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1. Introduc tion.

In this work t is a one-dimensional real variable, and all distributions are
of one dimension. It is a well-known fact that the set of all finite linear com-
binations of shifted delta functionals is dense in the space D” of all Schwartz
di stributions [1; Vol. I, p. 75]. More specifically, let D denote the space of

all infinitely differentiable functions of compact support suppiied with its custo-

mary topology [1; Vol. I, p. 6L4]. Then, any given distribution f can be approxi-

mated by a distribution of the form

=

£(t) = % ap 8(t - ty), (1)
m=1

where the ap are constants and §(t - tm) denotes the delta functional concentrated

on the point t = tp. In particular, given an e > 0 and a bounded set B of D, the in-

teger M and the ap and t, can be so chosen that

sup |< £ - Ty 0> < e
B

(See [1; Vol. I, pp. 71 and 75].)

Tt is also a fact that, if f has a compact support, it can be approximated by

fi,q(%) = m%ll o 5\q_2)(t - to)s (2)

where § (9-2) denotes the (g-2)th-order distributional derivative of & and the in-

teger g > 2 is such that the g th-order primitive of f is a continuous function.

£25 p. 1L5].

The objectives of this work are to develop explicit methods for constructing

the approximations (1) and (2) and then to apply them to the numerical evaluation of

. : ; i ' sforms
various distributional transforms. There are & number of distributional trans

- ‘mations (1) and (2
for which an evaluation can be immediately made once the approximations (1) and (2)
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have been constructed. Indeed, let us assume that the support of the distribution
f is a compact subset of the open interval I. Then, its transform F(s) with respect

to some kernel K(s,t) is given by

F(s) =< £(t), K(s,t) >. (3)

Here, s 1s in general a complex variable restricted to some domain Q in the s
plane. We shall always assume that, for eachs £0, K(s,t) has continuous derivatives
of all orders with respect to t on the interval I. Excluding the Fourier and Laplace
transformations, we list below a number of integral transformations which possess ex-
tensions to generalized functions with inversion formulas and take on the form (3)
when the support of f is a compact subset of Q. In each case, we also indicate the

corresponding interval I for t and the domain Q for s.

The Mellin Transformation [3]:

F(s) = < f(t), £s-1 >

I = (0O,»); Qis the s-plane.

The Hankel Transformation [L]:

F(s) =< £(t), /5T J“(st) >

J, ds the Bessel function of first kind and order y (- < u<«); I = (O,@); Qis

the real positive axis in the s plane.

The K Transformation [57:

F(s) =< f£(t), /ST Ku(st) >
Kp is the modified Bessel function of third kind and order y (- %-5 Rey, <%*%); I-=
(O40); Q is the s plane.
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The stieltjes Transformation [6; p. L3]:

F(s) = < f(t), L. >
s+t

I = (0,»); Q18 the s plane excluding the real nonpositive axis.

The Laguerre Transformation [77:
Ve ey, [ D) TV e 2 e
F(S =< (t)_’ | F(Q/“_n'{-ﬂ e Ls \t) >

LSQ’ are the generalized Laguerre polynomials of order o (o > - 1) [8; p. 188]; I =

(O,»); I' is the gamma function; O is the set of all nonnegative integers.

The Hermite Transformation [7]:

e—t?/2Hs(t)

F(s) = < (1), e >

Hg (t) are the Hermite polynomials [8; p. 192]; I = (- »,®); Q is the set of all non-

negative integers.

The Jacobi Transformation [77:

F(s) = < £(t), /¥t ps(a’B)(t) >

V u(s)

Here, ¢ and B are real and greater than -1, and

w(t) = (1 - Y1 + )8,

22*B*L r(s49+1) T(s+8+1)
S| (2s+w+B+1l) [(s*a+B+1) °

i

his)

Pé""B) . 168]; I = (-1,1); Q is the set of all

denotes the Jacobi polynomials [8;

nonnegative integers. The Jacobi transformation contains a number of speclal cases:
%)

= 0), the Chebyshev transformation (¢ = B = - 2/,

the Legendre transformation (o = 8

and the Gegenbauer (or ultraspherical) transformation (o = 8).
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The Convolution Transformation [97,[107:

F(s) =< f£(t), G(s-1) >
G is an entire function in the Hirschman-Widder classes I, II, or III; [1l; p. 1207;
I= (-w,0); Q is the s plane. A number of classical integral transformations are,

through changes of variables, special cases of the convolution transformation [11].

