UNIVERSITY AT STONY BROOK

CEAS Technical Report 767

Heuristic Algorithms for Optimizing
Computing and Communication Costs for
Networked Computer Utilities

Saravut Charcranoon and Thomas G. Robertazzi

Nov. 16, 1998

Heuristic Algorithms for Optimizing
Computing and Communication Costs for

Networked Computer Utilities

Saravut Charcranoon, Student Member, IEEE
-Thomas G. ’Robertazzi, Senior Member, IEEE
Serge Luryi, Fellow, IEEE
Department of Electrical and Computer Engineering,
University at Stony Brook,

Stony Brook, NY 11794
Phone (516) 632-8400
Fax (516) 632-8494

Email: tom@sbee.sunysb.edu

October 12, 1998

Abstract

A study of using generic heuristic algorithms such as simulated annealing, tabu search as
well as problem specific heuristic algorithms to optimize computing and communication
costs in a single-level tree (star) network is presented. Two associated problems, i.e., a
load distribution sequencing problem and a processor arrangement problem are used to
study algorithmic performance. Computational experiments were conducted on randomly
generated single-level tree networks. Networks of medium size where optimal solutions
have not yet been reported were tested. The results show that simulated annealing and
tabu search are competitive approaches to solve these problems. In the load distribution
sequencing problem these two algorithms give an impressive best-solution convergence per-
formance although their computational time are not as good as that of heuristic algorithm
proposed by the authors. In the processor arrangement problem, simulated annealing
and tabu search also exhibit a good performance as far as a quality of final solution is
concerned, but do not outperform a heuristic algorithm. This study shows the viability
of applying modern heuristic methods to solve problems important for future networked

computer utilities and for multiprocessor configuration design.

Keywords Divisible load scheduling, load distribution sequencing, processor arrange-
ment, heuristic algorithms, simulated annealing, tabu search, cost, computer utility,

computer configuration design.

1 Introduction

Over the past decades, heuristic algorithms in the area of combinatorial opti-
mization have received a great deal of attention and effort. This is because of
their ability to find good or near-optimal solutions within reasonable rﬁnning
times for such problems.

Local search methods, a general class of heuristic algorithms, have also
developed into a mature field of combinatorial optimization. The simplest
type of local search is a neighborhood search based on a descent method.
However a drawback of this kind of algorithm is its propensity to converge to
local optima. Over the past 15 years a number of newly developed local search
algorithms based on natural phenomena such as simulated annealing, tabu
search, genetic algorithms, and neural networks have been widely studied
and accepted as prospective algorithms to tackle the local optimal problem
in combinatorial optimization problems. They provide high quality solutions
by being designed to escape from local optimality traps. This is due to some
guidance that is incorporated in order to direct a search away from such local
optima. Nonetheless, they are not guaranteed to produce optimal solutions.

Still they work very well in practice as witnessed by their various applications.

In addition they also possess many advantages including versatility, efficiency
and simplicity. A determination from among these modern heuristic methods
as to which one is the most appropriate to a particular problem, however,
depends on the problem context. That is, there is no consensus on which
method is generally the best one in general.

Load scheduling and sharing in parallel and distributed systems in order
to optimize the total system resource utilization cost can be formulated as a
combinatorial optimization problem. Here a parallelism in a load will be dis-
tinguished and exploited to obtained the minimum total cost solutions. One
important type of load parallelism is data parallelism where data can be arbi-
trarily divided into smaller parts for processing on different processors. Loads
of this type are referred to as divisible loads. Example applications include
signal processing, image processing, pattern searching, massive computation
and simulation programs. We also note that any primitive indivisible load
processed frequently enough effectively becomes divisible. To date there has
been a good deal of literature on the scheduling of divisible load in parallel
and distributed computing systems, for example, as in (3, 4, 5, 7]. The
first monograph which treats this topic specifically appears in [6]. However,
this prior work does not consider the case when there are resource utilization

4

costs. That is in fact the main theme of this paper.

In this paper, the problem of optimizing cost incurred from utilizing links
and processors to process divisible load in a single-level tree network is con-
sidered. Two approaches are proposed in [9, 10] to achieve such a goal: a
cost efficient load distribution sequencing approach, and a cost efficient pro-
cessor arrangement approach. The cost efficient load distribution sequencing
problem is to find an order of load distribution from a root node to some
or.”a,.ll other nodes in the network such that the total processing cost is as
small as possible. The problem is particularly important for future computer
utilities. The cost efficient processor arrangement problem is to find a proces-
sor arrangement profile by rearranging positions of the processors to receive
an assigned fraction of load from the root node so that a minimum total
processing cost can be attained. The problem is important in optimizing a
multiprocessor system configuration for processing divisible loads. These two
methods are different in that the former method involves no physical changes
while the latter does.

In [9], the authors proposed a greedy-based load distribution sequenc-
ing algorithm which usually provides an optimal solution for small networks.

The performance of the algorithm in a medium to large size network, how-

5

ever, was left unexamined due to the unavailability of an efficient optimality
verification algorithm. The cost efficient processor arrangement approach
was also studied by the same authors in [10]. Therein they proposed the
heuristic processor arrangement algorithm which, similarly, almost always
attains an optimal solution for small networks. However, they encountered
the same limitation in checking the optimality of solutions for medium to
large size networks.

This ﬁaper focuses on a study of the comparative performance of the two
main proposed algorithms against simulated annealing and tabu search for
the problem of optimizing a computing and communication cost in a single
level tree network of medium to large size. Here, simulated annealing and
tabu search were selected as modern heuristic algorithms to be studied.

The basic concepts of both simulated annealing and tabu search come
from the fields of statistical physics and intelligent problem solving respec-
tively. They were developed to attack complex optimization problems where
classical heuristic and optimization methods have failed t§ be effective and
efficient. Simulated annealing is a metaheuristic that guides the local search
descent method by emulating a metallurgical cooling process. It is designed
to occasionally accept an inferior solution in a controlled maner. Tabu search

6

is also a metaheuristic which shares with the simulated annealing algorithm
an ability to direct the local search descent algorithm away from a local op-
timal trap. This is done by including a short term and/or long term memory
into the algorithm. Both of these metaheuristics have proved to yield very
satisfactory results in many applications as reported in [1, 18, 21].

This paper is organized as follows. The background of combinatorial
optimization and local search are provided in section 2 and 3. An overview of
the underlying problems and their formulation are presented in section 4 and
5. In section 6, the basic concepts of simulated annealing and its associated
working algorithm are discussed. Similarly, the basic concept and a working
algorithm of tabu search is given in section 7. In section 8, performance
comparisons drawn from computational experiments are discussed. Finally

the conclusion appears in section 9.

2 Combinatorial Optimization

The combinatorial optimization problem is a problem that involves a search
for the best solution from a finite or a countably infinite set [20]. Well-

known examples are, for example, the tra\eling salesman problem, the graph

[F A

coloring problem, the maximum independent set problem, the scheduling
problem, and so on. In such problems, a solution could be a graph, an
integer number, a set, a permutation, or a sequence. A set of all solutions is
typically referred to as a solution space. A cost function value is then defined
for every solution. In a combinatorial optimization problem the objective is
to choose the minimum or maximum cost solution(s) from the solution space.

In terms of mathematical formulation, a combinatorial optimization problem

can be summarized as below.

