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Abstract. A new and considerably different analysis of a
transportation network is presented, wherein a commodity is
supplied at a number of locations to shippers who bulk and
transport it to various markets and then sell it to wholesalers,
Most, if not all, of the prior analyses of commodity transportation
networks use mathematical programming techniques to determine
prices and commodity flows under optimal conditionse In contrast
to this, the present work is a fully dynamic analysis. It
ﬁodels the supply and demand behaviors of the shippers and then
éggregates those behaviors to obtain recursive equations that
éetermina price and comodity=flow variations under possibly
dynamic disequilibrium, The shippers base their shipmént decisions
ﬁpon price information and maey store goods if prices appear to
Be unfavorable., It is shown that this dynamic system has a
unique equilibrium state, which is asymptotically stable under
certain conditions on the slopes of the varicus supply, demand,

and storage schedules,

*This work was supported by the National Science Foundation under

Grant MCS 80=20386.



Examined herein is the day=by=-day transportation and distribution
of a commodity from spatially dispersed points of supply to other
spatially dispersed points of demand, The initial supply points
are characterized by supply functions and the terminal demand points
by demand functions. The transportation between these points
is the business of a variety of shippers who act as monopsonists
at each demand point (one shipper for each demand point) and are
able to ship the commodity to any of the demand points. The
principal distinction of the present work, as compared to prior
studies of such transportation problems, is that a fully dynamic
and adaptive model is coﬁstructed, one wherein the shippers
individually decide from day to day how much of the commodity
they will store and how much they will transport. The system
need never be in equilibrium even though the shippers behave as
profit-maximizing firms.

It appears that virtually all of the previous works on this
topic use mathematical programming, primarily linear or guadratic
programming, to determine how much of the commodity is transported
from each supply point to each demand point and how much is
stored over successive time periods. Thus, optimization techniques
are used; for example, the cost of transportation and storage
might be minimized or alternatively some welfare function might
be maximized., Seminal works on this subject are Enke (1951),
Hitchcock (1S41), Koopmens (1948), Samuelson (1952), and
Tramel and Seale (1959). A more recent and thorough exposition
i1s provided by Takayama and Judge (1971). As a result of the

optimization approach, the thrust of these prior works is toward



the determination of a spatial and temporal equilibrium
analysis for the overall marketing system, They provide
hardly any information about how the system would benave 1is
disequilibrium, despite the fact that marketing system as

a whole may quite possibly remain in disequilibrium as the
supply and demand functions keep varying with time, Moreover,
even when the supply and demand functions remain fixed with time,
these optimization models do not indicate how a transportation
system that is initielly in disequilibrium may adjust itself
toward (or perhaps away frcnﬂ the equilibrium states, In other
words, the mathematical programming techniques are unsuitable
for stability analyses,.

One category of optimization analyses that take into account
the fact that the exogeneous determinants of the transportation
system might be varying with time 1is adaptive or recursive pro=
gramming; see Day (1973),Chapter 19 of Takayama and Judge (1971),
and the references therein, . The past and expected fubture supply
and demand schedules are assumed, An objective function is than
optimized to determine prices and commodity flows for future time
periods, and the computed commodity flows are then Iimplemented
for the next time periode This process is repeated at each new
time period as more Information about supply and demand is received,
In this way, time sequences in commodity flows are planned.
However, the shippers, who actually decide what the commodity
flows are to be, most probahly do not plan their shipments in
this way, especially if there are twe or more shippers, For cne
reascn, it is unlikely that they will know what the past and

present supply and demand schedules facing them are, not to



mention their future schedules or the schedules other shippers

in distant markets face, Usually, the only information about
market conditions that i1s readily available concerns past clearance
prices in the various wholesale termina&l markets, Moreover,

the éhippers do not plan in unison for an optimal allocation of
cormodity flows in the entire transportation system. Instead,
they individually try to maximize their profits using whatever
information about past prices is available to them.

These are the considerations that motivate what we believe
is a radically different analysis of a transportation system.
We build our model on an'atomistic foundation by treating each
shipper as a profit-maximizing firm. We then aggregate their

individual day-by=day activities to obtain an overall dynamic

gnalysis of the entire transé%tation systemne

is procedure is similar to that used in our prior works
on periodic marketing networks (Zemanian 1979, 1980, 1981, in press,
to appear), a system that is common in the rurai underdeveloped
areas of the warld. Our present analysis cmcerns a system that is
compatible with a developed industrialized economy, and thus
there are significant differences. The principal one is the
following, In our prior works we assumed that there was virtually
no market news and that each trader confined his activities to
a single pair of markets or perhaps to a single ring of markets,
(This is not unusual in underdeveloped economies; see Jones
(1968).) We now relax these assumptions. We assume that there
is considerable, if not complete, information about past prices

in the terminal markets and that each shipper customarily sends



goods to severel, perhaps all of the terminal markets. Indeed,
. as price conditions change, each shipper generally alters the
proportions of the goods he allocates to his various terminal
markets and is in fact free to initiate or terminate a flow of
goods to any terminal market in the system.