The Weierstrass Transformation [12]:

F(s) =< f(t), ;€%$ e~ (s-7)2/k >

I= (-~w,0); Q is the s plane.

The reason for excluding the Fourier and Laplace transformations in the fore-
going list is that our approximation techniqueswill be based on the assumption that
the Fourier or Laplace transform of f can be determined. Our methods use these
transforms to construct the approximations (1) and (2), which when substituted
into (3) immediately yield the desired approximate expressions for any of the above
transforms of f. The Justification for this procedure lies on the fact that fairly
extensive tables of Fourier and Laplace transforms of distributions already exist
(137, [1L], whereas very few distributional transform formulas, if any at all, have
been developed for the other transformations. (It should be noted that a table con-
taining 56 formulas has been compiled for the distributional Mellin transformation
[157-)

The assumption that the distribution f has a compact support with respect to
the open interval I = (¢,B) can be relaxed in the following way. (Here, o may be
-» and B may be +o.) Assume that the distribution f on I is such that f(t) is a
lebesque integrable function on finite subintervals of ¢ < t< g and b, < t < B
(a, < by), and, for each = ¢, f(t)K(s,t) is absolutely integrable on o < t < a and
b, < t < B. Then, (3) can be decomposed into

F(s) = ([~ 'ri ) £(£)K(s,t)db + < £ (£),K(s,8) > )
o 2
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where o < a, < 8,5, b, < by < B, £, (t) = £(t) for a; < t < b, and £, (t) = O elsewhere.
The last term in (L) can be evaluated by the methods described herein. The first
term on the right-hand side of (L) can be evaluated by methods designed for such
ordinary transforms (see, for example, [16]); or, better still, it can be made small
enough to be neglected by choosing a, sufficiently close to ¢ and b, sufficiently
close to B.

By a smooth function we shall mean a function that possesses ordinary deriva-
tives of all orders at all points of its domain. Dy denctes the space of smooth
functions whose supports are compact subsets of I. Dy has the topology that makes

its dual D’ the space of Schwartz distributions on I [1; Vol. I, p. 65]. Ep and EI'

I
are respectively the space of smooth functions on I and the dual space of distribu-
tions having compact supports with respect to I [1; Vol. I, pp. 88-90]. Let T be
the length of some finite open interval (a,b) (i.e., T =b - a). Pp is the space of

smooth periodic functions on (-e,») having a period T; P’ is the dual space of per-

T
iodic distributions on (-w<,o) of period T [2; Chapter 11]. The number thatf€Eg’ or
D1’ assigns to @€ EI or DI’ respectively, will be denoted by < f,p >, whereas the

number that p(EPT’ assigns to 8€ P, will be denoted by p:8-

T
Let Q) be an open set on either the real line or the complex plane. By saying
that /=] is a compact subset of Q, we mean that {=3 is compact in itself (i.e., =,

is a closed bounded subset of Q). We denote the nth distributional derivative of a

function or distribution f by f<n). The support of f is denoted by supp f.

2. Approximation by Sums of Delta Functionals.

Our first method of approximation is summarized by 4

Theorem 1l: Let fe EI’B where now I = (a,b)_i§ chosen as a finite open interval.

With T =b - a, w = 2t/T, arnd r being some number in the interval O < r < 1, set

(t) _

k iwk t
Pn,r | e

T (wk), (5)




Al

where f is the Fourier transform of f,

Fwk) = < £(t), o~ TWKV o,

Also, set
T m-1 4 @
fo,r,m(t) =3 I P, (b)) A(E) 8(t - ),
where

and A (t)€Dy is such that O < A(t) <1 on I and A(t) = 1 on a neighborhood of the sup-

port of f.

Then, in the sense of weak convergence in EI’,

lim  lim  lim . o(t) = £(t).
Moo r—1- Do 72

Note that the Fourier transform f is a smooth function (indeed, an entire func-
tion) because f has a bounded support re2s p. 227].