Definition 1 Given an instance of a combinatorial optimization problem
with the solution space S which is the finite set of all possible solutions and

the cost function f which is @ mapping defined by f : S —- R

For minimization, the problem is to find a solution s* € S which satisfies
f(s) < f(s), forall s€S
For marimization, the problem is to find a solution s* € S which satisfies

(&) 2 f(s), fordl s€S

Such a solution s* is called a globally-optimal solution or an optimum,
f* = f(s*) denotes the optimal cost and s= = {s € S| f(s) = f*} is called

the set of optimal solutions.

Many combinatorial optimization problems have been shown to be NP-
hard problems [12]. That is computational time grows exponentially with
problem size. There is no known efficient algorithm to find the optimal so-
lutions for such problems within time that is a polynomial function of the
problem size. Nevertheless, these NP-hard problems still need to be “solved”.
Therefore, to solve such problems in a manageable and acceptable compu-
ta,tional- time, one may have to be satisfied occasionally with a suboptimal
solution.

With this in mind, the task is then reduced to find a method that obtains
a good solution that may not be an optimal solution within a reasonable
amount of time. Many approaches have been proposed so far. These ap-
proaches can generally be classified into two main classes; the enumerative
method and the heuristic method. In this paper, the focus is on heuristic
methods. A great number of heuristic methods have been developed to find
the best possible solution in an efficient way such as the greedy-based meth-
ods and the local search-based methods. Local search-based methods include

simulated annealing, tabu search, and genetic search.

3 Local Search

Local search algorithms are an important class of heuristic algorithms that
relies on an iterative improvement of the cost function by searching over
a neighborhood. The use of a local search algorithm requires three main
elements: the definition of solutions, a cost function and a neighborhood

structure.

Definition 2 Let (S, f) be an instance of a combinatorial optimization prob-
lem. A neighborhood structure is assumed to be a mapping N : § — 25

which defines for each solution s € S a set N'(s) C S of solutions and each

s' € N(s) is called a neighbor of s.

Definition 3 Let (S, f) be an instance of a combinatorial optimization prob-
lem and N a neighborhood structure. Each solution s' € N'(s) can be reached
directly from s by an operation called a move, and s is said to move to s'

when such an operation is performed.

A local search starts off with a given initial solution. By applying a move
operation, it attempts to find a better solution by searching a neighborhood

of a current solution. If such a solution is found, it replaces the current

10

solution. Otherwise, the algorithm stops at the current solution, which is a

local optimum.

Definition 4 Let (S, f) be an instance of a combinatorial optimization prob-
lem and N a neighborhood structure, then § € S is called a locally optimal

solution or a local optimum with respect to N if,

for a minimization problem,
f(8) < f(s), VseN(3),
for a mazimization problem:

f3) 2 f(s), VseN(3)

This method is also referred to as a neighborhood search (NS). It should
be noted here that the term local search and neighborhood search will be
used interchangeably throughout this paper. A description of a basic neigh-
borhood search for a minimization problem can be given below.

A Basic Neighborhood Search Method

Step 1. Start with an initial solution sq € S.
Set s = sg, where s is a current solution.

Set s* = s, where s* is the best solution so far.

11

Set f* = f(s*), where f* is the best cost so far.

Step 2. Choose s’ € N(s) by calling a move operation.

Step 3. If there exists s’ which satisfies the choice criteria and
no other termination criteria are satisfied, then
Step 3.1 Set s = ¢.
Step 3.2 If f(s') < f*, then
Set s* = ¢' and f* = f(s').
Go to Step 2.
Step 3.3. Otherwise stop.

Step 4. Output s* as the approximate to the optimal solution.

Here the choice criterion and the termination criteria need to be specified.
A descent algorithm, for example, can be obtained by defining the choice
criteria and termination as follow,

Descent Algorithm

Step 3. If there exists s’ such that f(~') < f(s) then,
Step 3.1 Set s = ¢'.
Step 3.2 If f(s') < f*, theu ~et s = §" and f* = f(s).

Go to Step 2.

It can be seen that the descent algorithm continues searching until no
further improvment in the cost is obtained then it terminates. That is the
termination criterion. This may happen at a local optimum in which case it
causes the algorithm to stop and no longer proceed to find a globally optimal
solution.

By defining the choice and termination criteria differently, different al-
gorithms will be established as will be seen later in the case of simulated
annealing and tabu search.

The move operation may be, for example, a pairwise interchange oper-
ation or an adjacent pairwise swapping to a current solution, or a random

selection of a new solution from a defined neighborhood of a current solution.

4 Problem Overview

4.1 Model and Concept

A single-level tree network with (N + 1) processors and (V) links is shown
in Figure 1. All the processors are connected to the root processor, po, via

communication links. Associated with the links and processors are the linear

13

I AT

cost coefficients, ¢}, ¢,..., ¢y and &, &, &,..., &, respectively as depicted in
y C1y Loy U 0y “1y “2» N> p

Figure 2. The root processor, assumed to be the only processor at which the
divisible load arrives, partitions a total processing load into (N +1) fractions,
keeps its own fraction ap, and distributes the other fractions oy, ag,..., ay
to the children processors p;, ps,..., py respectively and sequentially. Each
processor begins computing immediately after receiving its assigned fraction
of load énd continues without any interruption until all of its assigned load
fraction has been processed.

In order to minimize the processing finish time, all of the utilized proces-
sors in the network must finish computing at the same time. The process of
load distribution can be represented by Gantt-chart-like timing diagrams, as
illustrated in Figure 3. From the timing diagram in Figure 3 the fundamental

recursive equations can be formulated as follows:

aiwTy = aipizinTon + aipwini Top (1)
aiy1 = ko= (fI kjJag t=0,..,N—1 (2)
j=0
Here:
ki = Wilep i=0,.,N—-1

(Zi+1Tcm + wi+1Tcp)
1l = ag+a1+...4+an (3)

14

a;: The load fraction assigned to the i** processor.

w;: The inverse of the :** processor’s computing speed.

z;: The inverse of the i** link’s speed.

Tep: Time to process an entire load by a standard processor, wsandara = 1.

T.n: Time to communicate an entire load by a standard link, zsandera = 1.

From the recursive equations, equation (1), the closed-form expression of

ap, the fraction of load assigned to the root processor and the other processor

load fractions can be obtained:

Qo

(23]

Qn

an

where:

(ziTcm + wiTcp)

=

1

ii

N
(oncp) H(ziTcm + wiTcp)

=2

1 n—1 N
=y (wiTcp) H (ZiTcm+wiTcp)

1=0 i=n+1

H(ziTcm + wiTcp)

1=1

15

N n—1 N
+ Z (H(wiTCP) H (ziTCm+wiTcp)) (8)

n=1 \i=0 t=n+1
4.2 Total Processing Cost

The total processing cost is a cost incurred by a network in processing an en-
tire load. It is a linear addition of all individual link-processor costs incurred

by utilizing individual link-processor pairs. Define:

Co = cngTcp (9)

C, = c;znTcm + Aw,Typ ,n=1,..,N (10)

Here ¢? and ¢!, is the computing and communication cost per second
of the n* processor and the n* link, respectively. Also C, is the cost of
processing the entire of load on the n** processor, and a,C, is the cost of
processing the assigned fraction of load (@) on the n'* processor. Note
that the units of z, and w, are second/load while a,T,, and @,T,, are the
amounts of computation and communication “load” respectively for the n*
link-processor pair. The total cost, Cyusq1, is then defined as a summation of

the individual processing costs incurred at each link-processor pair. That is:

N
Ctotal = aoCo + Z a,Cp (11)

n=1

16

i

By substituting ap and all o, from the previous section into equation (11),

the total cost expression with the 7 and j + 1 terms explicitly shown is as

follows {9, 10]:

1 N
Ctotal = 5 { H(ZiTcm + wiTcp)(ngOTcp)
1=1

j-1

+3

n=1

n-1 N
H(wiTcp) H (ZiTcm + wiTcp)(ngnTcm + cﬁwnTcp):l

1=0 i=n+1

Jj—1 N

+ (wiTcp) H (ziTcm + wiTcp)(cgijcm + C?'ijcp)
0

=741

J N
+ H(wiTcp) H (2iTem + wiTCP)(C§+lzj+1Tcm + C?+1wj+chp)

=0 t=]+2

N n-1 N .
+ Z lH(wiTcp) H (ziTcm + wiTcp)(ci,,znTcm + C,’;wnTcp)} }

n=j3+4+2 | i=0 i=n+1
(12)
4.3 Cost Efficient Load Sequencing

Consider a single level tree network, as illustrated in Figure 1, which can be

represented by the following ordered set:

0= {pﬂv (ll,pl), seey (l.i,pj)’ (l/+l' P+t)s ey (lN’pN)} (13)

This indicates that processor p; is the first processor that is assigned a frac-

tion of load from po followed by proccessor p, and so on. Link-processor

v

pairs (I;,p;) and (Ij41,p;j+1) in the ordered set © above may not necessarily
be physically adjacent. Any change in the ordered set above is equivalent
to a corresponding change in the sequence of load distribution. Therefore,
sequencing is a mechanism that changes one ordered set to another ordered
set. As an example, a result of sequencing by swapping an adjacent pair j

and j 4+ 1 of © can be given as,

6’ = {Po, (llvpl)) cevy (lj+lapj+1)’ (lj’pj)3 ooy (lNa pN)} (14)

A cost efficient load distribution sequencing is thus defined as a procedure
to search for the minimum total processing cost order of the children link-
processor pairs to receive a fraction of load from the root processor. This
procedure works through a sequencing mechanism as just mentioned.

It should be noted here that any change due to a sequencing mechanism
does not disturb the network topology. There is no physical change taking
place. It is in fact a logical change that takes place. The detailed description

of this method can be found in [9].

4.4 Cost Efficient Processor Arrangement

A second problem also involves an ordered set representation of a single-level

tree network:

I = {po,(l,p1), (L pi)s (lj+1,Pj+1), o (Iny) } (15)

A processor arrangement determines which processor is connected to /y, /s,
ey N lA processor arrangement does not change the order of dispatching
fractions of load from the root processor to links, i.e., an element [; associated
with each ordered pair is fixed during the course of processor arrangement.
That is, the sequence of load distribution from the root processor does not
change from the link point of view. The ordered set in this context will be
referred to as a processor arrangement profile. Therefore, a processor ar-
rangement is a mechanism to change from one processor arrangement profile
to another processor arrangement proﬁle. As shown in Figure 4, I’ is a result

of applying a processor arrangement to a pair of processors j and j +1 of II.

H’ = {pO’ (ll7pl), reey (lj’pj-H), (lj+1’Pj)7 teey (lN’pN)} (16)

In contrast to the sequencing mechanism, a processor arrangement requires

a physical change of a link-processor pairs through processor reordering.

19

Cost efficient processor arrangement is therefore a procedure to obtain
a physical arrangement profile of the children processors to connect to the
root processor such that the total cost of processing load in the network
is minimized. This procedure works based on the processor arrangement

described above. The detailed description can be found in [10].

5 Problem Formulation

5.1 Cost Efficient Load Sequencing Problem
5.1.1 Problem Statement

Cost efficient load sequencing is a problem where the goal is to find a mini-
mum total cost load distribution sequence from a root processor to all other
processors in a single-level tree network such that the transmission/processing

delay incurred is kept as small as possible.

5.1.2 A Combinatorial Optimization Problem Formulation

A problem instance descriptions

An instance of the cost efficient load sequencing problem is described by

20

a network size, i.e., a number of children link-processor pairs (N), and its
parameters which are z;, w;, ¢}, cf, Ty, and Tep.

A solution definition and a solution space (S)

A solution is defined by an ordered set 8 which represents an order of
load distribution from a root processor as given in equation (13). Let 9 be a
feasible solution, then 8 is a resulting ordered set from applying a permuting
operation to the ordered pairs of children link-processors of (the 8 that
excludesr Po). An example of a feasible solution is §’ given in equation (14).
A solution space S is then defined as a set of all possible 6.

It can be seen that the solution is of the discrete type and the solution
space is countably finite, the size of which is N!.

A cost function (f)

A cost function f is defined as the total cost incurred to process load in
the network. It is as given in equation (12).

Problem Formulation

Given a network size and its associated parameters, a solution space S,

and the cost function f, the problem is to find ©*, a minimum total cost

21

load sequence, such that

1 0|a, 17
min f(0|d3) (17)
and
ap satisfies: delay(a;|0) < delay(ald), Vae A (18)
where

0 = {po, (l,P1), ., ({j, i), .- (In, pw) }

@ = (aog, @1y ...y ON)

A={dle;€e R* and TN o; = 1}

delay(-]-) is a delay function, which is given as agwoT,.

Thus we seek to find the minimal cost load distribution sequence such
that solution time (delay) is minimized for each possible sequence. There
are certainly alternate ways of formulating this dual criteria (cost, solution
time) problem but we believe that this approach is natural.

Note that given any sequence 8, aj is obtained from the set of equations

given by equation (4)-(7).

5.1.3 The Starting Point

A starting point which consists of a number of children link-processor pairs
and all its parameters, i.e., z;, w;, ¢, ¢, Tep, and T.yp, is randomly generated.

The initial 8 is determined by the order of children pairs generated.

5.2 Cost Efficient Processor Arrangement Problem
5.2.1 Problem Statement

Cost efficient processor arrangement is a problem where the goal is to find
a minimum total cost processor arrangement in a single level tree network
for processing an arriving load such that the transmission/processing delay

incurred is kept as small as possible.

5.2.2 A Combinatorial Optimization Problem Formulation

A problem instance descriptions

An instance of the cost efficient processor arrangement problem is de-
scribed by a network size, i.e., a number of children link-processor pairs (N),

and its parameters which are z;, w;, ¢!

1Y

& . T.,, and Topp.

A solution definition and a solution space (S)

A solution is defined by an ordered set = which represents a physical
arrangement profile of the children processors to connect to a root processor
as given in equation (15). Let 7 be a feasible solution, then 7 is a resulting
processor arrangement profile from permuting the processor components of
the order pair in 7. An example of a feasible solution is II' given in equation
(16). A solution space S is then defined as a set of all possible 7'’s.

It can be seen that the solution is of the discrete type and the solution
space is countably finite, the size of which is N!.

A cost function (f)

A cost function f is defined as the total cost incurred to process load in
the network. It is given by equation (12).