. Another difference cocncerns the storage behavior of the
shipper. In our prior works, we assumed that each shipper
stored gocds only in his terminal market, This is reasonable
when that shipper has only one terminal market, for then he will
be ready to use immediately his storage facility in accordance
with the variations in his terminal price, However, when he is
shipping to many terminal markets from a single initial market,
it is also advantageous to store goods in this initial market,
for those goods can then be allocated to whatever terminal markets
offer the best price without necessitating a reshipment from
other terminal markets. In this work we allow the shipper to
store goods in any or all of his markets,

Still another difference concerns competition. As in our
prior works, we assume herein that the terminal markets are
perfectly competitive so that the shipper 1s a price taker in
every one of his terminal markets, However, in contrast to
our prior works, we assume that the shipper is a monopsonist in
his initial market, (However, we did indicate at the end of
Zemanian (to appear) how that model can be modified to allow the
traders at the lowest levels to act as monopsonists or monopolists,)
Such mencpsonistic behavior might occur, for example, when the
commodity is an agricultural good.,  Each shipper might then establish

his buying operation in a different geographic location so



widely separated from the other locations that the farmers who

sell to him find it impractical to sell to any other shipper,

le The Transportation Network

Figure 1 illustfates the transportation network we shall
discuss in this work, Zach ¢ represents a location where
many compe ting suppliers sell their goods to a single shipper,
a monopsonist, The Y represent the terminal markets to which
the goods are sent by the shippers, The ?3 are the locations
in the vicinity of the o at which the shippers bulk goods and
prepare them either for shipment or storage. We treat the q3
as hypothetical markets which determine how much the shippers
store in the vicinity of the dm and how much they transport to
?he various Yic® The arcs between these markets indicate the
?ossible ways good may flow from the b through the %3 to the
Yice

We use the following numbering system for the indices m, j,
and ks m = 1, 2, eee o M3 J = M¥l, M¥2, eee , J3 k = J+1, J+2,
ees , Ke Since each O has only one shipper and therefore only
one adjacent w&, we must have that J = 2M, Moreover, we
number the 93 ad jacent to a b such that j = m+M. The advantage of
this numbering system is that we can ascertain to which kind of
location a variable such és a price pertains simply by noting
its index, For example, Pm denotes & price in a ¢ market whereas
Pk denotes & price in a y market, This allows us to manage with
fewer symbols, an advantage since there are so many variables
in this work, 7 Other assumptions are the following. All the
markets (the ?3 as well) meet on all the marketing days. We

designate the latter by the discrete time wvariable t = se0 , =1,



Oy 1, oee o A single price P (B, Pj(t), or P (t) is established in

each of the L ?3, or ¥, respectively for every t. At each ©

every shipper is fully informed of the prior prices Pk(t-l),
Pk(t-E), ees in every y, o It simplifies our notation still

further to assume that each shipper can ship goods to every Vs

and for this reason an arc has been drawn in Figure 1 from each

Ty 0 In the event that the last two assumptions do not

hold = that indeed because of a gap in market news or perhaps

+3 to each

some government regulation or some physical barrier = he cannot
ship to a particular Yy 0 We can accomodate this situation into
our model by taking that shippert!s minimum average variable

=

cost Tjk of shipping goods from his %’ to that Y, &s excee dingly
la“é,e s S87, “e

: The reason we treat the *3 as nodes distinct from the O3
even though each #3 can be identified with exactly one O s is

the following. We have to devise some way of determining how
much of the goods each shipper buys in his by 9 how much he stores
at %3, and how much he ships to each of the Ty ® Our model for
this purpose 1s based upon the theory of a profit-maximi

firme On the one hand, it takes into account the costs to th
shipper of buying, bulking, and preparing for shipment or

storage the goods he has bougnht in dm® The marginal cost for
doing so depends upon the amount of gocds he is processing

(1.4, transferring from Om to ?3). This cost coupled with

the supply function in dm leads to a derived supply function at
Qﬁ. On the other hand, the marginal cost in shipping goods from
43 to a particular Ty depends only upon the amount being snipped

along this arc, not on the total amount being sent to all of



the ¥ markets., At least, we assume this is the case, So,

in determining how the demand in a Yy coupled with the cost of
shipping from %3 to v, is reflected as a derived demand in ?ﬁ,
we have to treat each such shipment separately. To this end,

we use each #3 as a hypothetical market where the derived supply
function from Om is equated to the aggregate of the derived demand
functions from the i to establish a clearance price and the
quantities stored and shipped to the various Yic® The clearance

price is taken to be the f.,o0.b. price at the supply locations.

This is the basic idea of our peper. We now turn to details,

2¢ A Shipper's Transfer Supply Function and Derived Demand

A shipper can be viewed as a firm that supplie the service
of transferring the ownership of gobds over space and time, His
supply schedule can be derived in the standard way from his
marginal-cost and average-variable=cost curves., This in turn
leads to his demand curve in the market at which he buys the
goods he will be shippinge The derivation of all this has been
presented in detail in Zemanian (1980, Section 2) and therefore
will not be repeated here, We will merely explain its caclusicn,
namely, the derived-demand curve shown in Figure 2, where as
usual p denotes price and q quantitye

Consider two markets between which a shipper transports goodse

We let £ denote the market where the shipper acquires goods and

fo

call it his initial market, Similarly, Sb Wwill denote the market
to which the shipper sends those goods; ab will be referred to
as his final market, In our model there 1is no more than one shinper

operating between any two markets, and therefore we can specify



& shipper by calling him the Aazﬁb shipper., In fact, the index
pair ab identifies that shipper.
The curve in Figure 2 is the shipper's demand schedule in

his initial market <« at time €, Thus, if at time t the price

8]

in <4, 1is Pa(t), then the quantity the shipper acquires therei
in Q,a(t)o

While operating in % at time t, the shipper maintains an
expectation Eab(t) of a price that those goods will receive in
his final market ﬁb at time GHT s where Tab is The time 1t takes
for goods to be shipped frcm “o to ﬁb. That expected price Eab(t)

is determined by a memory function Hab of prior prices in the
final market ﬁb:
(241} Eab(t) = Mab[Pb(t-l), Pb(t-2), Pb(t-3), oo ]

That is, the shipper extrapolates from past prices to estimate
a future price. * Actually, Mab may even depend upon past prices
in other markets, However, we won't allow this generalization
in our discussion even though most of the results of this paper

extend readily in this way. We take M . ©to be monotonically

b
increasing with respect to each of its arguments; moreover,

if all those arguments have the same velue, we assume that M_,
assigns that value to B, ().