Proof: Let p(t) denote the periodic extension with period T of f£(t); that is,
p(t) = f(t) on a< t < b, p(t) = 0 on sufficiently small neighborhoods of t = a and
t = b, and p(t) = p(t + nT) for every integer n. Also, let } € Dy be such that
O0<a(t) <1 onIand\(t) =1 on a neighborhood of the support of f. For ¢ € Eg

the smooth periodic extension with period T of A¢ is denoted by (Kw)T‘ Hence,

< f,0 > =< £,00 > = 1 (o). (7)
(See [2; Sec. 11.37.)

Next, we shall have need of

Lemma l: For O< r < 1, set

=3l

Ay p (1) =



Then, in the sense of convergence in PT’ [2; p. 3207,

lim  lim A (%) = §.(t) .

r-1- co o, T ] :

|
s
5.

Proof': An,r(t) is the r th-order Abel mean of the n th partial sum of the Dir-

ichnlet kernel. Hence, this becomes a standard result where we apply A r(’t) to any
P ¥

& € Ppo ,, |
|
Now, pn,r(t) can be written as the T-convolution [2; Sec. 11.L4] of p and An,r* |
Indeed, letting A denote T-convolution, we have g

p(t) A An,r<t) = p(x) °An,r(t"‘x) = % 8 r || 1wkt [p(x)'e_iwm], which is the
4 : k=-n
same as (5) in view of (7) and the fact that

e N SR TN

P(X)'e_iWKX = p(x) A (x) e—iWkX]T,

Moreover, again in the sense of convergence in PT’ we have from lemma 1 and the
continuity of T-convolution [2; theorem 11.4-L] that
lim  Iim  p, . (t) = lim lim p(t) a 4, (8) = p(t) & 84(t) = p(t).. N
r—1l- 1w ? r-l- nowe ’
Here, §p denotes the periodic extension of the delta functional.

Next, let

_rm-l T T .
p'D"II’m(t) h E \)Z::o pn;l"[a * T!’l(\) * ];é)] ST[t - a- m(\) + /2)]‘

Since Pp,r is smooth everywhere, it immediately follows that Pr,y,ui Po,r in PT’ as
m- ., [This technique of getting a delta-sum approximation by forming a Riemanrn-
sum approximation to pp,r+6 (6 € Pp) was suggested by Wonlers and Beltrami [17]-]

Altogether then, we have shown that for any ¢ € Ef



< fn,r,m’ ©>= Pp,rom (X¢)T
= Pn,r ° (Kw)T (m - ) (8)
= p(hplp =< Ty > (n— o, 7= 1-).

Q-E.D.

Our approximation for f is f As is indicated in the proof, we developed

n,r,me
fn,r,m in two steps: first, by constructing the smooth approximation Pp,y to the

periodic extension of f and then by forming the delta functional sum pn,r,m'arising
from the Riemann sum for the integral on I of Pn,r © (8 EPT). It may be interesting
to note that if the distribution f is a continuous function on some open subinterval
J of I, then Pn,r converges uniformly to f on compact subsets of J. This is proven

in’the sppendix.

The proof of theorem 1 also establishes

Corollary la: Under the hypotnesis of theorem 1 with however r set equal to 1,

Er.gﬂl %ﬂx fnal,m(t.)=f(t)

I's

in the sense of weak convergence in EI

Actually, the parameter r was introduced in (5) to smooth out any unnecessary
Gibbs-phenomena oscillations arising in the approximation. It is usually more con-
venient to use fy . . (0 < r < 1) rather than fp 1 ,y- On the other hand, the use
of this r th order Abel mean makes the convergence of fn,r,m to f very slow. How-
ever, if the order of f is known, then a Cesaro mean of sufficiently high order
could instead be used to accomplish this smoothing and obtain a higher rate of con~

vergence.

3. Numerical Evaluation gi‘Distributional Transforms::. First Method.

Theorem 1 and its corollary provide a means for numerically evaluating the dis-
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+tr ibutional transform (3). 1Indeed, for every s in the domain set Q, K(s,t) is in

EI’ and therefore

Lin lin 1m Fyp,m(s) = Fls), (9)
where

- _rpoel -
Fn,r,m(s) =< fn,r,m(t')’ K(s,t) > = = \;EO pn,r(t\)))\(t\))K(s,tv) (10)
and
T s
t, =a* g + %),

We shall give an example of the use of (9) subsequently. Let us merely note at
+this point that the approximate transform (10) can be written down immediately once
the Fourier transform T is known.

