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1. Introduction. 

I n  tklis work t is a one-dimensional r e a l  variable, and a l l  distributions are 

1 of one dimension 1% is  a well-known f a c t  Wat  the se t  of a l l  f in i te  line= corn- 

b i n a t i o n s  of sh i f t ed  d e l t a  functionals i s  dense i n  the space D" of 611 schw=tz 

I d i s t r ibu t ions  [I; Vole I, p o 7.51 . More specifically,  l e t  D denote the space of .'. 
i n f in i t e ly  d i f fe rent iab le  functions of compact support supplied with i t s  custo- 

m a r y  topology [l; Vole I, p. 641. Then, any given distribution f can be approxi- 

mated  by a d i s t r ibu t ion  of the form 

wBere the a, a re  constants and 6 ( t  - tm) denotes the delta functional concentrated 

on the point t = %. I n  par t icular ,  given an c > 0 and a bounded se t  B of D, the in- 

t e g e r  M and the a, and tm can be so chosen tha t  

(See 11; Vo1. I, pp. 7 1  and 7.51.) 

1% is  also a f a c t  that, if f has a compact support, it  can be approximated by 

wnere 6 (q-2) denotes the (q-2) tn-order distributional der ivatioe of 6 and the in- 

teger  q > 2 i s  such t h a t  the q th-order primitive of f is a continuous function. 

The ob ~ e c t i v e s  of t h i s  work are t o  develop explicit  methods for constructing 

*he approximations (1) and (2)  and then t o  apply them to the numerical evaluation of 



have been constructed. Indeed, l e t  us assume t h a t  the support of the dis t r ibut ion 

f i s  a compact subset of t'he open in terva l  I. Then, i ts  transform ~ ( s )  w i t h  respect 

t o  some kernel K(s,t) i s  given by 

Here, s is i n  general a complex variable r e s t r i c t ed  t o  some domain S6 i n  the s 

plane. We shall  always assume that, for each s < qj K(s, t )  has continuous derivatives 

of  all orders w i t h  respect  t o  t on the in te rva l  I. Excluding the Fourier and Laplace 

transformations, we l i s t  below a number of in t eg ra l  transformations which possess ex- 

tensions t o  generalized functions with inversion formulas and take on the form (3 )  

when the support of f i s  a compact subset of S Z .  I n  each case, we also indicate the 

corresponding in terva l  I fo r  t and the  domain C2 for  s . 

The Mellin Transformation [31: - 

I = (0,m); R i s  the s-plane. 

The Hankel Transformation [ L ]  : - 

J, i s  the Bessel function of f i r s t  kind and order p ( -  b < - u < a ) ;  I = ( 0 , ~ )  ; 61 i s  

the r e a l  posit ive axis i n  the s plane. 

Th.e K Transformation rS ] :  -- 

~ ( s )  = < f ( t ) ,  .~ST ~ ~ ( s t )  > 

% is  the modified Bessel function of third kind and order u. ( -  % < - Rep' i. b) ;  I = 

(0,m) ; R i s  the s plane, 



The ~ t i e l t J e s  Transformation [6; p . h3] 
-C 

1 F ( s )  = < f ( t ) ,  - > 
s+t 

I = (o,,,) ; 0 i s  the s plane excluding the r e a l  nonpositive axis. 

The Laguerre Transformation [ 7 ]  : 
_--- 

L , ~ ~  u e  tne generalized Laguerre polynomials of order a (a  > - 1) 18; p. 1881; I = 

( 0 ; r i s  the gamma f-mc tion; i s  tlle se t of a l l  nonnegative integers. 

The Her mite Transformation [ 7) : - 

H, ( t )  are  the Hermite polynomials [8; p. 1923 ; I = ( -  m,m) ; 0 is the se t  of all non- 
i 

t 
1 n e g a t i v e  integers .  I ! 

