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Abstract - This work eSt2.)ushes a sufficient set of conditions under which A-connectedness

in a transfinite graph is transi-:':e and thereby is an equi\'alence relation between branches,

This in turn insures that A-seuions do not overlap and that they panition the transfinite

graph.

1 Introduction

Transfinite graphs possess many connectedness concepts that are meaningless for conven.

tional graphs. For example, two nodes that are infinitely far apart in a transfinite graph

can only be connected by transfinite paths that pass through infinite extremities of conven-

tional subgraphs of that transfinite graph. Moreover, there is a hierarchy of connectedness

concepts, namely, "A-connectedness" for each finite or denumerably infinite ordinal A. As

A increases, A-connectedness \';eakens in the sense that, when Al < A2' AI-connectedness

implies A2-connectedness, but not conversely. Thus, two branches may be A2-connected but

not AI-connected.

A-connectedness is a reflexive and symmetric binary relation between branches, but it

need not be transitive [3, Section 3]. As a result, A-connectedness need not be an equivalence

relation between branches, and this has undesirable ramifications. For example, it may

prevent unique node voltages in the theory of transfinite electrical networks. A sufficient

condition for the transitivity of A-connectedness was established in [3]. In this work we

establish another one. Neither criterion implies the other. Moreover, the one presented

herein, although more complicated, is more easily established.

.This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-
9200748.
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The prerequisites for an understanding of this work are completely covered in [1] and [3].

The reference [2] can be used in place of [1] and in fact provides a more general discussion.

The present paper is written as a sequel to [3]. Of course, ideas that are newly introduced

herein are precisely defined below.

\Ve will establish our results for every natural number rank p.. as well as for the ranks

:; and w. Results for still higher ranks are obtained through obvious modifications. In

particular, when t he rank is a successor ordinal, one need only follow the de\'elopment for a

natural number rank. Similarly, when the rank is an arrow rank eor a li::::~ ordinal e, the

c.e\;elopment to follow is that for:; or respectively w. (See [3, Section -( :',:: the definition

of an arrow rank e.j

2 The Main Results

In the following v will denote a countable ordinal, and i and J.Lwill denote natural numbers.

A,+ will denote any unspecifiedrank no less than i and no larger than v. and i-will be

any unspecified rank no less than 0 and less than i. Thus, 0 :::;b -) < ": ::; b+) :::; v. (]I/

will be a v-graph. S-.-l will be a I - I-section.

Conditions 2.1. Let J.Lbe a fixed natural number such that 0 < J.L:::;v. For each natural

number i such that 0 :::;i :::;J.Land for every two (i+ )-nodes ni+ and nt that are incident

to the same b - I)-section S"t-l, there exists a two-ended (i.e., finite) Af-pathp"t such that

either (a) its traversed tips - other than those incident to ni+ and n1+ - are not shorted

to any tips not traversed by p"t or (b) p"t satisfies the following three conditions:

(bI) All the branches of P-y are embraced by S"t-l.

(b2) One terminal node of p"t is embraced by ni+, and the other by n~+.

(b3) YY does not meet any boundary node of a ((i-I)+ )-section other than ni+ and n1+ .

With regard to the two conditions (a) and (b), (a) does not require that P-ybe embraced

by S,-l , whereas (b) does do so. The simultaneous satisfaction of both conditions is allowed.

(a) can be restated in more suggestive terms by saying that P-y is an isolated path totally
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disjoint form the rest of g" except at its terminal nodes. (b) requires that the only way one

can leave S"Y-l at a node of yr is at a terminal node of p"Y.

When, = 0, S"Y-l is a (-1 )-section, that is, a single branch. Any two nodes incident

to that branch will automatically satisfy Conditions 2.1.

Theorem 2.2. Let g" be such that Conditions 2.1 are satisfied. Then, for each, such

thot 0 S , S /1, ~i-connectednes8 is transitiL'e in g"; that is, it is a transitive binary relation

omong the branches of g" - 08 u'ell os among the nodes of g".