Theorem 1 asserts merely the pointwise convergence of (9) for s € Q. However,

more is true:

Theorem 2s If ',‘_,-T‘E a subset of the open s-domain Q such that, for each non-

negative integer u,

W
sup ST K(s,t)| < B, (11)
t€ supp A
s€ =

when B[~L is 2 constant depending on = and the choice of L& D, then

lim  lim  lim Py . .(s) = F(s)
Mo  r—l- e

uniformly on =i

Note that the hypothesis is automatically satisfied if =.is a compact subset

of O and K(s,t) is an analytic function of s€ Q-

Proof:
. Tmnm=l
Fnﬂrjm(s) T < —Iﬁ \)EO pn,,r(t\)) 6(t - t\))3 ?\(t)K(S’t) z

» < £(t), A(t) K(s,t) > = F(s) as nro, 1=1-; moxe

-9 -
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Now, weak convergence in EI’ implies weak convergence in D1’, which in turn implies
strong convergence in Dy’ [1; Vol. I, p. 71 and p. 74]. But, if ) is fixed and the
parameter s varies throughout =, then the \(t) K(s,t) comprise a bounded set in Dj.
Thus, theorem 2 follows directly from the definition of strong convergence in DI’.
Let us now estimate a bound on the error between the exact transform F(s) and

the approximate transform (10). First of all, we have that

fb Py, (1) M(t) K(s,t)dt

Kl awk(t-r) o 5 (1) x(s,t)as

1]
—
N
H
~~
L
=3
MBS

Since f EEI’ and AK€ EI’ for fixed s, we may interchange the integration and "inner

product" [2; pp. 124-125]. Then, replacing t by t and t by x, we get

< f(t), % rlkle—iWkt%‘Jﬂb )\_(X,) K(s,x)elwmd“x_ >.
k=-n a

I

The testing function inside the last expression is the r th-order Abel mean of the
n th partial sum of the Fourier series for ) (t) K(s,t), s being fixed.

Now the approximation (6) to f was obtained in two steps; see (8). Hence, let
us first compute a bound on the error E (s) between the exact transform F(s) and the

transform arising from Pp.r-
-

Let
‘ b N .
3k\s) = %-j r(x) K(s,x) elwkxdxo (12)
a
Then
. . b L, .
E (s) =< £(t), a(t) K(s,t) > - [ Pn,r(t) 2(t) K(s,t) dt
“a
. n , 1 4 , _iwl ,
=< £(t), % (l-rlk{)e Wkt (s) + 5 e WES o (s) > (13)
. k k

k=-n |k|>n
Since A(x) K(s,x) is a smooth function with a compact support contained in

- 10 -



a< X < b, we may integrate (12) by parts any number of times to get

en(s) =3 [ [ ()™ ot 2 — [(x) K(s,x)]dx (1)

(n=0,1,2,000)

This shows that the Fourier coefficients ck(s) are of rapid descent as ]k[ - ©
(i.e., cp(s) =0 (Ik[wn) for every n). This also implies that we may differentiate
the series inside the right-hand side of (13) with respect to t term by term as
often as we wish.

Let ¢ = € + iw be the independent variable of the Laplace transform of f(t).

L(g) =< £(t), e % > = F(-ig).

We have assumed that /(Z) is a known (entire) function. Choose the integer g > O
such that on some strip &, < Re § < €, (0 < €1 < €, < ») We have Ig'q+2 £(g)] < A
where A is some constant. (We could also choose this strip inside the left-half
¢ plane, or even containing the iw axis. In éither case, the following analysis
with certain modifications would still apply.) It now follows that f = h(Q) where

h is the continuous function

T 2m . 9 L(0) eFhag (15)

and £ is fixed with €, < € < &, (see [2; Sec. 8.4]). Hence, (13) beccmes

B (s) =<nft), (DT o MO n(l«r'kl) e L ¢ () +[k}lj>neiWkt cy(s)]t >
= < n(t), (-1 % SR erlH) camote e oe) ¢
kyé'O
|§i>n (~iwk)“e'iWktck(S> 1> .

