

A CRITERION FOR TRANSITIVITY IN TRANSFINITE CONNECTEDNESS

A.H.Zemanian

This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP-9200748.

October 20, 1993

A CRITERION FOR TRANSITIVITY IN TRANSFINITE CONNECTEDNESS *

A. H. Zemanian

Abstract - This work estajlishes a sufficient set of conditions under which λ-connectedness in a transfinite graph is transitive and thereby is an equivalence relation between branches. This in turn insures that λ-sections do not overlap and that they partition the transfinite graph.

1 Introduction

Transfinite graphs possess many connectedness concepts that are meaningless for conventional graphs. For example, two nodes that are infinitely far apart in a transfinite graph can only be connected by transfinite paths that pass through infinite extremities of conventional subgraphs of that transfinite graph. Moreover, there is a hierarchy of connectedness concepts, namely, " λ-connectedness" for each finite or denumerably infinite ordinal λ. As λ increases, λ-connectedness weakens in the sense that, when $\lambda_{1}<\lambda_{2}, \lambda_{1}$-connectedness implies λ_{2}-connectedness, but not conversely. Thus, two branches may be λ_{2}-connected but not λ_{1}-connected.
λ-connectedness is a reflexive and symmetric binary relation between branches, but it need not be transitive [3, Section 3]. As a result, λ-connectedness need not be an equivalence relation between branches, and this has undesirable ramifications. For example, it may prevent unique node voltages in the theory of transfinite electrical networks. A sufficient condition for the transitivity of λ-connectedness was established in [3]. In this work we establish another one. Neither criterion implies the other. Moreover, the one presented herein, although more complicated, is more easily established.

[^0]The prerequisites for an understanding of this work are completely covered in [1] and [3]. The reference [2] can be used in place of [1] and in fact provides a more general discussion. The present paper is written as a sequel to [3]. Of course, ideas that are newly introduced herein are precisely defined below.

We will establish our results for every natural number rank μ, as well as for the ranks $\vec{\sim}$ and ω. Results for still higher ranks are obtained through obvious modifications. In particular, when the rank is a successor ordinal, one need only follow the development for a natural number rank. Similarly, when the rank is an arrow rank $\vec{\theta}$ or a limi: ordinal θ, the development to follow is that for \vec{u} or respectively ω. (See [3, Section the definition of an arrow rank $\vec{\theta}$.)

2 The Main Results

In the following ν will denote a countable ordinal, and γ and μ will denote natural numbers. $\gamma+$ will denote any unspecified rank no less than γ and no larger than ν. and $\gamma-$ will be any unspecified rank no less than 0 and less than γ. Thus, $0 \leq(\gamma-)<\gamma \leq(\gamma+) \leq \nu . \mathcal{G}^{\nu}$ will be a ν-graph. $\mathcal{S}^{\circ-1}$ will be a $\gamma-1$-section.

Conditions 2.1. Let μ be a fixed natural number such that $0<\mu \leq \nu$. For each natural number γ such that $0 \leq \gamma \leq \mu$ and for every two $(\gamma+)$-nodes $n_{1}^{\gamma+}$ and $n_{2}^{\gamma+}$ that are incident to the same $(\gamma-1)$-stction $\mathcal{S}^{\gamma-1}$, there exists a two-ended (i.e., finite) γ-path P^{γ} such that either (a) its traversed tips - other than those incident to $n_{1}^{\gamma+}$ and $n_{2}^{\gamma+}$ - are not shorted to any tips not traversed by P^{γ} or (b) P^{γ} satisfies the following three conditions:
(b1) All the branches of P^{γ} are embraced by $\mathcal{S}^{\gamma-1}$.
(b2) One terminal node of P^{γ} is embraced by $n_{1}^{\gamma+}$, and the other by $n_{2}^{\gamma+}$.
(b3) P^{γ} does not mett any boundary node of a $((\gamma-1)+)$-section other than $n_{1}^{\gamma+}$ and $n_{2}^{\gamma+}$.
With regard to the two conditions (a) and (b), (a) does not require that P^{γ} be embraced by $\mathcal{S}^{\gamma-1}$, whereas (b) does do so. The simultaneous satisfaction of both conditions is allowed. (a) can be restated in more suggestive terms by saying that P^{γ} is an isolated path totally
disjoint form the rest of \mathcal{G}^{ν} except at its terminal nodes. (b) requires that the only way one can leave $\mathcal{S}^{\gamma-1}$ at a node of P^{γ} is at a terminal node of P^{γ}.