The Jacobi Transformation r 7 1 :  - --.s 

Here,  a! and B are r e a l  and greater than -1, and 

denotes the Jacobi polynomials 18; p .  1681; I = (-1, l ) ;  0 i s  the se t  of a l l  

nonnegative integer 3. The Jacobi tranef or mat ion contains a nmber of special cases ; 

the Legendre transformation (@ = @ = 0 )  , the Chebyshev transformation (a  = R = - k) 9 
/ 

and the Gegenbauer (or ultr aspher i c a l )  transformation (o = 0 )  



The Convolution Transformation [ 9 ] ,  [LO] : - 
F(s) = < f ( t ) ,  G(S-t) > 

G i s  an en t i re  function i n  the Hirschman-Widder classes I, 11, or 111; C11; p. 1201; 

I = (-m,m) ; i2 is the s plane. A number of c l a s s i c a l  in tegra l  transformations are, 

through changes of variables,  special  cases of the convolution transformation [ll]. 

The Weierstrass Transformation [ I23  : - 

1 = (-a,m); 0 is the s plane. 

The reason for excluding the Fourier and Laplace transformations i n  the fore- 

going l i s t  is  tha t  our approximation techniq.ueswil1 be based on the assumption that  

the Fourier or Laplace transform of f can be determined. Our methods use these 

transforms to  construct the approximations (1) and (2), which when substituted 

into (3 )  immediately y ie ld  the desired approximate expressions for any of the above 

transfoYms of f .  The jus t i f ica t ion  for  t h i s  procedure l i e s  on the f a c t  that  f a i r l y  

extensive tables of Fourier and Laplace t r  ansf orms of distributions already ex i s t  

[13], [14] , whereas very few dis t r ibut ional  transform formulas, i f  any a t  all ,  have 

been developed for the other transformations. ( I t  should be noted tha t  a table con- 

taining 56 formulas has been compiled for the dis t r ibut ional  Mellin transformation 

PSI " ) 
The assumption t h a t  the dis t r ibut ion f has a compact support with respect t o  

the open in terva l  I - (a, p) can be relaxed i n  the following way. (Here, a! may be 

-a and B may be +me) Assume that  the dis t r ibut ion f on I is such tha t  f (t.) i s  a 

Mesqae integrable function or1 f i n i t e  sabintervals of a < t < a, and b, < t < B 

(a, < b,), and, for each = E ~ , f ( t ) K ( s , t )  is  absolutely integrable on a e t < a, and 

b, < t < B u  Then, (3) ca.r~ be decomposed in to  



where cu < a, < %, b,. < bz < 8 ,  f, ( t )  = f ( t )  for a, < - t (. b, and f, ( t )  = 0 elsewhere- 

The l a s t  term i n  (4)  can be evaluated by the methods described herein, The f i r s t  

term on the right-hand s ide of (4) can be evaluated by methods designed for such 

ordinary transforms (see, for example, [16]); or, be t te r  still,  it can be made s m a l l  

enough t o  be neglected by choosing a, suf f ic ien t ly  close t o  a, and b, suf f ic ien t ly  

close t o  B . 
By a smooth function we sha l l  mean a function tha t  possesses ordinary deriva- 

t ives  of a11 orders a t  a l l  points of i t s  domain. DI denotes the space of smooth 

functions whose supports a re  compact subsets of I. D1 has the topology tha t  makes 

i ts  dual DI' the space o f  Schwar tz distr ibut ions on I [l; Vol. I, p. 651 EI and EI ' 
are respectively the space of smooth functions on I and the dual space of distribu- 

t ions having compact supports w i t h  respect t o  I [l; Volt I, pp. 88-90]. Let T be I 
the length of some f i n i t e  open interval  (a, b) ( i .  e . , T = b - a) . PT is the space of 

smooth periodic functions on (-cop) having a period T; P T f  is the dual space of per- 