- 11 -



Let n =y + 2 in (14). Then,

|er(s)] < B(s,u) |Wk|www2

where
aHte
B(ssu) = sup | 7035 (A (x) K(s,x)]| (16)
xel
Therefore,

q 1-r K| -2 (b (q-u)
(s) B(s, r + 2 q-u
|5 (8)] < uzo ( ) B(s,u) [kgmnfTﬁﬁTg, l§1>h |wk| 727 jalh(t) A (t)]dt

140

From (15) we have, for t &supp \,

1 E +ie Pit 26ED
[n(t)] < o fgwiw =T [dz| < 5
Consequently,
PAgb 1k, ® (g-u)
B < B2 R 2t 2 el § st swh W ). ()

The right-hand side of (17) is the bound on |E, (s)| that we seek. Note that it
can be made arbitrarily small by first choosing n sufficiently large and then choos-
ing r sufficiently close‘ to 1. Also note that on a subset ='of Q, as described
in theorem 2, B(s,y) can be replaced by a constant that is independent of s. Hence,
the error E (s) converges uniformly to zero on = .

Next, we compute a bound on the error E, (s) between the transform arising from

Pn,y and the approximate transform (10) (see (8)).

b ,
E,(s) = faPnar(t) A(B)K(s, t)dt - < £ . (t), K(s,t) >
-5 R Hpet) [op,r(t) A(t) K(s,t) = oy p (8 )1 (%, )K(s,%, )]db
v e

. 12 -



m::l a T (\) ""l)

- 5 J‘a+ Ejﬁ dt j [pn, (¥) A (y)K(s,y)]dy
m

where, as before,

t\) = o + %(V-#]/g) .
Let
D(s) = sup [%g [Pn,r (D1 (8)K(s,£)]]
tel
g K S5 pnyr * P, & (xK)|.
Then,
T(v+1) -
B2 (s)| < D(s) z j’ |t - t,]at = &= De)-
+ Ty
m

A bound on D(s) can be obtained as follows. From (5) we have that

IPn,r(tM < % g I'Ik' I}(wk)l = N(r,n)
k=-n
l%g Pn,r(B)] < -.fg' 3 ]k| | ']?(wk)[ = M(r,n)

Tnerefore, using (16) as the definition of B(s,u) when p =-land y = -2, we obtain

D(s) < M(r,n) B(s,~2) + N(r,n) B(s,-1).

Conseqguently,
|E, (s)] < ET% [M(r,n) B(s,-2) + N(r,n) B(s,-1)] (18)

Here again, on a subset *=', as specified in theorem 2, B(s,u) can be replaced by
a constant that is independent of s, so that, for fixed r and n, E,(s) converges to

zero as m = o uniformly on ‘&, -

- 13 =



By adding the right-hand sides of (17) and (18), we obtain the desired bound
on the error between the exact transform (9) and the opposite transform (10). This
bownd is very weak, and the actual error between (9) and (10) will in general be
much less. Moreover, because of the uniform convergence of E (s) to zero on =,

we have here another proof of theorem 2.

L. Approximations by Sums of Derivatives of Delta Functionals.

The second method of approximation is based upon a technique, which was devel-

oped for ordinary functions [16]. Assuming once again that the Laplace transform
. ! -Ct - - ° = + 3 )
L(g) =< £(t), e7°° » = £(~ig) (c =€ +iw

is known, we can represent feEI' by £ = h<q> s h i1s a continuous function given by
(15), where £ is some fixed positive number. Thé positive integer q is so chosen

that, on some strip & < Re [ < E, with O < E; < E, < =, Wwe have as before
10792 £(Q)] < A (19)

where A is some constant.

Now, if h(t) cannot be exactly determined as the inverse Laplace transform of
C*q+2 £(g) approximate it by the method of [16]. Assume that f is a real distribu-
tion., (If it isn't, we can apply the following analysis to its real and imaginary

parts separately.) Let
(g + 1) % £ (g + iw) = R(w) + iX(w).

Then, on the axis O < W < =, approximate R(w) and X(w) by two polygonal arcs
; - - identically zero for all
Ry(w) + X,(w), respectively, such that Ry(w) * X, (w) are identically z
\ ‘ s vertical s te.
sufficiently large w, and neither RA(W") now XA(W) have any vertical segmen

: e e the slopes of
(Since X(0) = 0, choose X,(0) = 0 also.) Let SR,k (k=1,.00,n,n*1) be the slopes ¢