is that eritical expected price inerement from e to ﬁb

o
ab
below which the shipper will not transport goods and above which

-

he will, Thus, for p > nab(t) = Tap the shipper demands nothing
in his initial market, whereas for p < Eab{t) = T, he has a

positive demand. This demand function is symbolized by
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(2+2) q = V,[E (t) =T, =p]

where Vab(x) is zero for x S 0, positive for x > 0, and continuous
everywhere, In fact, an examination of the operating costs facing

he shipper indicates that Va shpuld have the step~like shape

b
shown in Figure 2 (Zemanian, 1980, Section 2). Note that, as
Eab(t) changes, the curve of Figure 2 shifts vertically by the

sSame amounte

3¢ A Shipper !'s Storage Schedule
and the Corresponding Supply Funetion

In this paper we will be working with two different models,
one in which none of the shippers store goods and another in
which at least some of them do. In the former case, each shipper
takes whatever price he can get in the market to which he delivers
goods; thus, his supply schedule therein is perfectly inelastic,
In the latter case, which we now discuss, his supply scé@ule nas
some elasticity, for the less favorable the prices, the more he
will store, This storage behavior has also been discussed in
detail in Zemanian (1980, Section L), and therefore in the
present section we merely define symbols and explain the
pertinent relationshipse.

We let Zab(q) denote the per-unit marginal cost of storing
the amount g of goods at ﬂb from one day to the next. For
0<gq?%= Bgp» We assume thet Z., 1s a cmtinuous, positive,
strictly monotonically increasing function with ZabEBab) = Iab;
here, Bab denotes the meximum storage capacity at ﬁb available

to the ‘a:ab shipper, and Iab denotes the per-unit marginal
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cost of storing at meximum capacity. For q > B,ps We set aab(q) = @,

this insures in effect that the Aazﬁb shipper will not store goods

Moreover, we allow Z_. (O+) to be either

at Bb in excess of Ba ab

b.
zero or positive,
Next, we define Hab on the interval Zab{O+J e e g

(p) = q for

as the inverse function of Zab; that is, #ab
<
Zab(qJ for 0 < g S Bab’

We then extend W_ . to all real values of p by setting wab{p) =0

< b1 3 £ =
Zab(0+) <p S I, if and only if p

This makes W

< 1 — - >
for p S Z&b(0+} and ﬁab(p) B 5 for p = Iab' s

a

a continuous function of pe
The goods the Aa:ﬁb'shipper has in storage at pb may or

may not be offered for sale by him depending upon the current
price in Bb and the price he expects in ﬁb one day hence. In
dther words, the goods in storage provide a component of that
shipper's supply schedule at ﬁb' More specifically, let Fab(t}
Be the price the Aa:ﬁb shipper expects to receive in ﬁb at t+l
while operating in ﬁb at t, We assume that Fab(t) is determined
by a memory function Nab of past prices in ﬁb:

(3.1) Fp(t) = N [P (=1), B (8-2), B (t-3), «u]

We assign the same monotonlcity and constancy properties to N
as wea did to Mab' Moreover, Nab may also depend upon prices
in other markets, but as with Mab we won't allow this generalization,
It follows that, if the current price Pb(t) in ﬁb is less than

Fab{t), the trader will store at least some goods rather than

offering them for sale, Indeed, let &ab{t-l) be the amount the
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Aa:ﬁb shipper has in storage from t=l1 to te Of this amount he

will offer only the amount
(3+2) Aoy (8-1) = W [P (t) - p]

for sale if the price in 8, 1s p because wab[Fab{t} - pﬂ is the
amount he will store in 8, from t to t+l. Thug, (3.2) is that
component of the shipper's supply schedule in ﬁb at £t resulting
from his storage behavior, This is illustrated in Figure 3,
For p above Fab(t), the shipper offers all of Aab(t-l} for sasle,

1
from the goods in storage, and, if Py is truly the clearance price,

On the other hand, at Py he offers for sale only the portion g

he stores

Aab(t) = &ab(t-l) = q;

i

from t to t+l. At & still lower price Pos (3¢2) may take on
ﬁhe negative value Qe This simply means that the shipper wishes
to add the amount a5 to hislstored goods and exhibits this as
a negative supply, that is, as a positive demand,

Subsequently, we will add (3.2) to another supply component
arising fran the goods the shipper brings into Bb at the beginning

of day t to obtain his overall supply schedule in pb at ¢,

Lo Dynamics in ¢m.and Derived Supply in %5
The amount Um(t) of goods acquired by a shipper from his
bp is determined by the standard theory of the monopsoniste.
This is illustrated in Figure L. Sm(p, t) is the exogeneously
given aggregate supply function of all the suppliers to bm t te

For p and g related by this curve, the marginal cost qu{q, t)
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to the shipper of acquiring q gocds in @mat t is p + qdp/dq;
the inverse function of MCm Wwith respect to q i1s denoted by
-1 L . 'y ~ . -
MCm (py t)e We assume that Sm is an increasing function of pe
4

)

Consequently, MCm is -situated above Sm as indicated in Figure l.
The marginal cecst of acquiring the amount Um(t) is Rm(t), but
the price paid toc the suppliers is Pm(t}.

In accordance with Section 2, the shipper's demand
_function Dm(p, £} in 6, 8t t 1s given by (2.2). Now, however,
we replace the expected price in ?5 by the f.o.b. price Pj(t)
at which #3 clears., Pj(t) is determined by the dynamics in #3,
a matter we discuss in tﬁe next section, Assume for the moment

that P.(t) is known. This locates Dm(p, t) within Figure l.

d
The resulting intersection of D with MC_ determines Um(t) and
Rm(t), and the vertical projection onto Sm determines Pﬂ(t).

In symbols, we have

(Le1) D,(p, £} = Vo, [B (6) =2 . - p]
so that

S _ .
Be2) g (e) = met[R (v), 6] = v [R(e) -1 R (%))
and
(Le3) u (e) = s [p (¢), t].

