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Abstract - A nonlinear resistive transfinite network is shown to possess a unique set of

node voltages with respect to any arbitrarily chosen node so long as the nonlinear resistors

satisfy a certain set of conditions related to modular sequence spaces. A consequence of this

is that sourceless reduced networks satisfy the maximum principle for node voltages.

1 Introduction

This paper is written as a sequel to [5]; we use some of the definitions of that work without

repeating them here.

In general, unique node voltages for all the nodes of all ranks in a transfinite resistive

electrical network may not exist even when there is a perceptible path connecting every node

to the chosen ground node ng. This is because the voltage at a node no may depend upon the

choice of the perceptible path between no and ng along which that node voltage is determined.

This inconsistency can arise when two tips are perceptible and nondisconnectable but are not

shorted together. An example of this is given in [5, Section 7]. However, when every such pair

of nodes is shorted and when there is at least one perceptible path from the chosen ground

node ng to every other node, then a unique set of node voltages will exist. This was shown for

linear networks in [5].

The objective of this work is to establish this result for nonlinear networks whose non-

linearities are of a form related to modular sequence spaces [2], [3, Sections 4.3 - 4.6]. This

requires a nonlinear version of the idea of "perceptibility" of a transfinite path, a concept which

up-to-now has been defined only for linear networks [3, pages 92 and 154].

1



Another consequence of all this is that the maximum principle for node voltages continues

to hold for any sourceless, reduced part of such a nonlinear transfinite network. The linear

version of this result was established in [4, Section 11].

2 A Class of Nonlinear Transfinite Networks

Let w denote the first transfinite ordinal. Let NV (v ~ w) denote a nonlinear v-network [3],

every branch of which is in the Norton form, as shown in Figure 1. Thus, the jth branch

is a parallel connection of a pure current source hj and a nonlinear resistor Rj(') carrying a

current /j. In accordance with the polarity conventions shown in Figure 1, the branch voltage

Vj equals Rj(/j) = Rj(ij+hj), where ij is the branch current. We take the branch's orientation

to be that indicated by the arrow for ij in Figure 1. In the special case of a linear resistor, the

constant branch resistance rj is the slope of the straight line /j I-t Rj(/j), Le., rj = dRjfd/j.

Conditions 2.1. NV (v ~ w) is a nonlinear v-network whose countably many branches

are in the Norton form, shown in Figure 1. There is no coupling between branches. Every Rj

is a continuous, strictly increasing, odd mapping of the real line R1 into R1 with Rj(l) -- 00

as f -- 00.

For f,v E Rl, we set Mj(l) = If Rj(x)dx and M;(v) = I; Gj(Y)dy, where Gj: v I-t

Gj( v) = f is the inverse function of Rj : f I-t Rj(l) = v. Given that NV satisfies Conditions

2.1, the modular sequence space 1M is defined as the set of all sequences f = (11,12,...) of

real numbers /j such that "LMj(/jft) < 00 for some t > 0, and CM is the subspace of 1M for

which "LMj(/j ft) < 00 for all t > O. (Here, "L denotes a summation over all branch indices

j.) 1M and CM are Banach spaces with the norm

IIfli = inf{t: t > O,EMj (1) ~ I}.

We assume henceforth

Conditions 2.2. The nonlinear v-network NV satisfies Conditions 2.1. Moreover, h =

(hI, h2,...) E 1M' Furthermore, there are a positive integerjo and twopositive numbersa and

(3, bothgreater than 1, such that, for every j ~ jo,

(i) f Rj (I) ~ aMj (I) for 0 ~ f ~ aj, where aj is the unique positive number for which
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Mj(aj) = 1, and

(ii) uGj(u) S; ;3MJ(u) for 0 S; u S; dj, where dj is the unique positive number for which

MJ(dj) = 1

Let 1M be the dual of 1M and cM be the dual of CM' Also, let ~ denote an isomorphism

between Banach spaces. Under Conditions 2.2, we have the following relations [3, pages 129-

130].