Problem Formulation

Given a network size and its associated parameters, a solution space S,
and the cost function f, the problem is to find 7*, a minimum total cost

processor arrangement profile, such that

min f(x|d}) (19)

and

24

M

a: satisfies: delay(@;|7) < delay(a|r), VaeA (20)

where
© = {po, (i, p1), -+, (;; Ps)5 -, (IN, P }
a = (ag, @1y ...y aN)
A={ada € Rt and TN,a; = 1}
delay(-|-) is a delay function, which is cpweTep.

Again, we seek to find an arrangement which minimizes cost such that
the solution time (delay) is minimized for each possible arrangement. Again,
alternate ways of formulating this dual criteria optimization problem are
possible, but we believe our approach is a natural one.

Note that given any processor arrangement profile «, & is obtained from

the set of equations given by equation (4)-(7).

5.2.3 The Starting Point

A starting point which consists of a number of children link-processor pairs
and all its parameters, i.e., z;, w;, cﬁ, ¢, T.y, and T,,,, is randomly generated.

The initial 7 is determined by the order of children pairs generated.

25

™ Fr——— T T

6 Simulated Annealing

6.1 Background and Concepts

The idea of simulated annealing was first studied by Metropolis {19] in 1953 to
simulate the cooling of material in a heat bath, a process called an annealing.
Metropolis’s algorithm simulates the change of state energy of the system
when it is subjected to a cooling process. The structure of the resulting
solid def)ends on the rate of the cooling. If it is cooled down slowly, the
ground state is achieved and a pure crystal is formed. On the other hand,

if fast cooling or quenching is applied then the resulting solid will possess

some defects. Later, Kirkpatrick [17] and Cerny (8] applied the Metropolis

algorithm to optimization problems.

In Metropolis’s simulation the system moves to a new state if energy de-
creases. Otherwise a new state will be adopted according to some controlled
probabilistic functions which depends on the current state of the system. In
the Metropolis work such a probabilistic function was taken from statisti-
cal thermodynamics which can be given by p(6E) = ezp(;—f) where 6 is a
change in state energy, ¢ is temperature and k is Boltzmann’s constant. In

the context of optimization problems. this algorithm is designed to accept

26

bk

uphill moves (in case of minimization) with a probability just given. It can
also be viewed as an enhanced version of the descent algorithm of the local
search heuristic method. Uphill or non-improvement moves can be accepted
as well as downhill or improvement moves. The problem of being trapped at
a local optimal solution, which is inherent in descent algorithms, can then
potentially be avoided.

Simulated annealing is regarded as a heuristic strategy. Thus it encom-
passes not just a single algorithm but a family of algorithms. To implement
simulated annealing, several decisions need to be made regarding both the

generic and the problem specific decisions.

6.2 Basic Method

Here the annealing algorithm which closely follows the original Metropolis
simulation is given. It maintains an analogy with the physical cooling process.

In the simulated annealing basic method, which can be described as a
random descent algorithm, the next solution is chosen randomly from a de-
fined neighborhood of the current solution. The cost function of the next

solution is then evaluated and compared to that of the current solution. The

algorithm will make a move to a new solution if a cost improvement is indi-
cated. The simulated annealing algorithm however differs from the random
descent algorithm in that moves that do not improve cost could be accepted
according to the defined probability function.

The following provides a description of the basic simulated annealing
method. Given a minimization problem with solution space S, cost function
f and neighborhood structure N, the basic simulated annealing algorithm
can be éiven as:

The Basic Simulated Annealing

Step 1. Start with an initial solution so.
Set s = sg where s is a current solution.

Step 2. Get an initial temperature 7' > 0.

Step 3. Get a temperature reduction function a.
Step 4. Repeat

Step 4.1 Repeat

4.1.1 Randomly select s’ €A (s).
412 §=f(s') — f(s).
413 Ifé<0,thens=2s"

Else generate random z uniformly in the range (0, 1).
If z < ezp(Z2) then s = §'.
Until the number of replications at this temperature are satisfied.
Step 4.2 Reduce temperature, set T = a(T).
Until stopping condition is true.

Step 5. Return s as the approximate to the optimal solution.

6.3 Cooling Schedule

The cooling schedule specifies a set of generic decisions or pérameters in or-
der to implement the simulated annealing algorithm. It involves the control
parameters that determine an initial temperature, a cooling rate, a temper-
ature length, and the stopping criterion. The following are the list of the
parameters in the cooling schedule.

Generic Parameters

1) Initemp : used in determining a starting temperature to the algorithm for

the current set of run.
2) Tempfactor : represents a temperature reduction coefficient which is constant

and less than unity throughout the run. The next temperature

29

3) Sizefactor

4) Cutoff

5) Minpercent

6) Freeze Lim

is then determined by (Tempfactor * (current_temperature)).

: determines a number of trials at each temperature.

If NB is an expected neighborhood size, the number of trials

is then defined to be (N B * Size factor).

: specifies a threshold of the accepted moves to be passed at

a given temperature before the process of annealing can be
terminated. It is especially designed to remove unneeded trials from the
beginning of the schedule. This parameter, together with the
(Sizefactor), control the number of replications at each
temperature or the temperature length L.

: is used as a threshold to advance a freezecount counter.

Each time the specified number of replications at each temperature
is completed, the ratio of accepted moves to the trials is compared
to (0.5 * Minpercent). If it is less than this, then freezecount
counter will be incremented by 1.

: is used together with the freezecount counter to determine

whether the annealing is frozen so as to terminate the algorithm.

30

6.4 Acceptance Probability

In the original, perhaps traditional, simulated annealing algorithm an ac-
ceptance probability is given by the Boltzmann distribution in the form of
e:cp(—;—f—), where 6 is the difference of the cost of a randomly picked solution
and a current solution. At high temperature, almost all the moves are ac-
cepted. When the temperature decreases the uphill moves are more likely
rejected, only the moves with a small cost increment are admitted. This
closely follows the physical annealing process. It works quite successfully.
Nonetheless, in some problems [11, 16] the Boltzmann distribution does not
outperform some other distributions. It appears that by using different forms
of an acceptance probability function one is able to improve the algorithm
performance for the problems considered here. In the case of the cost effi-
cient load sequencing problem and the cost efficient processor arrangement
problem, it was found that in using the Boltzmann distribution in simulated
annealing, the algorithm did not yield satisfactory solutions compared to the
final solutions found by the other proposed algorithms, i.e., tabu search, the
greedy load sequencing algorithm, and the heuristic processor arrangement

algorithm. However it was found that the acceptance probability in the form

31

of (g) exhibits a more satisfactory quality of a solution (as also the case in
[2]). Results showed that an algorithm with this latter function provides a
better minimum cost solution within the same fixed length of run time.
The acceptance probability function in this paper, (g), works quite dif-
ferently from the Boltzmann distribution. New moves with a higher cost
increment or more steep uphill moves are more likely to be accepted than
the less steep uphill moves. At low temperature an uphill move is even more

likely to be accepted in order to escape from a local optimum.

6.5 The Working Simulated Annealing Algorithm

As mentioned earlier simulated annealing is regarded as a heuristic strategy
or metaheuristic. Some decisions relevant to the real implemetation of the
algorithm need to be made for both the generic decisions and the problem
specific decisions. The following gives the details of such decisions for the

sequencing and the processor arrangement problems.