With Pj(tJ given, (L.2) implicitly determines R (t) and thereby
U,(t)e Tnen, (4e3) implicitly determines P (t).
This construction determines a relationship between

corresponding pairs p = Pj(t} end q = um{t}, which we denote by

i Xj (P, tie xj serves as & derived supply function in LPJ'



In view of the assumed shapes of Dm and Mcm, Xj has the form
indicated in Figure 5,

Before leaving this section, we should comment on the
shipper's ability to .determine the amount Um(tJ he will buy for
a given ?j(t) in accordance with this construction. To do so,
he must know what Mcm(q, t) is, but this may not be the case,
It appears to be more realistic to assume that the shipper simply
tries to act optimally as a monopsonist. In this case, we should
replace MC_ by what the shipper believes it to be. Uﬁ(t) is
then determined from the given Pj(t) by the intersection of
Dm with the shipper's esﬁimate of NCm. He then pays the price

'}

dictated by (L4e3) in order to acquire his desired Um(t). This
may alter the derived supply function Xj, but otherwise our analysis

remains the same,

Se Dynamics in 43
In addition to the derived supply function Kj’ we assign
to the shipper the supply function arising from his storage
behavior at %3, as was explained in Section 3. This is displayed

in Figure 5 by the curve labelled

(5.1) ayyitml) = W [F L (6) - p],

where Fm4(t} is the f.o.be price in 93 the shipper expects to
o

have at time t+1l:

+ - - - -3 ) g
(5e1)  Fpy(e) = N [Pi(=1), Py(3=2), P (5=3), eua]

The sum of the two supply functions yields the total Supply

function in ?} at t:
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(5.3)  8,(p, 8) = X,(p, ) + Ay(e=1) = u

On the other hand, as was indicated in Section 3, the shipper
has a derived demand -function (see Figure 2) for each of his
shipments to the Ty ® We obtain the shipper's aggregate demand

function Dj{p, t) in %} by summing over all k:

(5elt) Dy(p, 8) = Z; Vel Bl =~ T = p]
Here,
(5.5 By (t) = My [p (e-1), B(6=2), B (5=3) ...].

Upon equating (5.3) to (5.4), we get an implicit equation for

the shipper's f.o.b. price Pj(t}:
{5.6) SJ[Pj(tJ, t] = Dj[Pj{t), i

Then, the substitution of p:Pj(t) into the various supply and
demand functions determines the various amounts of goods shipped

or stored. In particular,
(5¢7) Use(8) = vjk[ajkm o Pj(t)]
is the amount shipped out of %3 at t toward Yo &nd

(548) use) = % U ()

is the total amount shipped to all the Yy ® As was stated before,

(549) U te) = X[P(5), t]

is the amount processed for shipping or storage at time t,

Furthermore,
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ke Tq ) A .(t) = wmj[F () = Pj(tJ]

mj mj

is &he amount stored from t to t+l, #&lso, 1if Amj(t-l) - Amj(t}
is positive (negative), it is the amount taken out of storsage
(respectively, added'to Storage) at t,

Let us reiterate why this determination of prices and
commodity flows reflects reasonable behavior on the part of =a
shipper who wishes to maximize profits. We invoke standard
marginal analysis, but a complication arises in our dynamic
model in that the shipper cannot know what prices his goods will
fetch when they reach thelr destinations; he can only work
with expected prices, Now, the price dictated by the demand
function Dj is the marginal pef-unit revenue the trader expects
to receive for shipping goods from his warehouse in %3 to a
Ty for it 1s the expected price the goods fetch in the p (¥ minus
thé marginal cost incurred in shipping those goods from ﬁa to
the Yic® This expected marginal revenue decreases as the quantity
shipped out of 9} increases, (Note also that by hypothesis the
v markets function under perfect competition with many shippers;
Therefore, Ejk(t} does not depend upon the amount of goods being
shipped from ?3 to Tk‘) On the other hand, the price dictated
by the derived supply function Xj is the marginal per-unit cost
of buying goods in Om and making them available for shipment
from W}. Moreover, the price dictated by the storage supply
function (5.1) is the expected per-unit opportunity cost of
not storing the marginal good in ?3. Both of these costs
increase as the quantity supplied in %3 increases, By standard

marginal analysis, under the indicated forms for our supply and




demand functions (we precisely define thesé forms in Section 7
below), profit maximaization occurs where the net marginal revenue
on an increment of shipment is zero., S0, the shipper maximizes
his expected profit from his operation in Y} and b by processing

the amount of goods dictated by the clearance equation(5.6).

6¢ Dyneamics in Ty
We assume that in each terminal market i there is perfect
competition between many local buyers and a variety of shippers
bringing goods into Yy from the various ?3. The aggregate demand
function of all the local buyers in Yy at time t is denoted by

D, (p, t) as in Figure 6, In our model it is assumed to be given

¥
exogeneously, On the other hand, each shipper who transports goods
sut of ?E and into iz is characterized by a supply function like
ghat of Figure 3 with however the following alterations. The
éubscripts ab are replaced by jK. The shipper has on hand in

Tkat t not only the amount Ajk(t-l) of goods that were in storgge

from t=1 but also the amount

(6.1) Uy (b=t ) = Vo [B, (botp) = Ty = Po(v-1, )]

that he just transported into Yie® Hemce, his total supply curve
is shifted horizontally to the right by the amount (6.1) to give

i
Ey

a supply curve like the one in igure 3 except that Aab(t-l)
is replaced by Ajk(t-l) + Ujk(t-fjk). Furthermore, the price

ij(t) he expects in Ty at t+1l is given by the memory function

4 3 - 2 e, - F— E |
(6.2) ij(v‘f - J‘Ijk[Pk(t l), Pk{\d 5}, PK(U 3}’ lill'

In symbols, that shipper's supply function in at ¢t is

Ty
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- So(ps 8) = Ag(b-1) + ij[Ejk(t-Tjk} = H = Pj(t-rjkﬂ

wjk[ij(t) - 7]
The aggregate supply.function of all the shippers in Tie at t is
therefore
] J

The clearance price p = Pk(t) in v, 8t t is the solution of

(6.5) Sk(p’ t) = Dk(p, t):

and the total amount exchanged 1s
(6.6) Q (t) = s.[p(t), t] = p [p (t), £].

