuous, nonnegative, increasing

function on the real line such that Wab(x) = 0 for x ~ 0 and

Wab(x) = Bab for x ~ Iab > O.

(Wab need not be strictly increasir~ on 0 ~ x ~ Iab.
In

fact, we allow Wab to be identically zero on the entire real line.

This would occur when the shipper has no storage facility at his

final ma:r>ket.)

.Conditions V. 'fhememory functions Mab and Nab possess the

following properties. Ii'Pb (t) remains constant for all t ~ to'

then Mab and Nab assign the same constant to their corresponding

expected prices at to. Moreover, Nab and Nab are strictl~r increasing
I .

functions oreach of the~r arguments.
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Conditions VI.

Conditions VII.

Every Tab is a nonnegative number.

Every ~ab is a positive integer.

We aSSUIDBhenceforth that all the Conditions I through VII

and all the assumptions stated in Section 1 hold. Our model

~or a transportation system then consists of Figure 1 in

conjunction with the equations of Sections 2 through 6.

8. Recursive Analysis

We can use our model to compute all the prices, commodity

flows, and stored amounts for t = 1, 2, 3, ... once an appropriate

set of initial conditions is assigned. This will yield a fully dynacic

analysis of our transportation system.

As the initial conditions, assw~e that the following are

specified: All the amounts A .(0) and A'k (O) stored between t = 0
mJ J

and t = 1. All the f.o.b. prices P.(t) for t = l-~'k' 2-~' k 'J J J
... , 0 and for all j and k. All the f.o.b. pric~for x ~ 0

that appear in the arguments of the memory function N . at t =mJ

1, 2, 3, All the Yk market prices Pk(x) for x ~ 0 that

appear in the argumentsof the memory fQ~ctionsMjk at t =

l~jk' 2~jk' ... , 0, 1, 2, All the Yk market prices

Pk(x) for x ~ 0 that appear in the arguments of the memory

functions Njk at t = 1, 2, 3, ... . (This listing may be redundant.)

Furthermore, assume that all the supply functions S (p, t)ill

and demand functions Dk(P, t) are given for t= 1, 2, 3, ...

and that all the -Tmj' T jkJand 1:jk arealao given.. Then, to

determine all the prices and commodity flows fer t =1 and the

amounts stored frimlt ::1tot ::2."proceed as follows.
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From Sm(p, t) derive MC~l(p, t) and then derive Xj(p, 1)

fo~ every m and j, in accordance with Section 4. Tais is turn

determines S.(p, 1) through (5.2) and (5.3). Then, determineJ

D. (p, 1) by means of' (5.4) and (5.5). The intersection bet-weenJ

Sj and Dj determineSPj(t) according to (5.6). Equation (5.7)

then Yields the U'k(l), (5.9) gives U (1), and (5010) gives A .(1).J m IDJ

Also, (4.2) determines R (1) and (4.3) determines P (1). Next,m m

use (6.2), (6.3), and (6.4) to determine every Sk(P, 1). Then,

the solution of (6.5) for p gives Pk(l), and (6.6) then yields

~ (1). ,l<'inally,Ajk (1) is given by (6.7). At this point we have

updated by one unit of time all the initial conditions indicated

above. So, we can repeat these computations for t = 2.

Continuing in this way, we get a complete dynamic fu~alysis

for t = 1, 2, 3, ... .

9. Equilibrium

Assume that all S (p, t) and all Dk (P, t) are fixed withill

respect to time t. We say that our transportation system is in

an equilibrium state when every price within it does not vary

with t. It follows that all COIT~odity flows will be constant

too. As we shall show later on, the amounts in storage will

all be z.ero.

We alter our notation now by dropping the arg~~ents in t.

Thus, far example, P. will now denote a price rather than aJ

mapping t~Pj(t) of the time axis into the price axis.

It is a fact that our transportation system has a unique

equilibrium state. To show this, we first consider the special

case where the shippers do not have storag~ facilities, naF.£ly
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the no-storage modelo In this case, all the supply functions

arising from goods in storage (see Figure 3) are absent.

In particular, (5.3) has only the X. term on its right-hand side,J

and (6.3) only the Vjk term. Moreover,by ConditionsV the

memory function Mjk assumes the constant price of its arguments,

and so Ejk = Pk. Consequently, the equations governing our

no-storage model in an equilibrium state are the following.

In <j)m'

(9.1) Um
= MC-l(R )m m

= V . (P
j

- T . - R )

mJ mJ m
= s (P ).m m

In 'Y.,
J

(9.2) Um
= X.(P.)