32

6.5.1 Generic Decisions

The generic decisions basically involve the cooling schedule that is mentioned

in subsection 6.3. Here the value of each parameter will be given

p—t

. Initemp = 0.6

2. Tempfactor = 0.95
3. Sizefactor = 0.95
4. Cutoff = 04

5. Minpercent = 0.1

6. Freeze Lim = 15

6.6 Problem Specific Decisions

The problem specific decisions are concerned with the solution space, the cost
function, and the neighborhood structure. The solution space and the cost
function are provided in section 5. The neighbor structure for both problems
is identical. That is it is uniform and symmetric, i.e., all solutions have the

same number of neighbors, and, if solution s, is a neighbor of sz, then s, is

33

also a neighbor of s;. The same mechanism is used to generate a neighbor
for both problems. A neighbor of the solution s is obtained by randomly
swapping a pair of the elements in the solution s which is either a pair of
link-processors for cost efficient load sequencing or a pair of processors for

cost efficient processor arrangement.

6.6.1 Working Algorithm

The outline of the working simulated annealing algorithm in this paper fol-
lows the one described in [16] with the main difference being the form of
accepteance probability function and the inclusion of a reheat process, a pro-
cedure to increase a current temperature. The working algorithm is given as
below. Here the champion solution is the minimum total cost solution that
has been found so far.

The Working Simulated Annealing

Step 0 Generate the initial instance of the problem randomly.
Compute the initial total cost.
Step 1 Set the current solution (s) and the champion solution (s*)

to the initial solution. Set the current total cost f(s) and

31

Step 2.

Step 3.

the champion total cost f(s*) to the initial total cost.
Compute the neighborhood size N B.

Compute the initial temperature (T'), (Initemp * f(s)).
Set freezecount to 0.

Do

Step 3.1 Set changes = trials = champion_changes = 0.

Step 3.1.1 Do
Step 3.1.1.1 Set trials = trials + 1.
Step 3.1.1.2 Generate a random neighbor s’ of s.
Compute the neighbor total cost f(s').
Step 3.1.1.3 Calculate 6 = f(s’) — f(s).
Step 3.1.1.4 If § < 0,
Set changes = changes + 1, and s = s'.
If f(s') < f(s*), ;et s* =4
and champ_changes = champ_changes + !
Step 3.1.1.51f6 >0
Generate random number r in [0,1].

Ifr < %, set changes = changes + 1, s

35

Step 4.

While (trials < Sizefactor * NB) and
(changes < Cutof f Sizefactor * NB)

Step 3.1.2 If (champ_changes > 0), set freezecount = 0.

h
Step 3.1.3 If _ches< Minpercent,
—_— trials
Step 3.1.3.1 If M< (0.5 * Minpercent),
—_— trials

Increase the temperature 7' = 1.5 * T'.
Set freezecount = freezecount +1.
Step 3.1.3.2 Else reduce the temperature using
(Tempfactor).
While (freezecount < Freeze_Lim)

Output s* as an approximate to the optimal solution.

7 Tabu Search

7.1 Background and Concepts

Tabu search was first introduced by Glover [13] and Hansen [15] in 1986 to

solve problems in combinatorial optimization. Later tabu search received

much attention from researchers and practitioners in various disciplines.

36

Many contributions are reported in {14]. The positive results of several com-
putational experiments have made tabu search an estéblished approximation
method. It has been successfully applied to obtain the solutions to various
kinds of problems such as the travelling salesman problem, the quardratic as-
signment problem, the graph coloring probiem, the vehical routing problem,
scheduling, and VLSI design.

The basic idea of tabu search is derived from the principle of intelligent
problern‘ solving with the concept of learn and unlearn using flexible memory
systems. Tabu search is designed to resolve the problem of being trapped at a
local optimum by imposing and releasing constraints systematically so as to
_cross valleys or barriers, or to explore otherwise forbidden regions. It, in fact,
can be described as a local search method with an inclusion of an adaptive
memory structure to guide the search. By exploring the neighborhood of a
current solution, the next move has been made to the best solution obtained
in such a neighborhood. In contrast to local search, tabu search continues
its searching after it reaches the local optimum by occasionally admitting
an uphill move as the current solution even though it is an inferior solution.
Tabu search can be regarded as a metaheuristic in the sense that to obtain an
optimal solution it consists of iteratively applying a heuristic neighborhood

37

search which has to be implemented specifically for each individual problem.
Additionally, other generic decisions, such as tabu list length, a tabu-active
tenure, an aspiration level, or an intensification and diversification strategy,
need to be determined in accordance with the underlying problems. Thus to

implement a tabu search, several decisions need to be made for both generic

and problem specific decisions.

7.2 The Basic Method

The basic method of tabu search begins with a local search or a neighborhood
search algorithm. In tabu search, it is extended to preconditionally accept
uphill moves in order to escape from a local optimum. However, this may
lead to a situation, called cycling, in which a search falls back to the previous
departure point of the search trajectory. To prevent cycling, which may occur
in the following steps during the uphill move, a short term memory, in the
form of a tabu list, is employed. A tabu list is used to store the solutions
or the attributes of the solutions, which are referred to as the moves, that
were recently visited. These moves or <olutions will be forbidden from being

accepted as the next solution for a specitiedd period of time in the future. Here,

3N

it can be seen that the structure of neighborhood to be search is restricted
and varied from iteration to iteration. The entries of a tabu list can be
either an entire solution or some specific attributes of the solution, e.g., a
pair of swapping positions in the sequence or an interchanged pair of links
in the graph. By recording the attributes of a solution instead of a solution
itself, tabu search has blocked out some other potential solutions or the
unvisited solutions so far. To solve this problem, an aspiration level which
offers the possibility of overriding the tabu status of the move is incorporated.
Therefore a move that is tabu but satisfies the aspiration level can be adapted
as a new current solution. Tabu search continues searching until the stopping
criteria are met, at which time it terminates. A thorough treatment can be
found in [14].

The following outlines the basic algorithm of tabu search. Given a min-
imization problem with solution space S, cost function f and neighborhood

structure N, the basic tabu search algorithm can be given as follows:

The Basic Tabu Search

Step 1. Select an initial solution sg.

Set s = 5.

39

Step 2. Create an empty tabu list 7' and set an aspiration level A.
Step 3. Repeat-
Step 3.1 Select the best solution s’ which is either not tabu or passes
an aspiration level from the neighborhood of s, A (s).
Set s = ¢'.
Step 3.2 If f(s') < f(s*) where s* denotes the best solution
so far, set s* = ¢’
Step 3.4 Update the tabu list T and the aspiration level A.
Until the stopping conditions are true.

Step 4. Return s* as the approximate to the optimal solution.

7.3 Extensions and Modifications

7.3.1 Memory and Tabu List

Memory and a tabu list are the cornerstones of tabu search in that they
provide the opportunity to search beyoﬁd local optima. In tabu search the
memory structure is catagorized into two classes: a short term memory and a
long term memory. The purpose of short term memory is mainly to intensify

a search and to move away from a local optimum. The purpose of a long term

40

memory is to diversify a search to a new region. The short term memory
affects the modified neighborhood, A'*(s), in that it identifies the elements in
N(s), the original neighborhood of s, to be excluded from A*(s). Meanwhile
the long term memory determines the solutions not ordinarily found in N (s)
to be included in N*(s). In this paper, a memory of a change of the solution
attributes during the recent past, a so called recency-based memory, is used
as a short term memory. A tabu list relevant to this short term memory is
therefore referred to as a short term tabu list, Tg. A frequency-based memory,
which records the number of iterations a certain attribute has changed or has
been found in the solutions, is used as a long term memory. Its associated
tabu list is called a long term tabu list, Tp. Both the short term and the
long term memory work synergetically in broadening the search horizon.