This is illustrated in Figure 6, Finally, Sjk[Pk(t), t] is the

amount the #3: Yy shipper sells in Y, &t t and
(647) Ap () = W [P (8) - B ()]

is the amount that shipper stores in b 8 from t to t+l,

It can happen that the price Pk(t) is so low that, for
some of the shippers with high expected prices, Pk(t} is
situated as is p, in Figure 3, Those shippers will then buy
goods from shippers with lower expected prices and will add

those goods to their storage from t to t+l,

Te Assumptions and the Model
We now gather together and explicate all the assumptions
g g y

we impose on the various characteristics snd functions 2f cur model,
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Conditions I, For each fixed t, S_(p, t) is an exogenecusly
m

given, continuous, nonnegative function on 0 S p < = such that

Sm(p, t) =0 for 0Sp S P;(t) and Sm(p, t) is strictly increasing
-

for P_(t) S p < =, Moreover, I*ECVn (ps t) exists, is continuous

AN 3

on 0 S p <=, and is strictly increasing on P;(t) b

(It follows that, for each p > P_(t), MG *(p, t) <.5_(p, t}s)

pesy

Conditions II, For each fixed t, Dk(p, t) is an exogeneously

given, continuous, nomnegative function on 0 < p < « such that,

as p =0, D (p, t)—==, It is strictly decreasing for 0 < p S Fi(t)

k
and is equal to zero for P t) Sp <=,

Conditions IIT, Vab is a Lipschitz continuous, nonnegative

Hh

unction on the real line such that Vab{x) =0forxS 0, V. (x)

ap

'

is strictly increasing for 0 S x < =, and Vab(x) tends to a

cr

finite limit as x ==,

(The Lipschitz continuity of V_. was used in the proof of
& J ab &

Theorem 2 of Zemanian (1979), a result we invoke in Section 9 below.)

Conditions IV. wab is a cantinuous, nonnegative, increasing
function on the real line such that W, (x) =0 for x S 0 and
= fopzx=1. >0

(W, need not be strictly increasing on 0 S x S I In

ab*

fact, we allow W_, to be identically zero on the entire real line,

ab

This would occur when the shipper has no storage facility at his
final market,)

Conditiocns V, The memory functions M_. and N

v ab ab

following properties. If P (t) remains constant for all t S

possess the

< ]
"0
then Mab and ﬁab assign the same constant to their corresponding

o 31

expected prices at tO' Moreover, Mab and Nab are strictly increasing

functions ofeach of their arguments,
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is a nonnegative number,

Conditions VI. Every Tow

Conditions VII. BEvery Tap +S & positive integer,

T R

We assume henceforth that all the Conditions I through VII
and all the assumptions stated in Section 1 hold. Our model
for a transportation system then consists of Figure 1 in

conjunction with the equations of Secticns 2 through 6.

8« Recursive Analysis

We can use our model to compute all the prices, commodity

ot
(]

flows, and stored amounts for £t =1, 2, 3, ... Once an appropria

set of initial conditions is assigned, This will yield a fully dynan

analysis of our transportaticn system,
As the initilal conditions, assume that the following are
specified: All the amounts Amj(O) and Ajk(oj stored between t = O

and t = 1, All the f,o.b, prices Pj(t) for t = l=v 2

ik? ik
eee 5 O and for all j and k., All the f.o.b. pricesfor x S 0
that appear in the arguments of the memory function ij at t =
Ly i@; 3y sns = All ths Tie market prices Pk(x) for x S 0 that
appear in the arguments of the memory functions Mjk at t =
l-Tjk, 2~Tjk, eee 3 0, 1, 2, eee o All the Yy market prices

Pk(x) for x S O that appear in the arguments of the memory

functions N, at t =1, 2, 3, +s¢ o (This listing may be redundant, )
jk

Furthermore, assume that all the supply functions Sm(p’ t)
and demend functions Dk(p, t) are given for t = 1, 2, 3, ees
and that all the‘ij, Tjk’ and Tjk are also given. Then,to

determine all the prices and commodity flows for t = 1 and the

amounts stored from t = 1 to £ = 2, proceed as followse



From Sm(p, t) derive Eogl(p, t) and then derive Xj(p, 1)
for every m and j, in accordance with Section L+ This is turn
determines Sj(p, 1) through (5.2) and (5¢3). Then, determine
D.(p, 1) by means of '(5.4) and (5.5)« The intersection between

J

Sj and Dj determinest(t) according to (5.6)e. Bquation (5.7)

then yields the Ujk(l), (5.9) gives Um(l), and (5.,10) gives Amj{l)‘
Also, (Lie2) determines Rm(l) and (4.3) determines 3m(l). Next,

use (642), (6e3), and (6.4) to determine every Sk(p, l)e Then,

the solution of (6.5) for p gives Pk(l), end (6.6) then yields
Qk(l). Minally, Ajk(l) is given by (647)e At this point we have
updated by one unit of time all the Initial conditions indicated
above., So, we can repeat these computations for t = 2.

Continuing in this way, we get a complete dynamic anslysis

fOI’ t =l’ 2, 3’ LE N ] L]

9« Bquilibrium

Assume that all Sm(p, t) and all Dk(p, t) are fixed with
respect to time t. We say that our transportation system is in
an equilibrium state when every price within 1t does not vary
with te It follows thet all commodity flows will be constent
too. As we shall show later on, the amounts in storage will
all be zero,

We alter our notation now by drdpping the arguments in t.
Thus, far example, Pj will now denote a price rather than =
mapping tP%-Pj(t) of the time axis into the price axis,

It is a fact that our transportaticn system has a unicgue
equilibrium states To show this, we first consider the specizl

case where the shippers do not have storage facilities, namely
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the no=storage model, In this case, all the supply functions
arising from goods in storage (see Figure 3) are absent.