J J
= ~ V (P - T .k - P.) eL- jk k J Jk

In "( k'

(.9.3 )
4. Vjk(Pk - Tjk - Pj)J

=
Dk (P k) .

Note that,according to these equations, the interactions in the

<j) make themselvesfelt in the ~. and thereby in the Yk only
ill J

throug..~ the .derived supply fu.VJ.ctionsX..J

Now, the subnetworkof Figure 1 consistingof all the ~j

and Yk and the arcs between them is the same as the two-level

system considered in Zemanian (1979). Moreover, (9.2) and (9.3)

are the same as those equations in Zemanian (1979) (namely,

Ewuations (13) and (14) with Lj = 0) governing the equilibrium

state discussed in that work. Because of Conditions I ~~d III

and the way X. is constructed from the curves S . MC . and
~ J m" m"

V
j' X. is a continuousnonnegative.function on 0 ~ p < -,

ill J
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eaual to zero on 0 ~ P S p' + T .. and strictly increasing on
. ill mJ .. v

~ p < -. These are precisely the conditions L~posedp', + T .

ill mJ

on the S. functions of Zemanian (1979) except for the requirementJ -

that limp~- Sj(p) ='~3 which is now neither needed nor imposed.

Funthermore, Vjk and Dk also satisfy the conditions imposed in

~Zemanian (1979). So, we can invoke The orems 2 and 3 of that

paper to conclude that the stated subnetwork has a unique

equilibrium state. But, once the P. are specified and fixedJ

with respect to t, (9.1) and (9.2) uniquely determine Um' Rm'

and P as fixed values"
ill So, we can also conclude that our

entire no-storage transportation system has a unique equilibrium

s ta te .

We turn now to our storage model, wherein at least some

df the shippers store goods ~~der appropriate conditions.

Observe that in an equilibri~~ state, if it exists, all prices

are constant, and therefore F . = P. and F'k = Pko This means
. mJ J J
~h~t each trader operates at the upper corner point of Figure 3

and hence does not store goods. To put it another way, if any

trader stores goods, the transportation system cannot be in an

equilibrium state. Thus, we need merely seek an equilibrium state

in which storage does not happen. But, this corresponds to

the no-storage model, which, as we have already concluded, has

a unique equilibrium state. We have established the following.

The orem". When all the supply functions Sand demand functionsm--

Dk ~ .fixed with res-sect to time. our transportation system

has ,aunique ecuilJ.~riu."1lst.ate~ wheth~r o~llot th~ shipDe~~~r~

able to store go.O:ds. In that eauilibriw~state.no storage occurs.
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Another consequence of o~argQments is that Equations (9.1)I

through (9.3) also hold for the equilibrium state of our storage

model0

10. Asymptotic Stability

Continue to aSSlli~e that all the Sm and Dk are independent

of time t. We shall now show that the equilibriQ~ state is

asymptotically stable if certain qualitative conditions on the

slopes of the various supply and demand functions are satisfied.

First note that, according to the dynamic equations of Sections

4 through 6, conditions in the $ make themselves felt in the'm

~j and thereby in the Yk only through the derived supply functions

Xj' which are also fixed ~dth respect to time in this analysis

of aSJ~ptotic stability. Because of this, we c~~ again approach

our problem by first examining the subnetwork consisting of the

~j' the Yk' and the arcs between them. If we can show that,

after a small displacement from equilibrium values, the P. andJ

Pk converge back to their equilibrillimvalues, it will follow

from (4.2) fu~d (4.3) (see also Figure 4) that the P will do them

same.

We base our examination of the incremental behavior of the

transportation system around its equilibrium state on the total

differentia1.sof the clearance equations for the various markets

we shall tacitly assume that the supply, demand, and memory functions

occurring in this s~ction have first-order Taylo.r!s expansions

whose rema.inde rstend to\-Jarrl.Zce.r ofast:erthan the increments in

their argu,ments under, say, 'the euclidean nor:rr~"this being true

in neighborhoods of the eauilibr.iu:mlvalu.e~h.Let X! be the
- ~ "'.' . . J

derivative off:.X. eva..l uatedat the equilibrium value of i t.a
J -
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argument Po; a similar meaning is assignedJ
and Dkt. On the other hand, let M~~) be theJK

of (5.5) with respect to its vth argUment evaluated

t0 1,rt 1.1I Vt
"4 0' .,.k' 0"mJ J JK

partial derivative

at the

equilibrium-state value of Pk (that is, the equilibrium value

of Pk is substituted for everyone of the arg~~ents Pk(t-l),

Pk(t-2), Pk(t-3), ... 0 (We will not need any notation for the

partial derivatives of N 0 and N°k -) We ass~~e henceforth that
mJ J

the shippersprognosticateabout future prices from only a finite

number of past prices. In particular, only ~~e prices Pk(t-v),

where ~ = 1, ... , r,are taken to be the arguments of MOk-
. J

We now adopt still another quite reasonable assQ~ption -

concerning stor:age costs: The per-unit cost of storir~ any

amount, no matter how small, is no less than a certain positive

amount0 Since we are treating the amount q in storage as a

continuous variable and since Zab is monotonic increasing, this

condition can be expressed by the requirement that Zab(O+) > O.