Recency-Based Memory

In this paper, a pair of link-processors or a pair of processors and their
positions, which are to be swapped, serve as the attributes to be recorded
in a short term tabu list. This link-processor pair or a pair of processors is
then prohibited from being swapped again unless its total cost after doing
so meets an aspiration threshold. They are thus made to be a tabu-active

element. In order to determine how long an element in the tabu list holds

41

a tabu-active status, a tabu tenure is attached to the elements. It indicates
a number of iterations to forbid a tabu-active pair at certain positions from
being swapped during the next solution. This value is set to the value of
a short term tabu list length, |Tg|, for every element in the list. The tabu
tenure value is decreased by one in every iteration. A tabu-active pair is
moved from the short term tabu list after its tabu tenure value is down to
zero.

Frequency-Based Memory

Frequency-based memory helps to enhance a chance of finding a better
solution. It is in fact capable of providing some solutions or characteristics
‘which are not ordinarily found in the original neighborhood. In other words,
it lends itself to diversify the search to other regions. In this paper, a fre-
qL;ency measure defined by the number of times a particular link-processor
pair or processor is found occupying a certain place in the solution is adopted.
This frequency-based memory is then used to generate a new starting point
for the search. (For this new starting point, for a particular position of the
solution it is the link-processor pair or processor with the least occupational
frequency among the remaining pairs or processors left to be considered that

will assume the position of the new starting point.) Ties are broken by pre-

42

ferring the link-processor pair with a smaller index. This newly constructed
starting point is then checked against the long term tabu list. If it is not
long term tabu, it will be adopted as a new starting point and the long term
tabu list is updated by enlisting this new starting point. Otherwise, it will be
shifted one position to the right to create a new starting point and it is again
checked with the long term tabu list. The process continues until either a
successful starting point generation is achieved or fails. If no successful new
starting point is obtained, the algorithm is then terminated. Otherwise the

long term tabu list will be updated.

7.3.2 Aspiration Criteria

Aspiration criteria are used to determine when a tabu-active status of a move
can be overridden. In this paper, an aspiration criterion removes tabu-active
status from the move that yields a total cost less than the best total cost
found so far. The aspiration level is initially set to the total cost of the
best solution obtained so far and is changed whenever a new best solution is

found.

7.4 The Working Tabu Search Algorithm

Similar to the simulated annealing algorithm, the working tabu search algo-
rithm needs a specification of the generic decisions and the problem specific

decisions.

7.4.1 Generic Decisions

These decisions are parameters that control searching both for intensification
and diversification, and that are concerned with the termination criteria.

These parameters are provided in the following.

Nbiter : a current iteration number.
Bestit : the most recent iteration number that the best solution is updated.
Long_Term : an iteration number after which a first uphill exploration is condnete:

Used along with nbiter to determine when to diversify the search.
Nbmax : a maximum allowance of iterations that no best solution update -

found. If this value is reached, the algorithm will terminate.

This parameter is set to 6 for the cost efficient load sequencing

problem and 8 for the cost efficient processor arrangement probler:

Diversification : a long term memory related parameter that determines when the

44

Max_Loop

CEM _exhaust

algorithm moves to search a new region by generating a new starting

point. This threshold is set to 8000 for the cost efficient load sequencing
problem and 10000 for the cost efficient processor arrangement problem.

: an independent termination control parameter which is not related

to any events that happened during the search. It determines the
maximum number of iterations before the algorithm terminates. This
parameter is set to 30000 for the cost efficient load sequencing problem and
60000 for the cost efficient processor arrangement problem.

: a termination variable as a result of the generation of a new starting point.

It is set to 1 if such a point can no longer be generated.

7.4.2 Problem Specific Decisions

The solution space and the cost function are the ones described in section
5. Both the cost efficient load sequencing and the cost efficient processor ar-
rangement problem use the same neighborhood structure, which is uniform
and symmetric as explained in case of the working simulated annealing algo-
rithm. A neighbor is generated by randomly swapping a pair of link-processor

or a pair of processors according to the underlying problem.

45

7.4.3 Working Algorithm

Step 1.

Step 2.

Step 3.

Generate a single-level tree network randomly.
Set the current solution s and the champion solution s* to the initial solution.
Set Nbiter = Bestit = 0. Set Long.Term = 0. Set CEM _exhaust = 0;
Set Aspiration to f(s*).
Get the neighborhood size of the defined neighbor N*(s), i.e., V*.
Do
Set Nbiter = Nbiter + 1.
Step 3.1 Search the defined neighborhood A*(s) for the minimum
total cost sequence s’ or the first neighbor sequence
with f(s') < Aspiration. Set s = ¢'.
Set Long_Term = Nbiter when start the first uphill search.
Step 3.2 Update the short term tabu list (the recency-based memory).
Update the frequency statistics of the swapping pairs.
Step 3.3 If f(s') < f(s*), then set s* = s'. Bestit = Nbiter.
Set Aspiration to f(s*).
Step 3.4 Set Loop = Loop + 1.

Step 3.5 If (Nbiter — Long_Term > Diversi fication) and

46

(Nbiter — Bestit < Nbmaxz)

Step 3.5.1 Invoke a long term memory for diversifying the search.
Generate a new starting sequence that is not long term tabu.
Set it to the current solution. Update the long term tabu list.

Step 3.5.2 Empty the éurrent short term tabu list.

Step 3.5.3 Set Nbiter = Bestit = Long . Term = 0.

While(Nbiter — Bestit < Nbmaz) and (CEM _exhaust # 1) and
(Loop < Maz_Loop)

Step 4. Output s* as an approximation to an optimal solution.

8 Computational Results

8.1 Experimental Procedure

Program implementations for all the algorithms were coded using C++ lan-
guage on a Sun SPARCstation 20 with a UNIX environment and with the
SunOS 5.4 operating system.

In the experiments, effectiveness (the number of best solution conver-

gences), the quality of solution (percentage deviation from the best solution

47

in the case a near-best final solution is obtained), and computational time
(time to attain a final solution) are selected as the performance measures.

Initial experiments were conducted to determine the best parameter set-
tings of simulated annealing and tabu search algorithms as discussed in sec-
tion 6 and 7. In this tuning phase the results from running the proposed
algorithms, the greedy sequencing algorithm and the heuristic processor ar-
rangement algorithm which are described in [9] and [10] respectively, were
used as a benchmark in each problem. All algorithms were run on networks
of size 30, 35, 40 and 50 nodes to order to obtain the best set of param-
eter values. To determine the parameter settings both quality of a final
solution and its corresponding computational time were taken into account.
Although these parameter settings may not be the optimal ones, which is in
fact impractical to attain since it requires one to test all combinations, they
exhibited the best-achieved performance.

In the experimental phase, the network parameters, i.e., z;,w;, cf, ¢k, Tsp,
and T¢,, were randomly generated. They were all generated from the uniform
distribution [0,3]. For each network size the experiments were performed
for three runs, each run with a different <et of random number seeds. For
each run of both the sequencing and arrangement problems, 2000 network

IR

instances were generated. In the case of computational time measurement
the number of network instances for each run was 30.

Since the optimal solutions for the test problems were not known, in
the result comparison the solution values obtained by each algorithm were

compared against the best solutions that had been found among them.