P roof. The transitivit:-, of : -connectedness for the branches will follow from that for

the 'codes. Choose~; and tl as in Conditions 2.1. Let Tla, nb, and n: be three totally disjoint

nodes of any ranks. possibly different ranks. Consider the two statements

(i) na. and Tlb are ~f-connected. and Tlb and TIc are ,-connected.

(ii) na. and TIc are ,-connected.

vVeshall prove that (i) implies (ii) inductiwly, and thereby the transitivity of ,-connectedness.

This is true for, = 0 because O-connectedness is always transitive. (Moreover, Conditions

2.1 are always satisfied when ~f = 0, as was noted above.) So, assume that (i) implies (ii),

where now 0 S , < tl. Hence, ~f-connectedness is transitive, and ~(-sections partition g".

\iVeshall show that (i) implies (ii) for, replaced by , + 1.

Let P:b+1 be a t\vo-ended h + 1)-path connecting na and Tlb and oriented from na to

Tlb,and let P?a+1be the same path but with the reversed orientation. Also let p~+l be a

two-ended (! + I)-path connecting nb to nc and oriented from b to c. We shall construct a

two-ended (! + I)-path connecting Tla to nc.

Since P?a+1and p;~+l are t\'iO-ended h + 1)-paths, they each traverse only finitely many

,-tips. All other tips traversed by these paths will have ranks less than ,. If p~+l and p~+1

meet at a node TI,they will meet there with four tips (two for each), except when n is Tlb,

in which case they will meet at nb with two tips (one for each). If all four tips (or both tips

when TI = Tlb)have ranks less than" they will have representatives that are ,-connected;

in this case, we shall say that p~+l and p;~+l meet inside a ,-section. P?a+1and p~+1 can

meet inside a ,-section infinitely many times because they can traverse infinitely many tips
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of ranks less than,. On the other hand, if at least one of those four (or two) tips has a

rank" we shall say that p~+l and p~+l meet with a ,-tip; p~+l and p~+l can meet with

a -I-tip only finitely many times since they traverse only finitely many i-tips.

?\ow let us consider the various ways p~+l and p~+l may meet.

Case 1: They may meet only at Tlo. in which case p:o+l u p~+l is a t\\'o-ended (, + 1)-

path connecting Tla and Tlo. So. assume in the following three cases that p;~+l and p;~+l

meet at at least one node totaU~' disjoint from Tlo.

Cose 2: If Tla and Ticare both incident to the same ,-section, then. since: < fL now. \\'e

can im'oke Condition 2,1 to conclude that na and ne are h + I)-connected. So, assume in

the following t\\'O cases that TJ.:and Tic are not incident to the same'"'; -section.

Case 3: Let us now trace p',+l and p'!+l startin g at no. Assume these Paths meetoa uC

inside at least one ,-section (possibly infinitely often). They will do so only within finitely

many ,-sections. Let Sf be the last such ,-section that p~+l meets and let nd be the

last boundary node of Sf that p;~+l meets. Let P:d+l be the h + I)-path obtained by

tracing p:o+l from na to nd. p;'t will be the trivial path {na} or {Tld} if na embraces nd

or conversely. Also, let ne be the last boundary node of Sf that p;~+l meets. If nd and

Tieare totally disjoint, we can invoke Conditions 2.1 to assert the existence of a two-sided

h + I)-path Pde+lthat connects nd and ne and does not meet p:I1 except terminally at

nd. Pde+lmay also be a trivial path. Let PJc+l be the (possibly trivial) path obtained by
.