When $\gamma=0, \mathcal{S}^{\gamma-1}$ is a (-1)-section, that is, a single branch. Any two nodes incident to that branch will automatically satisfy Conditions 2.1.

Theorem 2.2. Let \mathcal{G}^{ν} be such that Conditions 2.1 are satisfitd. Then, for each γ such that $0 \leq \gamma \leq \mu, \gamma$-connectedness is transitive in \mathcal{G}^{ν}; that is, it is a transitive binary relation among the branches of $\mathcal{G}^{\nu}-$ as well as among the nodes of \mathcal{G}^{ν}.

Proof. The transitivity of $\hat{\gamma}$-connectedness for the branches will follow from that for the nodes. Choose γ and μ as in Conditions 2.1. Let n_{a}, n_{b}, and $n_{\text {: }}$ be three totally disjoint nodes of any ranks. possibly different ranks. Consider the two statements
(i) n_{a} and n_{b} are γ-connected, and n_{b} and n_{c} are γ-connected.
(ii) n_{a} and n_{c} are γ-connected.

We shall prove that (i) implies (ii) inductively, and thereby the transitivity of γ-connectedness. This is true for $\gamma=0$ because 0 -connectedness is always transitive. (Moreover, Conditions 2.1 are always satisfied when $\gamma=0$, as was noted above.) So, assume that (i) implies (ii), where now $0 \leq \gamma<\mu$. Hence, γ-connectedness is transitive, and γ-sections partition \mathcal{G}^{ν}. We shall show that (i) implies (ii) for γ replaced by $\gamma+1$.

Let $P_{a b}^{\gamma+1}$ be a two-ended $(\gamma+1)$-path connecting n_{a} and n_{b} and oriented from n_{a} to n_{b}, and let $P_{b a}^{\gamma+1}$ be the same path but with the reversed orientation. Also let $P_{b c}^{\gamma+1}$ be a two-ended $(\gamma+1)$-path connecting n_{b} to n_{c} and oriented from b to c. We shall construct a two-ended $(\gamma+1)$-path connecting n_{a} to n_{c}.

Since $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ are two-ended $(\gamma+1)$-paths, they each traverse only finitely many γ-tips. All other tips traversed by these paths will have ranks less than γ. If $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ meet at a node n, they will meet there with four tips (two for each), except when n is n_{b}, in which case they will meet at n_{b} with two tips (one for each). If all four tips (or both tips when $n=n_{b}$) have ranks less than γ, they will have representatives that are γ-connected; in this case, we shall say that $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ meet inside $a \gamma$-section. $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ can meet inside a γ-section infinitely many times because they can traverse infinitely many tips
of ranks less than γ. On the other hand, if at least one of those four (or two) tips has a rank γ, we shall say that $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ meet with $a \gamma-t i p ; P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ can meet with a γ-tip only finitely many times since they traverse only finitely many γ-tips.

Now let us consider the various ways $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ may meet.
Case 1: They may meet only at n_{b}. in which case $P_{a b}^{\gamma+1} \cup P_{b c}^{\gamma+1}$ is a two-ended $(\gamma+1)$ path connecting n_{a} and n_{b}. So. assume in the following three cases that $P_{b a}^{\hat{+}+1}$ and $P_{b c}^{\hat{i}+1}$ meet at at least one node totally disjoint from n_{b}.