8.2 Experimental Results
8.2.1 The Cost Efficient Load Sequencing Problem

In these experiments three algorithms were compared: the greedy load se-
quencing algorithm, the simulated annealing sequencing algorithm, and the
tabu search sequencing algorithm. The greedy load sequencing algorithm is
as described in [9]. It works using the neighborhood search technique with
the best improvement criterion. In [9], the greedy load sequencing algo-
rithm was found to obtain the optimal solutions for all the starting points
used when network size was not greater than 8. Beyond this network size,
solution optimality verification was not possible due to the burden of com-
putation imposed by the exhaustive search which was used as a checking

algorithm.

49

Since an optimal sequence of a network of size greater than 8 is not
known, these three algorithms were run and the best result among them
was adopted as the best-known solution. The experiment results show that
for a network with size smaller than 20 all three algorithms converge to
the same final total cost solutions. For a network with size from 20 to 26,
both simulated annealing and tabu search always obtain the best solutions,
meanwhile the greedy sequencing algorithm does not. The number of near-
best solutions as opposed to the best solutions of the greedy sequencing
algorithm, however, is very small, ranging from 0.1% for N = 20 to 1%
for N = 26. Morever a percentage of deviation from the best solution is
quite low, i.e., less than 2% as shown in table 1. As for a network of size
greater than 26, a problem regarding program implementation arose. All
three algorithms have a problem with limited accuracy caused by limited
arithematic precision of the total cost (we used double precision floating
point variable for the total cost). Thaf is, the algorithm must compare two
“costs” that are almost identical to a large number of significant figures. This
problem hence leads to an uncertainty regarding a validity of the total cost
comparison result used to make a decision concerning a move to the next
solution. Therefore no networks with size greater than 26 were reported.

50

It should be noted here that this problem did not prevail for all the tests
of networks of size greater than 26. In fact, there were just some network
instances that did have this kind of pathological problem.

In terms of a running time, it is evident from figure 5 that the running
time of the greedy load sequencing algorithm is far superior to the running
time of the other two algorithms, especially when the network is enlarged. In
addition, the simulated annealing sequencing algorithm appears to be faster
on average than the tabu search sequencing algorithm when network size is
increased. They however show no significant difference in solutions produced

when the network size is less than 18.

8.2.2 The Cost Efficient Processor Arrangement Problem

Similar to the previous problem, three algorithms, i.e., the heuristic proces-
sor arrangement algorithm, the simulated annealing processor arrangement
algorithm, and the tabu search processor arrangement algorithm, were stud-
ied and their results were compared. The heuristic processor arrangement
algorithm is presented in [10]. It is based on a local search with multi-
level neighborhood structure and multiple starting points. Its performance

through the computational experiments as reported in [10] indicates a small

al

probability of suboptimal solution convergence when a network size is less
than 10, and its efficiency can be bounded by a low-order polynomial in num-
ber of children processors for a network of size less than 19. However beyond
a network size of 10, we were unable to verify the optimality of the final
solution obtained from the heuristic algorithm due to the lack of an efficient
optimality verification algorithm. Therefore here, the performance of these
three algorithms were tested on the single level tree networks when their size
is greate;r than 10.

Since an optimal solution for each network instance was not available, the
best solution among these three solutions therefore served as the best-found
solution, and was used to measure the number of near-best solution conver-
gences. The experimental results from running all three algorithms on single
level tree networks with a number of children processors varied from 10 to 26
are given in table 2 and 3. It can be seen from the table that the heuristic
processor arrangement algorithm exhibits the best performance while tabu
search shows the least favorable algorithm in terms of both a number of
near-best solutions and a quality of the final solution. Nevertheless, the per-
centage deviation from the best solution is very small even in the case of
tabu search, i.e., in this case it comes within 1%. In addition, in all three

52

algorithm results, the number of near-best solutions tends to increase with
network size, while the percentage deviation from the best solution appears
to be independent of network size. Again tests on networks of size greater
than 26 encounter the previously mentioned problem, i.e., the validity of the
total processing cost comparison, as found in the load sequencing problem.
Therefore no experiments were reported on networks of size greater than 26.

Figure 6 illustrates the computational time per network instance when
the number of children processors in the network was varied from 10 to 26.
From this figure, the heuristic processor arrangement shows the best running
time performance while tabu search seems to be the least attractive in this
sense. However, all of the algorithms are approximately the same in running
time. Besides, it can be seen from this figure that the running time of the
simulated annealing is roughly the same as that of the heuristic processor
arrangement algorithm when the number of children processors is increased.
Thus from the computational time aspect. it seems that there is no clear-cut
computational advantage of using any specific algorithm even though the
heuristic processor arrangement may be a bit more favorable as suggested in

figure 6.

9 Conclusions

In this paper, the applications of simulated annealing and tabu search tech-
niques, as metaheuristics, to the solution of cost efficient divisible load se-
quencing and cost efficient divisible load processor arrangement problems
are presented. In each problem, simulated annealing and tabu search were
implemented according to the problem specification, and their results were
then compared to the results of the greedy load sequencing and the heuristic
processor arrangement problem. In this computational experiment, networks
with a number of children processors greater than 10 which had not been ex-
amined before were used to study the effectiveness and efficiency of these
underlying algorithms. It turns out that in the load sequencing problem,
the simulated annealing and tabu search algor'ithms always give the best so-
lutions whereas the greedy load sequencing algorithm gives a small number
of near-best solutions each of which have a small percentage deviation from
the best solution, i.e., less than 2%. On the other hand, the greedy load
sequencing algorithm appears to be better than the other two algorithms in
terms of the computational time while simulated annealing is better than

tabu search in this category. In the processor arrangement problem, the

heuristic processor arrangement algorithm gives the most favorable perfor-
mance while tabu search shows the least favorable performance in all aspects
studied, i.e., the effectiveness, the quality of solution, and the computational
time. Nontheless, the quality of solution of all three algorithms are fairly
close to one another.

In summary, this study shows that simulated annealing and tabu search
are quite suitable to solve the load sequencing and the processor arrangement
problems in order to obtain the minimum-possible total processing cost. This
is evident when the quality of a final solution is concerned even though their
efficiency is less than that of the previously proposed problem specific heuris-
tic algorithms. This study also demonstrates the impressive performance of
both proposed problem specific algorithms in case of a larger network size.
Fruitful future research could be directed toward improvements in the perfor-
mance of both simulated annealing and tabu search. Another direction could
be to investigate other modern heuristic’ methods such as genetic algorithm

or hybrids of these modern heuristic algorithms.