iodic distributions on (-m,m) of period T [2; Chapter 111. The number that  fE EIf or 1 
D I f  assigns t o  TE EI or DIy respectively, w i l l  be denoted by < f,rp >, whereas the 

number tha t  p PTr assigns t o  BE PT w i l l  be denoted by p :B . 
Let C2 be an open s e t  on either the r e a l  l i n e  or the complex plane. By saying I 

tha t  Crr; is a compact subset of F1, we mean tha t  is  compact i n  i t s e l f  ( i o e .  ,= 
is a closed bounded subset of F1) . We denote the nth dis t r ibut ional  derivative of a 

function or dis t r ibut ion f by f . The support af f is denoted by supp f .  

2. Approximation Q Sums of Delta Func t ionals  . --- 
Our first  method of approximation is summarized by 7$ 

Theorem - 1: - Let f EIt, where now I = (a,b) is chosen as a f i n i t e  open interval.  -- - --- 
With T = b - a, w = ~ ~ T I T ~  and r b e k g  some number i n  the interval  0 < r < 1, s e t  - - -. - -- 



Where ? is  t h e  Fourier transform of f ,  - -- A 

- 
f (wk) = < f ( t ) ,  e ,-iwkt ,. 

Also s e t  -3 - 

wher e 

and h ( ~ ) E D ~  is  such t h a t  0 5 A ( t )  < 1 on I and A ( t )  = 1 on a neighborhood of the =- - --- - - -  a- -- 
por t  of f .  -- 

Then, i n  t h e  sense of weak convergence i n  EIf, - ----- - 

l i m  lim 1 fnjr,,(t) = f ( t ) .  
T(rco 1 rrco 

Note that the Fourier transform '? i s  a smooth function (indeed, an e n t i r e  func- 

t ion)  because f has a bounded support 12; p .  2271. 

Proof: Le t  p ( t )  denote the  periodic extension with period T of f ( t )  ; t h a t  is, 

~ ( t )  = f ( t )  on a < t < b, p ( t  ) = 0 on su f f i c i en t l y  small neighborhoods of t = a and 

t = b, and p ( t )  = p ( t  + n ~ )  f o r  every integer n. Also, l e t  h E DI be such %hat 

0 5 h ( t )  < 1 on I and h ( t )  = 1 on a neighborhood of the support of f .  For cp E EI 

the smootb per iodic  extension with period T of hcp is  denoted by (hcp) T. Hence, 

Next, we s h a l l  have need of 

Lemma 1: For 0 < r < 1, s e t  -- 



Then, in  the sense of convergence in pT1 [2; p * 3203, 

I proof: A,,, ( t )  is We r th-order Abel mean of the n t h  par t ia l  sum of the D i r -  
P__ 

I - j caa t  kernel. Hence, tbis becomes a standard resu l t  where we apply ( t )  to ,r 
8 E PTe 

NOW, P,,, ( t )  can be  wr i t ten  as the T-convolution [2; Sec. 11.41 of p and An,r. 

Indeed, l e t t i ng  A denote T-convolution, we have 

s m e  as ( 5 )  i n  view of ( 7 )  and the f a c t  t ha t  

Moreover, again i n  the sense of convergence i n  PT ' we have from lemma 1 and the 

cont inui ty of T-convolution r2; theorem 11.4-41 that  

lim l i m  pnYr(t) = l i m  lim p ( t )  A % .(t) = p ( t )  A a T ( t )  = p(t) .. 
rl- r m  1 -  wco 

9 

Here, 6T denotes the periodic extension of the delta functionalo 

Next, ' l e t  

Since p is smooth everywhere, it immediately follows that pn, r,m4 Pn,r in PT1 as n,r 

r n  [This technique of get t ing a delta-sum apprmtimation by forming a Riena~n- 

sum approximation t o  pn,r '9 ( 0  E yT) was suggested by Wohlers and B e l t r d  [17] -1 

Altogether then, we have shown that  for m Y  9 E~ 



Q.E.D. 