1 P,+l f If P,+l d [J,+l d t t h P-,+l U P ,+l U [Ji+l
tracmgaong oe romnetone. ad an 1ec ono mee,t en ad de 1ec

is a t\vo-ended h + I)-path connecting na to nc. If p:I1 and p;:/l do meet, they will do

so with a ,-tip, and there will be a first node 711at which p:I1 meets p;~+l - "first" with

respect to the orientation of p;,/l from na to nd. Possibly 711 = na or nj = nc. Now, let

p;ijl (or p];l) be the path obtained by tracing along p:o+l from na to Tlj (respectively,

by tracing along p~+l from TI1 to Tic) Then, p:t u p];l is the (-( + 1)-path we seek. In

the event that TI1 = na or 711= Tic,one of these two paths will be trivial.

Case 4: Finally, assume that p~+l and p~+l do not meet inside any -(-section. Then,

there is a last node 711("last" with respect to the orientation of p~+l) at which p~+l and

p~+1 meet with a ,-tip. Then, as in Case 3, p:t u p];l is the desired path.
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This exhausts all possibilities and completes the proof. ...

Corollary 2.3. Let gv be such that Conditions 2.1 are satisfied. Also, let B be any

ordinal such that; < B ::; v. Then, any B-section is partitioned by the ,-sections it embraces.

(In particular, gv is partitioned by the -;-sections.)

Proof. Since -;-connectedness is obviously a refiexh-e and symmetric binary relation

between branches. it follows from Theorem 2.2 that it is an equivalence relation between

the branches of 9". :\Ioreover, any t\''-o-ended ,-path that connects two branches of a

B-section will remain within that B-sect:on - whence our conclusion. ...

In order to extend our results to C-connectedness and ~-connectedness. \\-e need other

kinds of "sections." An w-section (or ~-~ection) is a reduced graph induced b:--a maximal

set of branches that are pairwise w-coll:Lected (respectiwly, w-connected).

Corollary 2.4. If Condition 2.1 holds for every natural number 11, then w-connectedness

is transitive in g" (1/~ w), and w-sections partition any B-section whenever B > w.

Proof. w-connectedness between t,,;o nodes means that the two nodes are l1-connected

for some natural number 11depending on the choice of the two nodes. The transitivity and

partitioning properties of w-connectedness thereby follow from those of l1-connectedness. ..

As before, w+ (or w+) will denote any unspecified rank no less than w (respectively, w)

and no larger than 1/.

Conditions 2.5. Conditions 2.1 hold for every natural number 11and in addition the

following is required with w ::; v. For every two (w+ )-nodes n~+ and n~+ that are incident to

the same w-section SeJ, there exists a tu'o-ended w-path p:..; such that either (a) its traversed

tips - other than those incident to n~+ and n2+ - are not shorted to any tips not traversed

by p:..; or (b) p:..; satisfies the following three conditions:

(bl) All the branches of pw are embraced by SW.

(b2) One terminal node of pw is embraced by n~+, and the other by n~+.

(b3) pw does not meet any boundary node of an (w+ )-section other than n~+ and n~+.

These last two conditions (a) and (b) are the same as those of Conditions 2.1 but with

the following replacements: , is replaced by w, and, - 1 by W.
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Corollary 2.6. Assume (}I/ (v 2::1.1))satisfies Conditions 2.5. Then, I.I)-connectedness if'

transitive in (}I/, and w-sections partition any O-section whenever 0 > "'-'.

The proof of this corollary is the same as that of Theorem 2.2 but with obvious changes

in wording and notations, such as the replacement of Conditions 2.1 by Conditions 2.4 and

the replacements of symbols indicated just above.

3 A Final Nate

The results obtained in this paper are different from those of [3J. In particular. bot~,

Conditions :2.1and 2..) allo\,' nondisconnectable nonopen tips that are not shorted. HeIW:.

those conditions do not imply Condition 6.1 of [3], which prohibited such tips. Conversel:.-.

the prohibition of such tips does not imply Conditions 2.1 or 2.-5. Thus, even thoug~,

Theorem 2.2 has the same conclusion as Theorem 6.2 of [3], neither theorem subsumes the

other, and the same is true with regard to their corollaries.
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