Case 2: If n_{a} and n_{c} are both incident to the same γ-section, then. since $<\mu$ now. we can invoke Condition 2.1 to conclude that n_{a} and n_{c} are $(\gamma+1)$-connected. So, assume in the following two cases that n_{z} and n_{c} are not incident to the same γ-section.

Case 3: Let us now trace $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ starting at n_{b}. Assume these paths meet inside at least one γ-section (possibly infinitely often). They will do so only within finitely many γ-sections. Let \mathcal{S}_{l}^{γ} be the last such γ-section that $P_{b a}^{\gamma+1}$ meets and let n_{d} be the last boundary node of \mathcal{S}_{l}^{γ} that $P_{b a}^{\gamma+1}$ meets. Let $P_{a d}^{\gamma+1}$ be the $(\gamma+1)$-path obtained by tracing $P_{a b}^{\gamma+1}$ from n_{a} to n_{d}. $P_{a d}^{\hat{a}+1}$ will be the trivial path $\left\{n_{a}\right\}$ or $\left\{n_{d}\right\}$ if n_{a} embraces n_{d} or conversely. Also, let n_{ϵ} be the last boundary node of \mathcal{S}_{l}^{γ} that $P_{b c}^{\gamma+1}$ meets. If n_{d} and n_{e} are totally disjoint, we can invoke Conditions 2.1 to assert the existence of a two-sided $(\gamma+1)$-path $P_{d e}^{\gamma+1}$ that connects n_{d} and n_{e} and does not meet $P_{a d}^{\gamma+1}$ except terminally at $n_{d} . P_{d e}^{\gamma+1}$ may also be a trivial path. Let $P_{e c}^{\gamma+1}$ be the (possibly trivial) path obtained by tracing along $P_{b c}^{\gamma+1}$ from n_{e} to n_{c}. If $P_{a d}^{\gamma+1}$ and $P_{\epsilon c}^{\gamma+1}$ do not meet, then $P_{a d}^{\gamma+1} \cup P_{d e}^{\gamma+1} \cup P_{e c}^{\gamma+1}$ is a two-ended $(\gamma+1)$-path connecting n_{a} to n_{c}. If $P_{a d}^{\gamma+1}$ and $P_{e c}^{\gamma+1}$ do meet, they will do so with a γ-tip, and there will be a first node n_{f} at which $P_{a d}^{\gamma+1}$ meets $P_{\epsilon c}^{\alpha+1}-$ "first" with respect to the orientation of $P_{a d}^{\wedge+1}$ from n_{a} to n_{d}. Possibly $n_{f}=n_{a}$ or $n_{f}=n_{c}$. Now, let $P_{a f}^{\gamma+1}$ (or $P_{f c}^{\gamma+1}$) be the path obtained by tracing along $P_{a b}^{\gamma+1}$ from n_{a} to n_{f} (respectively, by tracing along $P_{b c}^{\gamma+1}$ from n_{f} to n_{c}) Then, $P_{a f}^{\gamma+1} \cup P_{f c}^{\gamma+1}$ is the $(\gamma+1)$-path we seek. In the event that $n_{f}=n_{a}$ or $n_{f}=n_{c}$, one of these two paths will be trivial.

Case 4: Finally, assume that $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ do not meet inside any γ-section. Then, there is a last node n_{f} ("last" with respect to the orientation of $P_{b a}^{\gamma+1}$) at which $P_{b a}^{\gamma+1}$ and $P_{b c}^{\gamma+1}$ meet with a γ-tip. Then, as in Case $3, P_{a f}^{\gamma+1} \cup P_{f c}^{\gamma+1}$ is the desired path.

This exhausts all possibilities and completes the proof.
Corollary 2.3. Let \mathcal{G}^{ν} be such that Conditions 2.1 are satisfied. Also, let θ be any ordinal such that $\gamma<\theta \leq \nu$. Then, any θ-section is partitioned by the γ-sections it embraces. (In particular, \mathcal{G}^{ν} is partitioned by the -sections.)