1M = CM (1)

1* * rv 1M = cM = M* (2)

(lM)* ~ (lM*)* ~ l(M*)* = 1M (3)

Thus, 1M is reflexive; that is, the dual of the dual of 1M is isomorphic to 1M.

A basic current in the transfinite network NV is defined on [3, page 154]. It is a countable

superposition of (generally transfinite) loop currents satisfying certain conditions. £° is the

span of all basic currents in 1M, and £ is the closure of £° in 1M' £ is a linear subspace of 1M

and is a Banach space in itself when supplied with the norm of 1M.

The next theorem [3, Theorem 5.5-7] is an adaptation to transfinite networks of a part of

the fundamental theory established by DeMichele and Soardi [1]for ordinary infinite nonlinear

networks. Here, R denotes the resistance operator R(f) = (R1(h), R2(h),.. .), wheref =

(h, 12,.. .). R maps 1M into IM* [3, Lemma 4.7-2]. According to the polarity conventions of

Figure 1, the branch voltage vector v = (v!, V2,"') is related to the branch current vector

i = (iI, i2, . . .) and the branch current source vector h = (hI, h2, . . .) through the equation

v = R(i + h). Furthermore, for v E IM* and s E 1M, (v,s) will denote the pairing (v,s) =

L,VjSj E R1 [3, page 126].

Theorem 2.3. Under Conditions 2.2, there exists a unique i E £ such that

(R(i+h),s)=O (4)

for all s E £. Furthermore, i satisfies Kirchhoff's current law at every finite ordinary V-node,

and v = R(i + h) satisfies Kirchhoff's voltage law around every V-loop and also around every

(-loop (1 S; ( S; v) having a unit flow in £.
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We assume henceforth that the voltage-current regime in NV is the one dictated by Theorem

2.3.

3 Node Voltages

In this section we establish sufficient conditions for the nonlinear v-network NV to have node

voltages. Our first task is to extend the idea of "perceptibility" to the paths, loops, and tips in

our nonlinear network NV. In the following, p and q are real numbers such that p-l + q-l = 1

and 1 < p < 00. Thus, 00 > q > 1. The inequality (5) below is illustrated in Figure 2.

Lemma 3.1. Assume that a branch resistance function Rj is bounded according to

( )

p-l

~ ~ Rj(J) ~ pjJP-l
(5)

for all f > 0, where'Yj and Pj arepositive numbers with l/1f-l ~ Pj. Then, both restrictions

(i) and (ii) of Conditions 2.2. are satisfied by that Rj.

Proof. By (5) and for all f 2: 0,

1

( )

p-l

fRj(J) ~ pjJP = nf-lpj 1 ~ dx

~ nf-lpj 11 Rj(x)dx = nf-lpjMj(J). (6)

Since P'Yf-l Pj > 1, we have obtained a sufficient condition for the satisfaction of (i) in Condi-

tions 2.2.

As for (ii), first note that q-1 = (p-1)-I. Hence, with u = Rj(J) and with Gj being the

inverse function of Rj, we have from (5) that

( )

q-l

~ ~ Gj(u) ~ 'Yjuq-l

for all u 2: O. Consequently,

( )

q-l

uGj(u) ~ 'Yjuq = q'Yjp~-1 [u.!. dy
J 10 Pj

~ q'Yjprl 1u Gj(Y) dy = q'Yjprl Mj( u).
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Now, 1 < q < 00 and l'jpr1 ~ 1. Thus, here too we have a sufficient condition for the

satisfaction of (ii) of Conditions 2.2. '"

Definition 3.2. Let P denote either a (-path or a (-loop (( ~ v) and let ITbe the index set

for the branches embraced by P except for possibly finitely many of them. P is called strongly

perceptible if IT can be so chosen that, for every j E IT, there are two positive numbers l'j and

Pj such that the following hold:

(i) c = l'''j-l Ph where c is independent of j E ITand 1 ~ c < 00.

(ii) The bounds (5) hold for all f ~ 0 and j E IT.

(iii) L:jEII Pj < 00.

If P is a representative of a (-tip t(, then t( is also called strongly perceptible.