Our approximation fo r  f is  fnjr,,. A s  is  indicated i n  the proof, we developed 

f n r  , i n  two steps: first, by constructing the smootnapproximationp to the 
> 9 n,r 

periodic extension of f and then by forming the de l t a  functional sum pn,,), arising 

from the Riemann sum for  the i ~ t e g r a l  on I of pn,, 8 (8  E P T )  It may be interesting 

to  note tha t  i f  the d is t r ibut ion  f i s  a continuous function on some open subinterval 

J of I, then p,,, converges rmiformly t o  f on compact subsets of J. This is  proven 

i n  ' the appendix. 

The proof of theorem 1 also establishes 

Corollary l a :  Under the hypothesis of theorem 1 w i t l z  however r s e t  ecpal to  1, - -- - - -- - 

I in  the sense of weak convergence i n  EI' 
s l -  - 

I Actually, the parameter r was introduced i n  ( 5 )  t o  smooth out any unnecessary 

I Gibbs-phenomena osc i l la t ions  ar is ing i n  the approximation. It i s  tlsually more son- 

1 venient t o  use fn9, ,, (0  < r < i) rather than fn9 lYm. On tbe other hand, the use 

of th i s  r Ch order Abel mean makes the convergence of f,,,), t o  f very slow. How- 

ever, i f  the order of f is known, then a Cesaro mean of suff ic ient ly  high order 

could instead be used to  accomplisn this smoothing and obtain a higher r a t e  of con- 
t 

F ver gene e . 

3 Numerical Evaluation - of Distributional Transform : ' F i r s t  Method. 

Theorem l and its corollary provide a means far  nnuerricaPly evapuating the dis-  



Y 

-tr ibutional tral'lsf Crm (3 Indeed, for  every s i n  the domain s e t  a, t) i s  in 
I 

E I, and therefore 

lim l im lh Fn,r,m (s) = F(s):, 
~ C O  r'l- m 

a n d  

We sha l l  give an example of the use of (9) subsequently, Let us merely note a t  

t h i s  point t h a t  the  approximate transform (10) can be writ ten down immediately once 

t h e  Fourier transform ?; is -known. 

Theorem 1 a s s e r t s  merely the  pointwise conver gence of (9) for s E Fd. However, 
I 
i 

mor e is t rue  : ! 

Theorem z: If is a subset  -- of tbe  open s-domain hl such that for each non- - - 5 - - -  

negat ive  integer p,, 

when B is a constant dependling an and the  choice of hEDI,then - UJ-- 

-uniformly - on .I: 

Note that the  hypothesis 2s automatically sa t i s f i ed  i f  =is a compact subset 

of ba and K(s, t;) is an ana ly t ic  fm.c t i on  of a E R 

Proof: - 



Now, weak convergence i n  EI ' implies weak convergence i n  DIr ,  which i n  t u rn  implies 

strong convergence i n  D I r  [l; Vol. I, p ,  71 and p ,  7k]. But, i f  h is fixed and the  

parameter s v a r i e s  throughout & then t he  ~ ( t )  K(s,t) comprise a bounded set in DI. 

Thus, theorem 2 follows d i r e c t l y  from the d e f i n i t i o n  of s t rong convergence i n  DIf . 
L e t  .us now est,imate a bound on t h e  .error between t h e  exact  transform ~ ( s )  and 

the approximate transform (10) . F i r s t  of a l l ,  we have t h a t  

Since f E %' and XK E E I V o r  f ixed  s, we may interchange the  in tegrat ion and "inner 

productf1 [ 2; pp . 124-1251, Then, replacing T by t and t by x, we ge t  

The t e s t i n g  funct ion i ~ s i d e  the  last  expression i s  the r th-order Abel mean of the 

n th p a r t i a l  sum of the  Fourier s e r i e s  fo r  ~ ( t )  ~ ( s , t ) ,  s being fixed. 

