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It is shown that the Boltzrnann equation for isotropic scattering of Maxwell molecuks, considered by Bobylev, 
Krook and Wu (BKW), can be written in the form of an energy-space kinetic equation. A transformation leads to a 
new class of kinetic models, possessing exact solutions of the BKW type. 

I. INTRODUCTION 

Several years ago, BobylevL and Krook and wu2 
(BKW) independently discovered that the Boltz- 
mann equation {BE) for a spatially uniform system 
of Maxwell molecules, 

- f @, t1.f 65, dl, 

(1 
has an exact, no~equilibrium solution (the " B W  
mode") given by 

where 

where F(x, t) i s  the energy distribution function, 
related to f ( v ,  t )  by 

~ ( x ,  t )  = 47~21 f ( v , l ) ,  X =  v2/2. ( 5 )  

This model i s  intimately related to the BKW mod- 
el, as we will discuss below. Equation (4) is  ap- 
parently of a much simpler form than the BE, (I), 
and has proven to  be advantageous for numerical 
~ a l c u l a t i o n s . ~  Tjon and Wu showed that (4) can 
be interpreted physically as the kinetic equation 
for  a spatially uniform, two-dimensional system 
of Maxwell molecules that scatter diffusively, 
such that momentum is not conserved. Ernst7 
generalized the TW diffusive-scattering argument 
to  d dimensions, t o  yield a whole class of models, 
characterized by the kinetic equation 

f(v,l) is the velocity distribution function (dimen- 
sionless units& 6 is the scattering angle for  the 
collision (v) + (w)  - (v3 + (w 3 ,  d$2 =sinRd$ d6, and 
h (cos8) represents the collision frequency, equai 
to the product of the relation velocity g= jv -?uj 
and the differential c ross  section. For Maxwell 
moiecuies (q - l / v 9 ,  k is independent of g, but 
depends upon 8. The BKW mode, which displays 
the approach to equiljbrium for a class of initial 
conditions in the form of (2), was first  obtained1>' 
for "pseudo-Maxwell" molecules for which h i s  
equal to unity, in which case =& Although it 
was later that (2) and (3) also holds for 
a generalh (cos9) (in which case X depends upon 
h )  and thus for  the true Maxwell molecules, we 
will consider only the pseudo-Maxwell molecules 
in this paper, and by the BKW model w e  will al-  
ways mean a system of such molecules. Note 
that a constant value of h does not follow from 
any known intermolecular potential. 

Following the discovery of (2) and (3), Tjon and 
Wu (TW) (Re'f. 5) devised a soluble kinetic model, 
described by the simplified kinetic equation 

where 
(6) 

For all d ,  these models possess a generalized 
BKW-mode solution. Other kinetic models, also 
defined by an equation of the form of ( 6 ) ,  with 
the corresponding expressions for h', have been 
considered by Ernst and Hendriks, and Futcher 
and ~ o a r e ?  Note that these models a r e  also re- 
lated to an ear l ier  model considered by ~ a c . "  

As repolted in a recent letter:' I have found . 

a new class of kinetic models that exhibit BKW- 
mode solutions. This class can be thought of a s  a 
d-dimensional generalization of the BKW model, 
giving the latter for d = 3 and the TW modei for 
d = 2 .  I wrote the kinetic equations for th is  new 
class in the following general form 

916 O 1981 The American Physical Society 



23 M O D E L  B O L T Z M A N N  EQUATIONS 917 

with each model characterized by an explicit ex- 
pression for  P. The purpose of this paper is t o  
give a detailed derivation and discussion of this 
result. 

11. THE KINETIC EQUATION 

The f i rs t  term on the RHS of (8) represents the 
gain inF(x, t )  due toal l  collisions (y) + (z) - (x) + (y + z 
-x), andthe second termrepresents the loss due to  
a l lcol l is ions(~)+ (y)- (z)+(x+y-z). ~ ( ~ , z ; x )  
is the collision rate for  (y) + (2)- (x) + ( y  + z  -x) 
and characterizes the particular model being con- 
sidered. Identity of the particles implies that P 
has the symmetries 

Equation (13) implies that Mo (the total mass) is 
constant, and by virtue of (9b), that iM, (the total 
energy) is also constant. We assume that the I 

units of f and x a re  chosen such that M,= 1 for  
all  models, while the value of &I1 will depend upon 
the model. Following the conventions in the Iiter- 
ature, we take M T ~  = 1, MBKW 1 -' - 2 -  

I 
Equation (81, much like Eq. (61, is of a very 

general form, containing most features of the BE 
of uniform systems, including binary collisions, 
and the Stossahlansatz. However, since the direc- I 

tion of the velocity does not appear, momentum 
conservation is not necessarily observed, and thus I 
(8) describes the inelastic models mentioned above I 

i 
as well as models that derive from the usual BE. , 

I 

In Sec. 111, we show that the BE for  the BKW model 
can be written in the form of (8). 