In terms of Wab' it can also be expressed by the following

condition, which we impose throughout this section and in

Section 12 below.

Condition IVa- Wab is identically zero in a neighborhood

of the origin.

This implies that all W f. and W!k are ze ro. It als 0 llnDlies that
mJ J ~

small variations in the prices from their equilibri~~ values will

not induce nonzero storage amounts, as can be seen from (5.10)

and (6.7). To put this another way, since the amounts sto:red

depend only upon prices and not upon prior stored ~ounts,

the amounts in storage remain zero for small perturbations

around the equilibrium state.
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To proceed, consider the clearance equation (5.6) for a Yj.

Substitute (5.2) through (5.5) into (5.6), set the A .(t-l)
illJ

equal to zero, take total differentials treating prices as the

independent variables, and finally set all W~j equal to zero in

accordance with Condition IVa. Tnis yields

(10.1) cli'.(t)=[X!+ZV!
J
-IL V! [

~1~1)dP (t-1H""o+H~r)dP (t-r~jJ J k Jk k Jk Jk k Jk k

Next, we turn to a Yk market and derive similar equations

in total differentials. Substitute (5,,5), (6.2), (6.3), and

(Q.4) into (6.5) with p = Pk(t), set all Ajk(t-l) equal to zero,

take total differentials, and then set the Wjk equal to zero.

Solve the result for dPk(t):

dPk{t)
= (D f ) -1 ~ V 1

[
M (I )dP (t -1;, -1) + . u

k 4- Jk jk k' JkJ

+ M (r )dP, (t-'t' 'k-r) - dE, (t-'t 'k )\

. . . 1 jk .K J J J j

(10.2)

As the next step, let us define a vector w(t) whose

components are the differentials of the prices in the 't'j and Yk:

w(t) = [dPl1+ 1 ( t ), ... , dP J ( t ), dP J+1 ( t ), . eo , dPK (t )] T

The superscript T denotes matrix transpose. In terms of this

notation, (10.1) fu'1d(10.2) can be rewritten together in the form

(10.3) wet) =
rlw(t-l) + r2w(t-2) + ... + rsw(t-s)

where s is the maximlli~ of all the 'tjk + r occurring in (10.2).

Also, the r~, where ~ = 1, ... , s, are square matrices of the

same order as the vector wet). We have hereby linearized our
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nonlinear dynau~c equations around the equilibrium state. As

before, we are tacitly assuming that our system is sufficiently

well-behaved to allow such an incremental analysiso

Clearly, if all.the entries of all the r are sufficiently
IJ.

small, then fr~~ any initial choice of the vectors w(O), w(-l),

... , w(l-s), the sequence generated by (10.3) will tend to

~ro under any vector norm. This means that, so long as the

coefficients of the price differentials occurring in the

right-hand sides of (10.1) and (10.2) are sufficiently small,

the equilibrium state of our transportation network will be

asymptotically stable.

By examining all these coefficients, we can easily deduce

qualitative conditions which lead to suitably small coefficients.

Tney are the following: In absolute values, all X! and Dk! are
J ...

to be large enough and all Vjk and M~~) are to be small enough.

In terms of slopes measured with respect to the q axis, this

means that the X. and Dk should be flat enough and the V!1J JK

should be steep enough. Moreover, each of the Mjk should be

sufficiently insensitive to variations in its arguments. The

latter means that shippers do not overreact to variations in

past prices.

That Vjk is small mea..."1S that the i-'j:Yk shipper either is

operating at a large profit margin because of highly favorable

prices or has cut orf his operation be twe en 'fj and Yk be cause

of un:favorableprices. This is because of the assumed step

shape of the Vjk curve.
Tl-'J..is conclusion seems reasonable since

Shipp€TS who are operatir..gat small profi t margins may radically
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alter the amounts they ship as prices vary around the critical

values separating profitable from losing operations.