Now the  approximation (6)  t o  f was obtained in two steps;  see  (8). Hence, l e t  

us f i rs t  compute a bound on t he  error  ( s )  between the exact transform ~ ( s )  and the 

transform a r i s i n g  from pn j r .  

Le t  

Then 
b 

E, ( s )  = < f ( t j ,  ~ ( t )  K ( s , ~ )  > 
- Ja 

P ,  h ( t )  K:s,t) d t  

- iwkt = <  f ( t ) ,  (LrI'l)e-iwkt ck i s )  + c e C ~ S )  > 
k=-n 

IkP, 

Since X(x) K(s,x! is a smooth funztion w i t h  a compact support contained i n  



a < x < by we may integrate  (12) by par t s  any number of times t o  get  

This shows t h a t  the Fourier coefficients ck(s )  are of rapid descent as I kl + rn 

(i .e . , ok(s) = 0 ( ( k 1 -") for every n) . This a l so  implies tha t  we may differentiate 

the se r i e s  inside the right-hand s ide of (13) w i t h  respect t o  t term by term as 

often as we wish., 

Let 5 = 5 + i w  be the  independent var iable  of the Laplace transform of f ( t ) .  

We have assumed tha t  ~ ( 6 )  i s  a known (en t i r e )  function. Choose the integer q > 0 

-q+2 
s u c h t h a t ~ n s o m e s t r i p ~ ~  < R e c < 5 ,  ( O < 5 1  < S 2 < m ) w e h a v e  15 L ( S ) /  < A  

where A is some constant. (we could also choose this  s t r i p  inside the left-half 

5 plane, or even containing the i w  axis. I n  either case, the following analysis 

with cer tain modifications would s t i l l  apply. ) It now f 0110~s that  f = h(q) where 

h is the continuous function 

and 5 is fixed with 5, < F; < 5, (see [2; Set. 8.41). Hence, (13) becomes 

p iwkt 
= < n ( t ) ,  ( -1 )q  2 (9) Aiq-p ) ( t ) r  - I k  i w  e- c ~ ( s )  + 

t l . = ~  !JJ k=-n 



Let n = p + 2 in (a)* Then, 

where 
%l.l+2 

I Therefore, 

I From (15) we have, for  t E supp h9 

Consequently, 

k 0, ~ ~ e g ~ [ e  1-r .+ r~lf! ( ~ ) B ( s , ~ I  SZPJA I%(s)1 5 -w k=l k-il (4-PI ( t )  1 * 
p=O FL 

The right-hand s ide o f  (17) is the bound on [q (s)  1 t h a t  we seek. Note tha t  i t  

can be made a r b i t r a r i l y  sm91 by f i r s t  choosing n suf f ic ien t ly  large and a e n  choos- 

ing r su f f i c i en t ly  close t o  1. Also no'ce tha t  on a subset of R, as described 

in theorem 2, B ( S , ~ )  can be replaced by a constant tha t  is independent of s a Hence, 

the error  ( s )  converges uniformly t o  zero on r;;', 

I Next, we compute a bound on the error 4 (s) between the transform ar is ing from 

Pnjr and the appr aximate transf o ~ m  (10) (see (8) ) ., 



where, as before, 

L e t  

Then, 

A bound on D(s) can be obtained as followsl From (5 ' )  we have tha t  

Therefore, using (16) as the definition of ~ ( s , p )  when p, = - land p = -2, we obtain 

Here again, on a subset s, as specified in. theorem 2, ~ ( s , ~ )  can be replaced by 

a constant that i s  independent of s, so t.&a%, fsr fixed r and n, % (s) oon'mrges t o  

zero as  m --+ CQ miPormly on. 