)

Table 1: Best Solution Convergence of the Load Sequencing Problem

No. of Seed Greedy
children Number | No. Near-Best | Deviation
Processors Solutions %
20 1 0 N/A
2 3 0.9053
3 1 0.0018
22 1 5 0.1483
2 3 0.1983
3 5 0.0590
24 1 9 0.9914
2 10 0.5793
3 5 0.2974
26 1 23 2.5574
2 29 1.1126
3 20 1.1402

56

Table 2: Best Solution Convergence of the Processor Arrangement Problem

37

No. of Seed Heuristic Simulated Annealing Tabu Search
Children Number | Near-Best | Deviation | Near-Best | Deviation | Near-Best | Deviation
Processors Solutions % ISo.lutions % Solutions %
10 1 0 0.0 123 0.366 221 0.689
2 2 0.0018 116 0.2736 204 0.616
12 1 1 0.0025 145 0.2195 294 0.4682
2 2 0.0326 137 0.1467 282 0.4749
3 2 0.091 123 0.2131 279 0.5502
14 1 10 0.157 155 0.1813 303 0.4661
2 2 0.0518 167 0.1606 314 0.4625
3 9 0.0432 161 0.1852 331 0.4451
16 1 10 0.0467 171 0.1088 353 0.3763
2 5 0.0427 173 0.1392 343 0.4012 li
3 8 0.0111 174 0.0828 337 0345
18 1 7 0.095 179 0.1319 367 0.3174
2 8 0.112 187 0.1529 387 0.312°
3 9 0.011 171 0.0869 325 0.20341

Table 3: Best Solution Convergence of the Processor Arrangement Problem

No. of Seed Heuristic Simulated Annealing Tabu Search
Children Number | Near-Best | Deviation | Near-Best | Deviation | Near-Best | Deviation
Processors Solutions % Solutions % Solutions %
20 1 7 0.0083 214 0.0774 389 0.2771
2 9 0.0345 169 0.1346 336 0.2745
3 4 0.023 207 0.0852 373 0.2686
22 1 20 0.0508 207 0.0912 414 0.2589
2 12 0.0521 200 0.0712 407 0.2392
3 11 0.0107 205 0.1192 391 0.2534
24 1 11 0.0068 193 0.1074 404 0.2261
2 16 0.0190 204 0.0659 385 0.2:343
3 14 0.0122 198 0.0540 363 0.202%
26 1 12 0.0085 218 0.0787 412 0.21~n
2 14 0.03%6 202 0.0678 379 0.20034
3 16 0.0192 188 0.0538 407 0277

References

(1]

[2]

[4]

E. Aarts and J.K. Lenstra, Ed., Local Search in Combinatorial Opti-

mization, Chichester, England : John Wiley & Sons, 1997.

P. Brandimarte, R.Conterno and P. Laface, “FMS production schedul-
ing by simulated annealing,” In Proceedings of the 3rd International

Conference on Simulation in Manufacturing, pp. 235-245, 1987.

S. Bataineh and T.G. Robertazzi, “Distributed computation for a bus
network with communication delays,” In Proceedings of the 1991 Con-

ference on Information Sciences and Systems, The John Hopkins Uni-

‘versity, Baltimore, MD., pp. 709-714, March, 1991.

S. Bataineh and T.G. Robertazzi, “Bus oriented load sharing for a net-
work of sensor driven processors,” IEFFE Transcations on Systems, Man

and Cybernetics, vol. 21, no. 5, pp. 1202-1205, September, 1991.

V. Bharadwaj, D. Ghose and V. Mani, “Optimal sequencing and ar-
rangement in distributed single-level tree networks with communication
delays,” IEEE Transactions on Parallel and Distributed Systems, vol. 5,

no. 9, pp. 968-976, September, 1994.

59

[6]

[7]

8]

[9]

[10]

[11]

V. Bharadwaj, D. Ghose, V. Mani and T.G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems, Los Alamitos, Cal-

ifornia: IEEE Computer Society Press, 1996.

J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on hyper-

cubes,” Parallel Computing, vol. 21, pp. 1945-1956, 1995.

V.-Cerny, “A thermodynamical approach to the traveling salseman prob-
lem: an efficient simulated algorithm,” Journal of Optimization Theory

and Applications, vol. 45, pp. 41-55, 1985.

S. Charcranoon, T.G. Robertazzi and S. Luyri, “Optimizing Computing
and Communication Costs for Networked Computer Utilities,” submitted

for publication.

S. Charcranoon, T.G. Robertazzi and S. Luyri, “Cost Efficient Processor

»

Arrangement in Single Level Tree Networks,” submitted for publication.

K.A. Dowsland, “Some experiments with simulated annealing tech-
niques for packing problems,” FEuropean Journal of Operational Re-

search, vol 68, pp. 389-399, 1993.

60

[12]

[13]

[14]

[15]

(16]

[17]

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, New York: W.H. Freeman and Com-

pany, 1979.

F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computer & Operations Research, vol. 13, pp. 533-549,

1986.

F. Glover and M. Laguna, Tabu Search, Norwell, Massachusetts : Kluwer

Academic Publishers, 1997.

P. Hansen, “The steepest ascent mildest descent heuristic for combi-
natorial programming,” Talk presented at the Congress on Numerical

Methods in Combinatorial Optimization, Capri, 1986.

D.S. Johnson, C.R. Aragon, L.A. MeGeoch, C. Schevon, “Optimiza-
tion by simulated annealing: an experimental evaluation; part I, Graph

partitioning,” Operations Research, vol. 37, no. 6, pp. 865-892, 1989.

S. Kirkpatrick, C.D. Gellat and M.P. Vecchi, “Optimization by simu-

lated annealing,” Science, vol. 220, pp. 671-680, 1983.

61

[18] G. Laporte, I.H. Osman, Ed., Annals of Operations Research 63: Meta-
heuristics in Combinatorial Optimization, Amsterdam, The Netherlands

: Baltzer Science Publisher, 1996.

[19] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller and
E.Teller “Equation of state calculation by fast computing machines,”

Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.

[20] C.D. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity, Englewood Cliffs, New Jersey: Prentice-Hall,

1982.

[21] V.J. Rayward-Smith, I.LH. Osman, C.R. Reeves and G.D. Smith, Ed.,
Modern Heuristics Search Methods, Chichester, England : John Wiley

& Sons, 1996.

Figure 1: Single level tree network

63

Figure 2: Single level tree network with associated cost coefficients

64

AN ZN Tem

Oy W nTep

E o ~ o & a o o o
NEONE N E G b AE A E :
O] © 0 o} 0 v 0 0 0
§
" H = 28 I) I o8 I) R &
b
3 ¢ o 0 o
' o
o] oy
.................. R rnres [SUES! I EERES I SREPRESEE
£ iy iy 3
- e i wj el
) EN o]
- Lol -
pl . 5 AL
N | L] e gl ... f | F----
(3] o]
o
E N | G- gh----- Y SR R SR T -
= g = &)
R = =
Ky ol 3 U I I N A
. wO 3
o | B
m []
0 P N S T R e S ——
T2
N
o
I N T U B |
m e O 0 [
[
N\] Lo -
5
o 0 o
o %
a? ar a ol o ar a

Figure 3: Timing Diagram: Normal Case

65

Figure 4: Single level tree network: Adjacent Pairwise Processor Swap

66

70

Computational Time Measurement

60|

[4.1)
(=]
v

T T T L T T T

Sequencing Probiem

0
°
8
O
‘:. 401 Tabu Search ———>
E
[
©
s
Ry i
=1
£
(¢}

20+ ~~— Simulated Annealing -

101 ~

——— Gready SEQ
0 E—' n = 1 I 1) 1
10 12 14 16 18 20 22 24 26

Number of Children Processors

Figure 5: Computational Time of the Load Sequencing Problem

67

Computational Time Measurement
70 I I T ¥ 1 T I

60k Processor Arrangement Problem ’

[P [4.)
(=] o o
T T T

Computational Time, Seconds

n
(=]
T

10r'

- ~ Heuristic PA

i i 1 1
0 12 14 16 18 20 22 24 26
Number of Children Processor

L0

Figure 6: Computational Time of the Processor Arrangement Problem