In particular, (5.3) has only the Xj term on its right~hand side,
ard (6.,3) only the ij

memory function Mjk assumes the constant price of its arguments,

terme Moreover, by Conditions V the

and so Ejk = Pk' Consequently, the equatidns governing our
no=storage model in an equilibrium state are the following.
In O ?

—_ -l — - - =
(9.1) U, = MC “(R ) va(Pj ij R ) S (B )e
In ‘%’j,

2 U = X.(P = V. (2 =1 =P ls

In Ty
: - - = P

Note that,according to these equations, the interactions in the

- make themselves felt in the ?} and thereby in the Y only

L4

through the .derived supply functions Xj'

Now, the subnetwork of Figure 1 consisting of all the Y

and i and the arcs between them is the same as the two-level
system considered in Zemanian (1979). Moreover, (9.,2) and (9.3)

are the same as those equations in Zemanian (1979) (namely,

Ewuations (13) and (1lbL) with L, = 0) governing the equilibrium

state discussed in that work, Because of Conditions I and III
and the way Xj is constructed from the curves Sm’ MCm, and

v Xj is a continuous nonnegative function on 0 S p < =,

mj?
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equal to zero on 0 S p S 3; + ij, and strictly increasing on
R;-+ ij S p <=, These are precisely the conditions imposed
on the Sj functions of Zemanian (1979) except for the requirement
that limp“*“ Sj(p) =.», Which is now neither needed nor imposed.
Furthermore, ij and Dk also satisfy the conditions imposed in
.Zemanian (1979). So, we can invoke Theorems?2 snd 3 of that
paper to conclude that the stated subnetwork has a unique
equilibrium state, But, once the Pj are specified and fixed
with respect to t, (9.1) and (9.2) uniquely determine Us R,
and Pm as fixed values. So, We can also conclude that our
entire no=storage transpértation_system has a unique equilibrium
state,

We turn now to our storage model, wherein at least soms
of the shippers store goods under appropriate conditions,
Observe thaet in an equilibrium state, if it exists, all prices
Qre constant, and therefore ij = Pj and ij = Pk’ This means
thaet each trader operates at the upper corner point of Figure 3
and hence does not store goods., To put it another way, if any
trader stores goocds, the transportation system cannoct be in an
equilibrium state, Thus, we need merely seek an equilibrium state
in which storage does not happen. 3But, this corresponds to
the no-storage model, which, as we have already concluded, has
a unique egqullibrium state, We have established the following,.

Theoreme, %hen all the supply functions S and demand functions

m

Dk are fixed with rescect to time, our transportation system
has a unicue ecuilibrium state, whether or not_ the shippers are

able to store goods, In that eguilibrium state, no storage occcurs,
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Another consequence of ourarguments is that Equations (9.1)
through (9+3) also hold for the equilibrium state of our storage

model,

10e¢ Asymptotic Stability
Contlnue to assume that all the Sm and Dk are independent

of time t. We shall now show that the equilibrium state is

slopes of the various supply and demand functions are satisfied,
First note that, according to the dynamic equations of Sections

L through 6, conditions in the by meke themselves felt in the

%3 and thereby in the Yy only through the derived supply functions
Xj, which are also fixed with respect to time in this analysis

of asymptotic stability. Because of this, we can again approach

Y

our problem by first examining the subnetwork consisting of the
?3, the Yics and the arcs between them, If we can show that,
efter a small displacement from equilibrium values, the Pj and
Pk converge back to their equilibrium values, 1t will follow
from (Le2) and (L4.3) (see also Figure l.) that the P will do the
same

We base our examination of the incremental behavior of the

transportation system arocund its equilibrium state on the total

differentials of the clearance equatiocns for the variocus markets

J
-

We shall tacitly assume that the supply, demand, and memory functiocns
occurring in this section have first-order Taylor's expansions

whose remainders tend toward zero faster than the increments in

their arguments under, say, the euclidean norm, this being true

in neighborhoods of the eguilibrium values., Ilet X3 be the

derivative of Xj evaluated at the equilibrium value of its
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+

argument Pj; a similar meaning 1s assigned to WH!'., H!k, V!k’

() e

and Dﬁ. On the other hand, let M be the partial derivative

of (5e5) with respect to its vth argument evaluated at the

P

quilibrium=-state value of Pk (that is, the equilibrium value

Y

of P, 1s substituted for every one of the arguments Pk(tnl),

Pk(t"2), Pk(t-B), eee o (We will not need any notation for the

partial derivatives of ij and Nik'} We assume henceforth that

the shippers prognosticate about future prices from only a finite
number of past prices. In particular, only the prices P (t=v),

T

;;jk.
We now adopt still another quite reasonable assumptil

where Y = 1, see , Ir,are taken to be the arguments of

concerning stor_age costs: The per-unit cost of storing any
amount; no matter how small, is no less than a certain positive

amounte Since we are treating the amount q in storage as a

continuous variable and since Zab is monotonic increasing, this

condition can be expressed by the requirement that Zab(o+} > 0,

In terms of W it can also be expressed by the following

ab’
condition, which we impose throughout this section and in

Section 12 below,

Condition IVa. Hab is identically zero in a neighborhood

n

K]
Lilw

of the ori

39

1
-

(=Y

This implies that all Héj and WEK are zerc, It also les

9]
A

small variations in the prices from their equilib

ium values will
not induce nonzero storage amounts, as can be seen from (5.10)
and (6.7)e To put this another way, since the amounts stored
depend only upon prices and not upon prior stored amounts,

the amounts in storage remain zero for small perturcations

around the egquilibrium state.

ct

o

e



To proceed, consider the clearance eguation (5.6) for a VY
Substitute (5.2) through (5.5) into (5e6), set the A_,(t=l)
equal to zero, take total differentials treating prices as the
independent variables, and finally set all H: equal to zZero in

accordance with Condition IVa, This yields

Next, we turn to a Y market and derive similar equations
in total differentials, Substitute (5.5), (6.2), (6.3), and
(6el) into (6e5) with p = Pk(t}, set all Ajk(t-l) equael %o zero,
take total differentials, and then set the ij equal to zero.