BY adding the right-hand sides of (17 and (18) 9 we obtain t&e desired bound 

,, the error between the  exact trmsform (9) and tne opposite transform (10). This 

bound is very weak, and the Z t c t ~ d  error between (9) and (10) w i l l  in genera be 

less* Moreover, because of the uniform convergence of (s) t o  zero on z, 
we have here another proof of theorem 2, 

Approximations & S-iun;s of Derivatives of Delta Functionds, -- -- 
The second metbod of appro'ximation is based upon a technique, which was devel- 

oped for  ordinary functions [96] Assq&g once again that  the Laplace transform 

L(C) = < f ( t ) ,  e-Ct z = l ( - i ~ )  ( c  = 5 + iw) 

i s  known, we can represent f e E I r  by f = ; h is a continuous function given by 

( l s ) ,  where 5 is some f ixed posit ive number. The positive integer q i s  so chosen 
I 

that,  on some s t r i p  < Re 6 < c2 w i t h  0 < 5, < g < a, we have as before ! 

where A is  some constant. 

NOW, if h ( t )  cannot be exactly determined as the inverse Laplace transform of 

c - ~ ' ~  L (6) approximate it by the method of [16] . Assume that f is a real dis tr ibu- 

tion. (1f it i s n ' t ,  we can. apply the f ~ l ~ 0 ~ h g  analysis to  i ts  real and imaginary 

parts separately.) Let 

(F, + iw)-q L(S + iw) = ~ ( w )  + ~ ( w ) .  

Then, on the axis  0 < w < CO, approximate ~ ( w )  and X(W) by two polygonal arcs 

RA(w) ' Xh(w), respectively, eu,-n that R ~ ( ~ )  t xA(w) are identlcdly zero for a l l  

sufficiently large w, and na i tmr  now xA(w) ham? any vertical segments 

(Since X(0) = 0, cnooie XA(o) = 0 Let SR, (k=l, . . .,n,n+l) be slopes 



tne straight l i n e  segments in RA, where the  (n.+P) segment is a seetion of the 

a s  extending out t o  w = (Number the  segments o o n s e c u t i ~ e l ~ .  ) In a s h -  

u a y  fashion, l e t  S X , ~  (k=l, - - e,m,m+l) be the slopes of the straight l ine seg- 

ments inXAe Furthermore, l e t w  b e t h e w  coordinate of thevwtexbetweenthe 
R,k 

mose slopes are S R , ~  sR3k+l, and denote the corresponding w coord- 

nates for XA by W X , ~ .  FLnall~3 s e t  

men, the appro%imation h, ( t )  t o  h ( t )  i s  given by [16] 

e P t n m 
4 ( t )  =p - S - Ak 00s wkt  + c Bk sin wkt) 

k=L1 k=l 

and 

Moreover, the error between h ( t )  and q (t) is  bounded as follows. 

In view of (19), l h ( t )  - 4 ( t ) ]  Can be made arb i t ra r i ly  small unifordy On W 

t interval  by choosing RA suff ic ient ly  close to  R and XA sufficiently close 

to X, 

Next, l e t  h ( t ) be t h a t  member of DI which was defined in the f i r s t  PmaGaPh 

Of theorem 1. Let 4 be the f i n i t e  open interval whose endpoints are iaf supp 1 

and SUP supp 1. Approximate 4 (t) on & by a polygonal hg (t) 9 where 

'k = Sk.t.1 - Sk (k=l, 2, . . . ,a),  Sk being tne slopes of the straight-line segments 

Of k, a d  tk (k=1,2, . . ,a) denote We t ooordinate~ of the vertices, nmber* 



consecutively. (In t h i s  case, Q ( t )  need not be ident ical ly  zero on any interval  

of posi t ive length.) Then the  approximation t o  the d is t r ibut ion  f is  

Note t h a t  

and tha t ,  if the point tk i s  contained i n  t h a t  neighborhood of supp f on which 

h r 1, then 

Hence, i f  a l l  t h e  t k  are  chosen i n  this neighborhood, the approximation (23) takes 

on a simpler form. 

Theorem - 3: fA converges i n  the weak sense i n  EIf t o  f as the quantity 

converges t o  zero. 