The flatness of Dk coincides with one of the conditions

for stability in the.classical cobweb (Ezekial, 1938): the

demand function should be elastic. On the other hand, the

flatness of Xj contradicts the cobweb's other condition, n~1ely,

that the supply function should be inelastic. The explanation

for this apparent discrepancy with a classical result is the

following. If there were only one 'fj and one Yk and no storage

facilities, if ~jk = 1, if the memory function (5.5) was replaced

by Ejk(t) = Pb(t-l) as in Ezekialls cobweb model, ~~d if ~e

were only interested in the variations in Pk(t) but not in those

of P.(t). then our transportation network would be equivalent
J "", -

to a single market because ~j could be incorporated into Yk by

eliminating P.(t) from the dyn~~c equations. In fact, theJ
radieally simplified forms of (1001) and (10.2) could now be

.combined to give

(D' ) -1k
(10.4) dPk(t)

=

{Xj)-l + (VI -1 dPkCt-2)Jk)

In this simple case, asymptotic stability is assumed if Dk is

large enough ~~d X! and V!k are small enough in absolute values.J J
This now agrees with the classical cobHeb conditions so far as

Dk and Xj are concerned.

The reason tb.:elatter condition on X! is not approDriateJ - ...

for our more complicated transportation network having mar:.y 'r'j

and Yk markets is ~'1.efollowing. F'irstof all, in addition to
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the variations in Pk(t), we are indeed interested in the

variations in P.(t).
J Moreover, a variation in the price at

one of the terminal markets induces variations in the prices

P.(t) in the ~. markets, as is indicated by (10.1).J J
The latter

in turn induce price disturbances in other terminal markets

according to (10.2). Now, by (10.1) the variations in P.(t)J

can be moderated by making XJ large, which will in turn dampen

the lateral transmission of price disturbanceso In short, it

is these two effects that lead our present analysis to a conclusion

regarding X! different from that of ~~e classical cobweb. NoteJ

also that aSjwptotic stability is still assured for the simple

system of (10.4) when X! is large so long as D,'remains largeJ K

and Vjk remains small. Thus, our two conclusions do not
contradict each other.

The last note also applies to our multimarket transportation

system. That is, not all of the aforementioned conditions need

hold simultaneously. If some of them hold sufficiently strongly,

then the entries of the r matrices may remain sufficiently
~

small even when the remaining conditions are relaxed to some

extent.
For example, VJk will not be small for an equilibrium

price Pj close to and somewhat below Pk - Tjk' and the latter

may very well be the case in equilibrium for at least some j and

k. Nevertheless, the remaining conditions may hold so strongly

that the r~ entries remain adequately small to insure asymptotic

stability.

Since Xj is only a derived supply curve, we should also

investigate how the.size of Xj is affected by conditiop...s i.."l<?m.

Upon elimi~ating~(t) in the two equationsof (4.2) while noting
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that MG does not deDend on t in the Dresent analvsis. then
111 ~ . ""

taking total differentials (as before, a prime will denote

a first derivative evaluated at an equilibriUl1l-state value), and

finally solving for dU (t) in terms of dP.(t), we find tham J
coefficientof dP.(t) to be

J

Xl
J

::
[(V ~j ) -I + HG~1-1.

We would like X! to be large. This will be the case if V'. is
. J mJ

large and MG' is small. That MG' is small L~Dlies that them m.

supplyfunctionsS in the ~ are elastic. ThatV'j is ~rgem 'm m

implies that V j is elastic too, but the latter will not bem

the case at large profit margins if V . also has a step shape~mJ

However$ the step form of our V curves comesfrom the limited

capacity of the shipper to handle goodso Once that capacity is

approached, the costs of handling goods increases rapidly. ---This

phenomenon may be more pronolli~ced for the V' k than for the V ..
J mJ

For instance, if the shipper transports goods by truck from ~.J

to the Yk and if he has only a lL~ted n~~ber of trucks, then

his marginal tr~~sporting costs will increase rapidly once his

tr~~sport capacity is reached. On the other hand, such a capacity
0

restriction may be less stringent for his pr~essing of goods from

$ to~. since no transport limitation is now involved. Hence,m J

Vmj may very well have less of a step shape ~~d may indeed be

flat well beyond the shipper's transport capacity.