Solve the result for de(t):

-1 N (51 8
de(t) = (D!') E V‘I}k[méj )C.?.‘ {fmT ., =1) 4 esse
(10:2)

As the next step, let us define a vector w(t) whose

components are the differentisls of the prices in the ¥, end Y

3
w(e) = (4B (), eee 5 aBg(8), @Pp0 (8], ees 4 @R(8)]]

The superscript T denotes matrix transpose, In terms of this

notation, (10,1) and (10.2) can be rewritten together in the form

(10.3) w(t) = Tiw(e=1) + Tw(t=2) + +o0 ¥ r;w(t-s)

-
i T
2
where 3 is the maximum of all the Tjk + r oecurring in (10.2).
Also, the F“, where 4 = 1, eee , S, are square matrices of the

seame order as the vector w(t)e. We have hereby linearized our



o
-J

nonlinear dynamic equations around the equilibrium state., As
before, we are tacitly assuming that our system is sufficiently
well-behaved to allow such an incremental analysis,

Clearly, if all -the entries of all the Fu are sufficlently
small, then from any initial choice of the vectors w(0), w(=1),

£l

ess 5 W(l=s), the sequence generate

o

by (10.,3) will tend to
zero under any vector norme This means that, so lcng as the
coefficients of the price differentlials occurring in the
right~hand sides of (10.1l) and (10.,2) are sufficiently small,
the equilibrium state of our transportation network will be
asymptotically stavle, |

By examining all these coefficients, we can easlly deducs
qualitative conditions which lead to suitably small coefficients,
They are the following: In absolute values, all Xé and Di are
to be large enough and all ij and %é;) are to be small enoughe.
In terms of slopes measured with respect to the g axis, this
means that the Xj and Dk should be flat enough and the Vﬁk
should be steep enough. Moreover, each of the Mjk should be
sufficiently insensitive to variations in its arguments., The
latter means that shippers do not overreact to variations in
past pricese

That V&k is small means that the ﬁs:Tk shipper either is
operating at a large profit margin because of highly favorable
prices or has cut off his operation between Y, and y, because
of unfavorable prices, This 1is because of the assumed step
shape of the ij curve, <This conclusion seems reascnable since
shippers who are operating at small proflt margins may radically
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alter the amounts they ship as prices vary around the critical
values separsating profitable from losing operations,

The flatness of Dk coincides with one of the conditions
for stability in the classical cobweb (Ezekial, 1938): the
demand function should be elastic. On the other hand, the
flatness of Xj contradicts the cobweb's other condition, namely,
that the supply function should be inelastic. The explanatvion
for this apparent discrepancy with a classical result is the

following. If there were only one VE and one T and no storage

ol

facilities, if T, = 1, if the memory function (5.5) was replace
by Ejk(t) = P,_(t=1) as in Ezekial's cobwebd model, and if we

were only interested in the variatiocns in Pk(t) but not in those
of Pj(t), then our transportation network would be equivalent

to a single market because %E could be incorporated into Yy by
eliminating Pj(t) from the dynamic equations, In fact, the

radieally simplified forms of (10.,1l) and (10.2) could now be

.combined to give

=l
(Dﬁ)

(10,54 ) de(t}
-1 . =1
) T+ (ij)

Il
5
b
ct
!
n

s -

In this simple case, asymptotic stabillty is assumed if Dﬁ is
large enough and Xj and vﬁk are small enough in absolute values,
This now agrees with the classical cobweb conditicns so far as
Dﬁ and XE are concerned.

The reason the latter condition on X

for our more complicated transportetion n

and Yy merkets is the following, ¥irst of all, in additicn to



the variations in Pk(t), we are indeed interested in the
variations in Pj(t). Moreover, a variation in the price at

one of the terminal markets induces variations in the prices
Pj(t) in the ?ﬁ markets, as is indicated by (10.l). The latter
in turn induce price disturbances in other terminszl markets

according to (10.2). Now, by (10.,1) the variations in P, (t)

1
z
o
@
3

J
can be moderated by making Xj large, which will in turn dam;
the lateral transmission of price disturbances. In short, it
is these two effects that lead our present analysis to a2 conclusion
regarding Xj different from that of the classical cobweb, Not

also that asymptotic stebility is still assured for the simple

h

system of (10.L) when Xj is large so long as D! remains large
and Vik remains smalle Thus, our two conclusions do not
contradict each other,

The last note also applies to our multimarket transportation

systemes That 1s, not all of the aforementioned conditions need

hold simultaneouslye. If some of them hold suf

'__l
e

then the entries of the Pp matrices may remain sufficientl
small even when the remaining conditions are relaxed to some

extent. For example, ij will not be small for an equilibrium

ik?

v

price Pj close to and somewhat below P =T, , and the latter
may very well be the case in equillibrium for at least scme j and

ke Nevertheless, the remaining conditions may hold so strongl

4
L 1

that the P entries remain adequately small to insure asymptotic
stabilitye.

ince Xj is only a derived supply curve, we should also
investigate how the size of Xé is affected by conditions in ¢ _.

Upon eliminating Rq{t) in the two equations of {lL.2) while noting
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that mcm does not depend on t in the present analysis, then
taking total differentials (as before, a prime will denote

a first derivative evaluated at an equilibrium=state value), and
finaelly sdlving for dUm(t) in terms of de(t}, we find the

coefficient of de(t) to be

x o= o™

mj

iy | ok
-+ I'J.Cr:ll .