Note t h a t  (25) can be made as s m a l l  a s  one wishes simply by choosing the 

s t r a i g h t  l i n e  appr aximations. RA, XA, and & suff ic ient ly  close to  R, X, and h, , 
respectively.  

Proof : For any cp<E.EI, 

R 
< f - f,, cp > = < h(q)  ( t )  - Z ck 6 (q-2) ( t  - $), h(t)cp(t) > 

k=l 

dq 
= [n( t )  - 4 ( t ) ]  ( - I ) ~  [h(t)qdt)]dt 

r, 
Ther e f  or e , 



Q.E.D. 

5 Numerical Evaluation - of D i s t r i bu t i ona l  Transforms : Second Method. 

In view of  theorem 3, we e m  cont ruc t  the  following approximate transform. 

We a r e  still assTming bere  %Bat  f i s  a r e a l  d i s t r i bu t i on .  Otherwise, two sums such 

as (27) would a r i s e ,  cne from the  r e d  parr t and the  other from the imaginary pa r t  

Theorem 4: L e t  - b e  a subset  of ha as described in. theorem 2. men, the a p p r a i -  - -&-- - - - 
mate transform FA(s) converges t o  t he  exact  transform ~ ( s )  uniformly 2 a s  the - --- 7- 

term (25) converges t o  zero. - -- 
Proof: This theorem follows from (26) by replacing c p ( t  ) by ~ ( s ,  t) and invok- 

ing (11). 

Also n o t e  t h a t  w i t h  q ( t )  replaced by  ~ ( s ,  t )  the right-hand side of (26) becomes 

an e r ro r  bound f o r  ~ ( s )  - FA(s) 

6 .. Cornpar i s  on of t h e  Two Methods . --- 
The approximate transform (10) of the f irst  method can be written d m  immedi- 

a t e l y  once the Fourier transform ?; of f is determined. I n  the second method how- 

ever a d d i t i o n a l  computations ms t be performed, after the  Laplace tnXIsf arm F( s )  

of f has been  obtained, i n  order t o  determine the coefficients  ck and tllereby the 

aPPr Oxbate transform (27) . Indeed, if (15) cannot be determined exactly, then 

t h r e e  s e p a r a t e  s t r a i g h t  l i n e  appraximations have t o  be performed when computing the 



the other hand, %fie b ~ u n d  (16) on tnc e r r  or xi  it^ l ' i r s t  method, wbioh is 

t n e  sum of (17) and ( ~ 8 ) ~  i s  qu i t e  a complicated expression and hence di f f icul t  

to In  con t ras t  to t h i s ,  t h e  e r ro r  in the  second method is  readily can- 

t r o u e d  by ca lcu la t ing  t h e  r ight-band s i d e  of (22) and the  f i r s t  t e r n  in (25) ; 

tfiese computations are e a s i l y  made once t he  str aight-l ine approximations h a ~ ~ e  been 

This determines a bsmd on (261, which i s  our er ror  bound when ip(t) 

i s  replaced by K ( s , ~ ) .  



Appendix 

In  this appendix we shdL prove the following r e s u l t ,  

If fcE XIf -- and i f  f - -  i s  a contirmous function - on x < t < y where a < x < y < b, then 

l i m  lint pnsr(t) -f(t) 
1 -  mco 

where the e m e r g e n c e  i s  uniform on every compact subset of (x,y) a -- -. - - - 
TYle proof proceeds by means of several  lemmas ., 

Lemma 1: For fixed r in  the range 0 4 r < 1, 8, ( t )  converges i n  FT -- - P -- - 9 
- 

Am,,(t) as n - m e  
( J )  Proof: Denoting %Be J th  derivative of Anyr by h,, , we write - 

The right-hand s ide  i s  independent of t and converges t o  zero as n -, Hence, 