Proof. Since γ-connectedness is obviously a reflexive and symmetric binary relation between branches. it follows from Theorem 2.2 that it is an equivalence relation between the branches of \mathcal{G}^{2}. Moreover, any two-ended γ-path that connects two branches of a θ-section will remain within that θ-section - whence our conclusion.

In order to extend our results to $\vec{\sim}$-connectedness and \dot{w}-connectedness. we need other kinds of "sections." An $\vec{\omega}$-section (or $\sim \cdot-\varepsilon \epsilon c t i o n)$ is a reduced graph induced by a maximal set of branches that are pairwise $\overrightarrow{\vec{u}}$-conmected (respectively, ω-connected).

Corollary 2.4. If Condition 2.1 holds for every natural number μ, then $\overrightarrow{\vec{u}}$-connectedness is transitive in $\mathcal{G}^{\nu}(\nu \geq \vec{\omega})$, and $\vec{\omega}$-sections partition any θ-section whenever $\theta>\vec{\omega}$.

Proof. $\vec{\omega}$-connectedness between two nodes means that the two nodes are μ-connected for some natural number μ depending on the choice of the two nodes. The transitivity and partitioning properties of $\vec{\omega}$-connectedness thereby follow from those of μ-connectedness.

As before, $\vec{\omega}+$ (or $\omega+$) will denote any unspecified rank no less than $\vec{\omega}$ (respectively, ω) and no larger than ν.

Conditions 2.5. Conditions 2.1 hold for every natural number μ and in addition the following is required with $\omega \leq \nu$. For every two ($\omega+$)-nodes $n_{1}^{\omega+}$ and $n_{2}^{\omega+}$ that are incident to the same $\vec{\omega}$-section $\mathcal{S}^{\vec{\omega}}$, there exists a two-ended ω-path P^{ω} such that either (a) its traversed tips - other than those incident to $n_{1}^{\omega+}$ and $n_{2}^{\omega+}$ - are not shorted to any tips not traversed by P^{ω} or (b) P^{ω} satisfies the following three conditions:
(b1) All the branches of P^{ω} are embraced by $\mathcal{S}^{\vec{\omega}}$.
(b2) One terminal node of P^{ω} is embraced by $n_{1}^{\omega+}$, and the other by $n_{2}^{\omega+}$.
(b3) P^{ω} does not meet any boundary node of an ($\vec{\omega}+$-section other than $n_{1}^{\omega+}$ and $n_{2}^{\omega+}$.
These last two conditions (a) and (b) are the same as those of Conditions 2.1 but with the following replacements: γ is replaced by ω, and $\gamma-1$ by $\vec{\omega}$.

Corollary 2.6. Assume $\mathcal{G}^{\nu}(\nu \geq \omega)$ satisfies Conditions 2.5. Then, ω-connectedness is transitive in \mathcal{G}^{ν}, and ω-sections partition any θ-section whenever $\theta>\omega$.

The proof of this corollary is the same as that of Theorem 2.2 but with obvious changes in wording and notations, such as the replacement of Conditions 2.1 by Conditions 2.4 and the replacements of symbols indicated just above.

3 A Final Note

The results obtained in this paper are different from those of [3]. In particular. bot: Conditions 2.1 and 2.5 allow nondisconnectable nonopen tips that are not shorted. Hence. those conditions do not imply Condition 6.1 of [3], which prohibited such tips. Conversely. the prohibition of such tips does not imply Conditions 2.1 or 2.5 . Thus, even thougE Theorem 2.2 has the same conclusion as Theorem 6.2 of [3], neither theorem subsumes the other, and the same is true with regard to their corollaries.

References

[1] A.H.Zemanian. Infinite Electrical Networks, Cambridge University Press, New York. 1991.
[2] A.H.Zemanian. Transfinite graphs and electrical networks, Transactions of the American Mathematical Society. 334 (1992), 1-36.
[3] A.H.Zemanian, Connectedness in Transfinite Graphs and the Existence and Uniqueness of Node Voltages. Discrete Mathematics, in press.

[^0]: *This work was supported by the National Science Foundation under Grants DMS-9200738 and MIP9200748.