We would like Xﬁ to be large, This will be the case if Vﬁj is

-

large and MC& is small, That hCé is small implies that the
supply functions Sm in the o, are elastices That V&. is large
implies that ij is elastic too, but the latter will not be

the case at large profit margins if ij also has a step shape,
However, the step form of our V curves comes from the limited
capacity of the shipper to handle goods, Once that capaclity is
approached, the costs of handling goods increases rapidlye. ~This

phenomenon may be more pronounced for the ij then for the UF
-

[ S
®

For instance, if the shipper transports gocds by truck from %}

to the Tiz and if he has only a 1limited number of trucks, then

his marginal transporting costs will increase rapidly once his

transport capacity is reached, On the other hand, such a capacity
D 3! 2 I J

restriction may be less stringent for his prcessing of goods from

o, bo %% since no tragnsport limitation is now involved, Hence,

V_. may very well have less of & step shape and may indeed be

mj

flat well beyond the shipper's f{ransport capacitye.

1ll. The Propggation of Disturbances
As compared tc a periodic marketing system in which there
is very little market news and poor connectivity between the

markets, modern tramnsportation networks can respond much rore
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rapidly to disturbances in supply and demand. This will

especlally be the case if every shipper is informed about all

i

market prices and can ship to every terminal market, However,

4

it may happen that because of some impediment, such as a
physical barrier or govenment intervention or inadequate market

4

market news, some of the traders may not be able to sh

=5

el
o]
o
o
o,
[ #4]

R
[oS

rectly to some of the terminal markets., This would be represented

Pigure 1 by the deletion of some of the arcs between the

l..f&

[N

and the Yy Our model would still apply and the analysis given
above would carry directly over to this case, We could, for
example, simply set Tjk equal to = for each ?E,Yk

not connected by an arc, Then, all our other notations would

apply unaltered, In this case, Jones' (1968) step=by=step

of periodic marke ting networks, would now arise ocnce again, In
particular, for two markets ?} and Ty not cannected by an are,
a disturbance would propagate from ?j to O only by means of
the trading activities along paths through other markets, In
such a situation, the transportation network would react more
sluggishly to a disturbance than 1t would were it completely

on of

l._ro

connected, An analysis of Jones! step=-by-step mropagat

n

disturbances has been given in Zemanian (1979) and will nct be

repeated here,

l2, Multiperiod Storage
Up to now, we have assumed that the shipper plans his storage
by estimating the price in each of his markets ocne day hence and
then compares his expected marginal opportunity cost of not

storing a good to his expected marginal opportunity cost ol not

=]
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shipping the good and then chooses that action whose negation

"

he largest opportunity cost. However, the shipper may

v

ct

3
=4

Y

yiel
have informetion from which he can estimate expected prices

for two or more future market days, In this case, it would be
reasonable for the shipper to plan his storage for several days
into the future. He can do so by computing the expected margina

-

time spans under consideration and then choosing that action

e

whose negation has the

=

argest opportunity coste.

To be specific, consider the cease where the «_ 3 shipper

s

a
expects the price in B, n days hence to be F_(n, t), n being

D
a positive integer. Assume that he also knows what is the

per-unit marginal cost Zab(n, p) of storing the amount p for n
dayse Let W_. (n, x) be the inverse function of Z_. (n, p
ab fop ab
resvect t0 p {ie€ey O < p SB.,, x=2_.(n, p) if and only if
- i ’A aD, ab 2 W

p = Hab(n, x): for the sake of simplicity, let us assume that

neither Zab nor Hab have discontinuities when 0 < p S Bab]’
i

on of W_, by setting Hab{n, Xl 0 for

- I . d n, x) =I,.(n) =2 B .

x S 4, (n, 0+) and W, (n, x) Iao(‘) ap (s Bao} for

> A Iab(n), Finally, assume that, for each fixed n, uab(n, X
satisfies Conditicns IV and IVa, and, for each fixed x, Hab{n, %)

function of ne.
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e
o
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is a {not necessari
When the amount in storage is p, the per~unit cpportunity

cost of not storing the marginal good is F_.(n, t) = 2Z2_,.(n, ple

The shipper should choose that n (or one of the optimal values

T BT (e SO T T
- : ] e iabhalaka) - 1
T Wnletn Tl opToriuniv

Yy cost is a maximume That
marginal geod should then be stered for n days in the event that

=

storage is more profitable than shipping or selling.
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Instead of keepng p fixed, we could reascn in terms of a
fixed price pe. Now, because Z&b and Hab are monotone increasing,

the shipper should choose that n for which

A, (t=1) = wab[n, F_(ng t) = p]

ab ab

3

is a minimum., This implies tha

ct
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function in ﬁb at % should bse

i
(12.1) A (t

This is the expression that should replace (3.2) when multiperiod
storage is allowed, Under this generalization, our analysis
continues as before, The theorem on the existence and unigueness
of the eq ibrium state holds once again. So too deoces our

T

analysis of asymptotic stability. Indeed, at ecquilibrium all

the F_, (n, t) take on the same value P, . lMoreover, if the W_ . (n, x)

ab

are sir

o s . L.

ctly decreasing functions of n for every sufliclently

.

i |

small value of x, then we need merely examine the derivatives

=

of the memory functions for the Fab{l, t), and the analysis of

Section 10 remains virtually unchanged,

13. Discounting Fubure Costs and Incomse

Anocther extension of our model concerns the fact that up

to now we have not discounted future costs and Ilnccome,

justiflable from the fact that we are dealing with very short
transport and storage periods, a matter of days in fact.

However, it is easy to introduce discounting., If the dal

interest rate 1s i, then any cost or income accrulng T days nence

] - » - s 2 . - : = TR ""T
should be multiplied by the discount factor (1 + 1) . Thus,
for example, in (242) B_, (t) should dbe mult tiplled by {1+ 1) B



and In (12.1) Fab(n, t) should be multiplied by (1 + L5 =,
-] . .
s bl r & 5 M
Similarly, Tab’ Vab’ and 4. ) should be discounted

costs or cest functionse
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