A(J) - A(J)  uniformly fo r  a l l  to  Q.E.D. 
n,r m , r  

h m m  2 : For f ixed r i n  the range 0 < r < 1, pn, ('6) conver ges t o  -- - - -- - 

as n -. uniformly for  aU t. - -- 
Proof: - 

BY htlIlla 1 we may interchange the  tion on with the 11 dot product1I 60 get 

-, 
where F(k)  denote t.ne Foqxiey cod f f i e imt s  cf p. Sir.ce tze ppik) comprise a seq-&nus I 

I 



of s low growth [2; theorem 11.6-21, 

and the right-hand s ide ,  which is  independent of t, converges t o  zero as  n -, a. Q.E .D. 

Next, l e t  and 5 be elements of DI wi th  the following proper t ies  . The support 

of I: is contained i n  x < t € y and ~ ( t )  = 1 on a neighborhood of some ( a r b i t r a r i l y  

chosen) c losed  sub in te rva l  c 5 t 5 d of (x,y) ( i .  e., x < c < d < y )  . Also, lJ .( t)  + 

(t ) = 1 on some neighborBood of t he  suppor t  of f . Hence, we may write pr ( t )  i n  the  

form 

where pT denotes t h e  per iod ic  extension of p. It i s  a standard r e s u l t  [ lo ;  p 4  6321 

t h a t  

It is  &so a f a c t  [18; p.  6331 t h a t  the first term on the  right-nand s ide  of (A-1) 

converges t o  f ( t )  ~ ( t )  uniformly on a <  t < b as r -t 1-. (Here, f(t) ~ ( t )  is  taken 

to  be the i d e n t i c a l l y  zero function on a, 5 t 5 x and y 5 t 5 be) Lemma 2 and t h i s  

r e s u l t  i n d i c a t e  t h a t  our proof w i l l  be complete wfien we show that the second term on 

the r ight-hand s i d e  of (A-1) converges mif o r d y  t o  zero on C 5 t 5 d as r + 1-0 

Lemma 3: For each nonnegative in te rger  v 9  A(') (x) converges t o  zero as r 1- - 
O ' Y ~  

unif o r m q  - on every x - in te rva l  such t h a t  11 < I x] < T - 9 where 0 < 7/  < 
__.- 

Proof: Some compukation shows t h a t  for  v 2 1 

av, v (x) 
%, ( X I  

T A(V)(x) = ( 1  - r 2 ) l  av, v+l(x) 4- + ... + 
* 9 r  [ l w L 2 r  cos w x ~ v + l  [l+r2-2r w d v  [l+r2-2r eos wxJZ 



wnere each a (x) a eonstant  times some der ivat tves  of I + r2 - 2r ~ 0 s  
v9k 

for b <  r 5 1 and TI -s 1x1 < - T - TI 

- oos q 5 2 r ( l  - cos wx) < l + r2 - 2r cos wx = (1 - r )  + 2 r ( l  - cas wx) < 2, .- 

it follows t h a t  tne quant i ty  ins ide  tfie braces i n  (A-2) i s  a sm~oth b o d e d  Pmction 

for a i l  x, which lem?a 3. 

PLaally, by a st.2ldard ~ ~ S U X L  [ 2 ;  tBeorern 3.3- l j ,  there exist a p o i t i ~ l e  con.. 

stmt e a d  a nori%gat iT~e ~n,teger q sush that 

< G sup I cq [p(d L9Jt - x)]l a - XE supp rJ, ax 

where supp 1 ~ ,  denotes t h e  support o f  11, If x v w i e s  thrsugfi supp (4 and t varies 

through (c,d),  there  w i l l  be some f ixed pos i t ive  nxnber 9 < such that  7 < I t - r; 
< T - v .  Lema 3 and ( A  - 3) naw show t h a t  %he second term on -he right-hand side 

of ( A-1) converges wzif ormiy t o  zero sL e 5 t < - d as r 4 1-. Hence, our original 

asse r t ion  has been completely establi~hed~ 
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