-1y -
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tne straignt line segments in R), where the (n+l)th segment is a section of the
w axis extending out to w = . (Number the segments consecutively.) In a sim-
jlar fashion, let Sy x (k=1,...,m,m+l) be the slopes of the straight line seg-
ments in Xp. Furthermore, let WR’k be the w coordinate of the vertex between the
segments whose slopes are SR,k and SRBkJrl, and denote the corresponding w coord-

nates for Xy by wx k- Finally, set

by = Sagkua-l = SR,k

By = Sg,x+1 = 5%,k

Then, the approximation h (t) to n(t) is given by [16]

St n n
n (t) =7 (- Sp,1 - kzl Ay cos Wt + kE‘_L B, sin W t) (20)
and
n(0) =% T mow? . (21)
k=1 R,k

Moreover, the error between h(t) and hy (t) is bounded as follows.
ct
In(t) - n (6)] < S [[T|RGn) - Ry |aw N ORESAGIEY (22)
0 0

In view of (19), |n(t) - 1 (t)] can be made arbitrarily small uniformly on any

finite t interval by choosing R " sufficiently close to R and X, sufficiently close

to X.

Next, let A(t) be that member of DI which was defined in the first paragraph

of theorem 1. Let I be the finite open interval whose endpoints are inf supp A

and sup supp ). Approximate n (t) on I, by a polygonal arx n, (t), where now

Cp = Sgs1 ~ Sy (k=1,2,.0.54), Sy being the slopes of the straight-line segments

of n,, and t) (k=1,2,...,4) denote the t coordinates of the vertices, number ed

_ 15 -



consecutively. (In this case, h,(t) need not be identically zero on any interval

of positive length.) Then the approximation to the distribution f is

£, () =k§i:1 (1) 69 o8 (eT). (23)

Note that

a(t) 84 gy = %

2 ) D
2 (YN () 5972V (4 - 1
v=0
and that, if the point tk is contained in that neighborhood of supp f on which

A =1, then

A(t) 5(q"2)(t - ty) = 5(q“2)(t - ). (2L)

Hence, if all the ty are chosen in this neighborhood, the approximation (23) takes

on a simpler form.

Theorem 3: f, converges in the weak sense in EI’ to f as the quantity

[ In(t) - n (8)]dt + [ |n (t) - ny(t)|dt | (25)
L L

converges to zero.

Note that (25) can be made as small as one wishes simply by choosing the
straight line approximations Ry, Xp, and hp sufficiently close to R, X, and by,
respectively.

Proof: For any @&Bq,

<T-f), 0>=< nl@ () - ké_l cy 5(02) (5 - ), A(8)p(t) >

J () - s (8)] (1T %%a— A (t)p(t)]dt
I

Therefore,

-~ 16 -



|< f -1 >| < iéil % [}\(‘b)cp(t )][[ glihkt) - nl(t)|at + “[];l'hl(t ) - %(ti':‘)b]
2

Q.-E.D.

5. Numerical Evaluation of Distributional Transforms: Second Method.

In view of theorem 3, we can contruct the following approximate transform.
\ L 9\ aq_2
Fy(s) =< £,(8), K(s,8) > = £ o (-1 Smmy D\,(t)K(s,t)]]t . (27)
' k=1 = atd = %
We are still assuming here that f is a real distribution. Otherwise, two sums such
as (27) would arise , one from the real part and the other from the imaginary part

of f.

Theorem L: Let /=% be a subset of O as described in theorem 2. Then, the appr oxi-

mate transform Fp(s) converges to the exact transform F(s) uniformly on f=; as the

term (25) converges to zero.

Proof: This theorem follows from (26) by replacing o(t ) by K(s,t) and invok-
ing (11). .

Also note that with ¢(t) replaced by K(s,t) the right-hand side of (26) becomes
an error bound for F(s) - FA(S).

6. Comparison of the Two Methods.

The approximate transform (10) of the first method can be written down immedi-
ately once the Fourier transform f of f is determined. In the second method how-
ever additional computations must be performed, after the Laplace transform F(s)
of f has been obtained, in ordér to determine the coefficients Cy and thereby the
approximate transform (27). Indeed, if (15) cannot be determined exactly, then

three separate straight line approximations have to be performed when computing the

Ck.
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On the other hand, the bound (16) on the error ia the first method, which is
the sum of (17) and (18), is quite a complicated expression and hence difficult
to estimate. In contrast to this, the error in the second method is readily con-
trolled by calculating the right-hand side of (22) and the first term in (25);
these computations are easily made once the straight-line approximations have been

constructed. This determines a bound on (26), which is our error bound when ¢(t)

is replaced by K(s,t).
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Appendix

In this appendix we shall prove the following result.