The voltage rise along the oriented (-path or (-loop P is

L =fVj
jEJ

(7)

where J is the index set for all the branches embraced by P and the minus (plus) sign is used

if the orientations of P and the jth branch agree (respectively, disagree). Kirchhoff's voltage

law, when it holds for a (-loop P, asserts that (7) equals O.

Lemma 3.3. Let P be a strongly perceptible (-path or (-loop. Then, (7) converges abso-

lutely.

Proof. We need merely show absolute convergence for all but possibly finitely many of

the terms in (7). So, with IT as before and with L: denoting a summation over the j E IT, we

have by Holder's inequality and the relationship q(p - 1) = p that

LIUjl = LIRj(h)1 ~ LPjlhlP-l

- LP}lqlhIP-lp}lP ~ (LPjlhIP)l/q (LPjf/p.

The right-hand side is finite. Indeed, L:Pj < 00 by (iii) of Definition 3.2. Also, by (6), (i) of

Definition 3.2, and the evenness of the Mj, we have

LPjlhlP ~ pc LMj(h).
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Since every branch is in the Norton form, we have Uj = Vj. It follows from Theorem 2.3 and

Equation (1) that f = i + hElM = CM' This insures that L- Mj(Jj) < 00. ..

Theorem 3.4. Under Conditions 2.2 and the voltage-current regime dictated by Theorem

2.3, Kirchhoff's voltage law is satisfied around every strongly perceptible (-loop (( ::; v), and

for such a loop (7) converges absolutely.

Proof. By virtue of Theorem 2.3 and Lemma 3.3, we need merely show that every strongly

perceptible (-loop P, where ( 2: 1, has a unit flow s in £. So, let J be the index set for all the

branches embraced by P. With ITdefined as in Definition 3.2, ITis an infinite set and J\IT is

a finite set. Let ISjl= 1 for all j E J and let Sj = 0 for all j tf- J. Then,

L Mj(sj) = L Mj(sj) + L Mj(sj).
Vj jEJ\ll jell

The first summation on the right-hand side has finitely many terms and is therefore finite. For

the second summation we have from Definition 3.2 and the evenness of the Mj that

L Mj(sj) = L 11 Rj(x) dx
jell jell 0

{I 1
::; LPj In xp-l dx = - LPj < 00.

jell 0 p jell

Hence, s E 1M. Moreover, since s is a loop current and since a loop current is a special case of

a basic current, we have s E £. So truly, P has a unit flow in £. ..

Let m and n be two nonembracing nodes, whose ranks need not be the same. Also, let

P be a (-path (( ::; v) that meets m and n terminally. If P is strongly perceptible, we say

that n is strongly perceptible from m along P. In this case, (7) converges absolutely according

to Lemma 3.3, and we define(7) to be the node voltage of n with respect to m along P. Let

P and Q be two strongly perceptible paths (with possibly differing ranks) that meet m and

n terminally. If the ranks of P and Q are both 0, then (7) is the same along both paths.

However, if at least one of them has a rank larger than 1, then (7) need not be the same for

both. An example of this discrepancy was given in [5, section 7]. An additional condition is

needed to insure that the choice of the strongly perceptible path between m and n does not

affect (7). The one used in [5] (namely, Condition 8.1 therein) for a linear network also works

for the nonlinear network considered herein. It is given by Condition 3.5 below.
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We again need the definition of "nondisconnectable tips". Recall that a representative of a

jl-tip, where jl is any natural number, is a one-ended jl-path which in turn is a one-way infinite

alternating sequence of jl-nodes nf and (jl- I)-paths pr-1 of the form:

P J.L {
'1/ p,J.L-l J.L PJ.L-l J.L p,J.L-l

}= no, 0 , nl' 1 , n2, 2 , . . . (8)

where the first node nri has a rank 'TJ:s; jl and certain conditions are satisfied [3, page 144]. (If

jl = 0, the (jl-l)-paths embraced in (8) are replaced by branches.) Similarly, a representative

of an w-tip is a one-ended w-path which in turn is an alternating sequence of the form:

P w - { '1/ p,J.LO-l J.Ll PJ.Ll-l J.L2 P J.L2-1 }- no, 0 , nl , 1 , n2 , 2 , . . . (9)

where 'TJ:s; jlo < jll < jl2 < . . . and again certain conditions are satisfied [3, page 147]

Now consider an infinite sequence {mI, m2, m3,"'} of nodes mz with possibly differing

ranks. We shall say that the mz approach a jl-tip tJ.L(alternatively, an w-tip tW) if there is a

representative (8) for tJ.L(respectively, (9) for tW) such that, for each natural number i, all but

finitely many of the ml are shorted to nodes embraced by the members of (8) (respectively,

(9)) lying to the right of nf (respectively, nfi).

Let ta and tb be two tips, not necessarily of the same rank. We say that ta and tb are

nondisconnectable if there is an infinite sequence of nodes that approach both ta and tb.

Condition 3.5. If two tips are strongly perceptible and nondisconnectable, then those tips

are shorted together.

Theorem 3.6. Under the hypothesis of Theorem 3.4, assume that the tips of ranks no

larger than w in the v-network NV (v :s;(.V)satisfy Condition 3.5. Let ng and no be two nodes

(of possibly different ranks), and let there be at least one strongly perceptible path connecting

ng and no. Then, no has a unique node voltage with respect to ng" that is, no obtains the same

node voltage with respect to ng along all strongly perceptible paths between ng and no.

Using now our definition of strong perceptibility and the foregoing results of this section,

we can prove Theorem 3.6 in virtually the same way as [5, Theorem 8.2] was proven. As before,

the proof is based upon Kirchhoff's voltage law, which for our nonlinear networks is asserted

by Theorem 3.4.
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Corollary 3.7. Under the hypothesis of Theorem 3.4, assume that the tips of all ranks no

larger than w in the v-network Nil (v ::;w) satisfy Condition 3.5. Also, assume that every two

nodes of Nil are connected through at least one strongly perceptible path. Choose a ground node

ng in Nil arbitrarly. Then, every node of Nil has a unique node voltage with respect to ng.

4 A Maximum Principle for Node Voltages

Again let J.Lbe any natural number. A maximum principle for the node voltages in a purely

resistive, J.L-connected part KI' of Nil can now be established if KI' is "finitely structured" in a

certain sense. This has already been established for linear networks in [4]. The argument for

nonlinear networks is virtually the same. So, let us merely state the result.

The "finite structure" we are now invoking is stated explicitly by Conditions 9.4 of [4]when

v is any natural number and by Conditions 3.2 of [6] when v = w. One consequence of the

finite structure of Nil is that it has only finitely many v-nodes. Also, every J.L-section (J.L< v)

of Nil has only finitely many incident (J.L+ I)-nodes. Hence, the next theorem will hold in

particular for any J.L-section. With regard to the perceptibility of certain paths as asserted in

the aforementioned conditions, that perceptibility is now understood in the strong sense in

accordance with Definition 3.2 of this paper. Another consequence of the finite structure is

that every node of whatever rank can be isolated from all other nodes of the same or higher

ranks by a finite cut. Moreover, Kirchhoff's current law will hold at that cut [4, Lemma 10.2],

[6, Section 4]; this fact is an essential part of the proof of the next theorem.

Theorem 4.1. Let Nil be finitely structured and let the hypothesis of Theorem 3.4 be

satisfied. Let KI' be any purely resistive (i.e., sourceless) reduced network of Nil such that KI'

is of rank J.L,where J.L< v, and KI' has at most finitely many incident (J.L+ 1)-nodes. Then,

there exists exactly two possibilities:

(i) All the node voltages in KI' are the same.

(ii) All the node voltages in KI' are strictly less (and strictly larger) than the largest (respec-

tively, least) voltage for the finitely many (J.L+ 1)-nodes that are incident to KI'.
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Figure Captions

Figure 1. The Norton form of a nonlinear resistive branch with an independent current source.

Here h = ij + hj and Vj = Uj = Rj(h).

Figure 2. The bounds on Rj and Gj illustrated for the case where p > 2.
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