11. The ProPagation of Disturbances

~ compared to a periodic marketing system in which there

is very little market news and poor cor~ectivity between the

markets, modern transportation networks can respond much more
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rapidly to disturbances in supply and demando This Hill

especially be the case if every shipper is informed about all

market prices ~Dd can ship to every terminal marketo Hm-,rever i

it may happen that because of some impedliaent,such as a

physical barrier or govenment intervention or inadequate market

market news, some of the traders may not be able to ship goods

directly to some of the terminal markets. This ;fould be represented.

in Figure 1 by the deletion of some of the arcs between the j

and the "(ko Our model would still apply and the analysis given

above would carry directly over to this case. w~ could, for

example, simply set T'k equal to c for each ~. "(1 pair that isJ J' K

not connected by an arc. Then, all our other notations would

apply unaltered. In this case, Jones' (1968) step-by-step

propagation of a disturbance, which is characteristic

of periodic marketing networks, would now arise once again. L'1.

particular, for two markets ~. and "(1 not connected by ~D arc,J K

a disturbance would propagate from ~j to "(konly by means of

the trading activities along paths through other marketso In

such a situation, the transportation network would react more

sluggishly to a disturbance than it would were it completely

connected. An analysis of Jones' step-by-step propagation of

disturbances has been given in Zemanian (1979) and will not be

repeated here.

12. Multiperiod Storage

Up to now, we have assQmed that the shipper plans his storage

by estimating the price in each of his markets one day hence ~'1.d

then compares his expected ~argL'1.al opportunity cost of not

storing a good to his expected marginal opportunity cost 0::not
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shippi~g the good and then chooses that action whose negation

yields the largest opportlli~ity coste However, the shipper may

have informs.tion from Hhich he can estimate expected prices

for two or more fut~e market dayso In this case, it would be

reasonable for the shipper to plfu~ his storage for several days

into the future. He can do so by computing the expected marginal

opportunity costs of not storing goods for each of the storage

time sp~~s under consideration and then choosing that action

whose negation has the largest opportunity cost.

To be specific, consider the case where the ~a:~b shipper

expects the price in Pb n days hence to be Fab(n, t), n being

a positive integer. AsslL.!lethat he also knows ;.,hatis the

per-lli~it marginal cost Zab(n, p) of storing the fu!lount p for n

days. Let W b (n, x) be the inverse function of Z b (n, p) witha
l'

a
or

reSDect to p [i..e., 0 < p ~ B., x :: Z b(n, p) if and only if
. A aD a

p :: H . (n, x); for the sake of simplicity, Ie t us assu.me thataD

neither Zab nor Wab have discontinuities when 0 < p ~ Bab].

Extend the defini tion of \<J. by setting W . (n, x J :: 0 foraD aD

x ~ Z b(n, 0+) and W b(n, x) :: I . (n) :: Z b(n, B b ) l' ora a aD a a

x :;:I . (n). Finally, aSSlL.!lethat, for each fixed n, W b (n, x)aD a

satisfies Conditions rv and rva, 8..."ld,for each fixed x, W , (n, x)aD

is a (not necessarily strictly) decreasing function of n.

~TIen the ~!lount in storage is p, the per-unit opport~~ity

cost of not storing the marginal good is Fab(n, t) - Zab(n, p).

The shipper should choose that n (or one of the optima.l values

of:n) for which this opportunity cost is a maximum. That

marginal good should ~'1:e.nbe stored for n days L"l the event that

storage is more profitable thfu~ shipping or selling.

..--- .- -_.-
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Instead of keepng p fixed, we could reason in terrns of a

fixed price P9 Now, because Zab and Wab are monotone increasing,

the shipper should choose that n for which

Aab(t-1) Wab [n, F ab (n, t) - p]

is a minim'I.L.'Tl. This implies that the shipper's storage supply

function in ~b at t should be

(12.1) Aab(t-l) max Wab[n, Fab(n, t) - p].n

This is the expression that should replace (3.2) when multiperiod

storage is allowed. Under this generalization, our analysis

continues as before. ~ae theorem on the existence and uniqueness

of the equilibrium state holds once again. So too does our

analysis of as~~ptotic stabilityv Indeed, at equilibrium all

the F b (n" t) take on the same value p, 0a 0
Horeover, if the \'~. (n, x)aD

are strictly decreasing functions of n for every sufficiently

small value of x, then we need merely examine the derivatives

of the memory functions for the Fab(l, t), ~~d the ~~alysis of

Section 10 remains virtually unchanged.

13. DisCOQ~ting Future Costs ~~d Income

Another extension of ou~ model concerns the fact that up

to now we have not discounted future costs and income. This is

justifiable from the fact that we are dealing with very short

transport and storage periods, a.matter of days in fact.

HO"\vever, it is eas y to introduce discounting. If the dailJ'

interest rate is i, then any cost or income accruing "t days hence

should be multiplied by the discount facto.I'(1 + i)-"t. Thus,
-"t" .

for example, in (2.2) Eab(t) should be ~lultiplEd by (1 + i) aD
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and in (12.1) F , (n, t) should be multiDlied by (1 + i)-noaD .

5L~ilarly, Tab' v~~, and Zab(n, 0) should be discounted

costs or cost functions.
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