If fie EI" and if f is a continuous function on X « t < y where a<x <y < b, then

Iim  lim  p, (%) = £(t)
r—~l- nNow 2

where the convergence is uniform on every compact subset of (x,5) -

The proof proceeds by means of several lemmas.

Lemma l: For any fixed r in the range O < r < 1, An,r(t) converges in Py to

Am’r(t) as n - o. o
Proof: Denoting the j th derivative of An,r,by An,r , we may write

1AJ><t) -4l < £ rE (sic)J

Cb

k“*n+1
The right-hand side is independent of t and converges to zero as n - «. Hence,

202 5, () uniformly for all t. Q.E.D.
n,I’ co,I’

Lemma 2: For any fixed r in the range O < r < 1, Pn,r(t) converges to

P, (t) =p(t) A A, (1) € Py

as n - o uniformly for all t.

Proof:
. 1 ] 1wk (2-x)
Pr = Ppp TP & (hyp - byp) “20) T B

By lemma 1 we may interchange the summation with the "dot product® to get

i v %, - 3l kt
Pp(t) -y, r(t) =% w Pl Ikt oy o 1WiX L g ¥l tnkt T
K

}‘.i>n - rki>n

H§f~

where E(k) denote the Fourier coefficlents of p.
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of slow growtn [2; theorem 11.6-27,
(1) - Paye(®)] < 2, 2 ¥ B0
|k|>n

and the right-hand side, which is independent of t, converges to zero as n - ». Q.E.D.

Next, let y, and { be elements of D; with the following properties. The support
of ¢ is contained in x < t < y and £(t) = 1 on a neighborhood of some (arbitrarily
chosen) closed subinterval ¢ < t < d of (x,y) (i.e., x<c< d<y). Also, u(t) +
t(t) = 1 on some neighborhood of the support of f. Hence, we may write p,(t) in the

form
p.(8) = 7 £x) ¢ &, L (+m)dx + p(x) * [uglx) A, (8 -x)], G-DI
X

where ., denotes the periodic extension of y. It is a standard result [18; p. 632]

that

TA _(t-x)= L-r® € Pr.
o, T 1+r=-2r cos w(t-x) T

It is also a fact [18; p. 633] that the first term on the right-hand side of (A-1)
converges to £(t) ¢(t) uniformly on a < t < b as r - 1-. (Here, £(t) ¢(t) is taken
to be the identically zero function on a < t < x and y < t < b.) Lemma 2 and this
result indicate that our proof will be complete when we Show that the second term on

the right-hand side of (4-1) converges uniformly to zero on ¢ < tgdasr—1-.

A(V> (x) converges to zero as r - l-
oI

uniformly on every x-interval such that M < |x| < T - 1 where 0< 1< /b

Lemma 3: For each nonnegative interger v,

Proof: Some computation shows that for v >1
avsg(ﬁﬂ

& (X) +* soe +
[1+r2-2r cos wx]®

(v) a (x) VoY
R [1+r2-2r cos wx]VY [1#r®-

(4-2)
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where each a k(X) a constant times some derivatives of 1 + r® - 2r cos wx. Since
3 ~ &

for B<r<landng [x[ <T -1
1- coswlg 2r(l - coswx) <1 +r® - 2r cosux = (1-r)2+2r(l-cos )< 2,

it follows that the quantity inside the braces in (4-2) is a smooth bounded function
for all x, which implies lemma 3.
Finally, by a standard result [25 theorem 3.3-17, there exist a positive con-

stant © and a nonnsgative Integer g sush that

|p(x) < Luqp(x) A, p(t - 7 = | < £f(x), wlx) Ay p(t - %) > |
| 32 (4-3)

sup
= XE supp u

[u(x) A&, »(t - x)][.

where supp u denotes the support of . If x varies through supp p and t varies
through (c,d), there will be some fixed peositive number M < E— such that N < |t - x|
< T - 7. Lemma 3 and (A ~ 3) now show that the second term on the right-hand side
of (A-1) converges uniformly to zero on ¢ < t < d as r » 1-. Hence, our original

assertion has been completely establizhed.
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