111. P(y,z;x) FOR THE BKW MODEL 
P(y,z ;x)=P(y,z ;y+z -XI, (9b) 

Krook and wu2 showed that the moments in their 
and Of energy P ( ~  Y 2; x) = O model, M$", when renormalized according to  
whenever x >  (y +z). P also has gn inverse col- 
lision symmetry, which will be discussed later. 

For  example, for the class of models of Ernst, M;C = 
r(3/2) MBKW 

P is given by " r(n+3/2) " ' 

and for  the TW model, we have simply 

Here, P versus x is a step function, which implies 
that particles come out of collisions s o  that a l l  
allowed energies a r e  equally probable. 

It follows from (8) that in general the moments 
M,, defined by 

satisfy the equation 

satisfy the equation 

where the sum is over all  0 6 i s n, with j = n - i. 
If we assume that F(x, t) for  this model satisfies 
an equation in the form of (8), it follows that M : ~ ~  
also satisfy an equation in the form of (1 3). I€ 
we further assume that 

then (13) becomes 

Comparing (1 5) and (171, and making use of (12) 
and (14), we deduce 
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Since ~ ( x ,  t )  is an arbitrary function of u (at a 
given t ) ,  it follows that 

which is  consistent with the assumption (16). In 
the Appendix, we show that (18) may be inverted 
t o  yield the following explicit expression for pBKW, 

Here and in the following expressions of this kind, 
we assume y < z ; when y > z , y and z should be 
interchanged in the expressions on the RHS. 

Thus, we have cast  the BE for  the BKW model 
in the form of (8), which entails only two integra- 
tions rather than the BE'S five. Note that pBUv 
as a function of .Y is symmetric about x =  ( y  +z)/2, 
as is required by (9b), and has the interesting 
property that it is constant in the mid-range, 
y < x < z .  

IV. THE GENERATING MODEL 

Other kinetic models can conceivably be con- 
structed by choosing alternative expressions for 
P, consistent with (9). As one possibility, sug- 
gested by some of the features of pBKW, we consid- 
er a model in which P is given by 

We call the kinetic model defined by (20) the "gen- 
erating model", for  reasons that will be apparent 
later. In this model, the energies of the outgoing 
particles a r e  restricted to lie in an  interval bound- 
ed by the energies of the incoming particles. To 
calculate the moment equation, we note that 

ments of this model, dl:, satisfy (15) without ye- 
nornznlization of the n~or7zents. 

Besides being satisfied by A4,RK'", renormalized 
according to (14), Eq. (15) is also satisfied by the 
moments of the TW model, ,I$':'"', when renorma- 
lized according t o  

It is through this link that the TW and BKW models 
a r e  related; Barnsley and ~urchett i '%ave shown 
that any solution of one model can be transformed 
into a solution of the others, a s  follows 

Similarly, using (14) and (22), we can derive rela- 
tions between solutions of the generating model, 
F*, and F ~ "  and F"", as follows. 

This implies that 

In the same way, we find 

pfiK"(x, 1 )  = $$ im P * ( ~ ,  j ) z - 3 / h - x i a  dz .  (27) 

The two transformations above a r e  essentially 
Laplace transforms, and thus can be formally 
inverted. Because the model defined by (20) gen- 
era tes  solutions to both the TW and BKW models, 
and because we will find that it lies at the base 
of a whole class of models, we call it the generat- 
ing model. 

Equation (27) is identical to  a transformat ion 
considered by Alexanian, l3 in which F*(z,  1 )  is 
interpreted a s  a "temperature" distribution func- 
tion. This interpretation is motivated by the fact 
that (27) is formally equivalent to  a superposition 
of equilibrium distributions a t  

and assuming that ill*, = 1, it follows that the mo- 
temperature z .  Alexanian derived a kinetic equa- 
tion for F*,  Eqs. (2) and (3) in Ref. 13, which 
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i s  equivalent to (8) and (20) above, although of a 
much different form. 

The equilibrium distribution for this model, F*,,, 
can be found from (15). Setting dn/l$/dt = 0, and 
assuming PO = @ = 1, it follows that M: = 1 for 
a l l  n,  implying thatt3 

F & ( X ) = ~ ( X - ~ ) .  (28) 

Evidently, the restriction that P* imposes on the 
outgoing particles causes the distribution function 
to sharpen and eventually turn into a 6 function, 
at which time all the particles will have the same 
energy o r  speed. From the point of view of the 
temperature distribution interpretation of F*, 
Eq. (28) states that a uniform temperature has 
been achieved. 

Using the expression for the moments that cor- 
respond to the BKW mode, 

M: = an-'[o! + n(1- CY 11, (29) 

with a(t) given by (3), we find the exact solution 
(also given by Alexanian13) 

Note that (2) can be recovered through the use 
of (27). Besides being singulal., (30) is  negative 
at s = a -  (for all  finite t )  and therefore is unphysical 
as a distribution function. As f increases, the 
coincident singular functions in the two t e rms  of 
(30) move towards x= 1; at t = a, the second t e r m  
vanishes and (28) follows. 

Even though this model exhibits singular behav- 
ior,  it might prove useful for numerical studies, 
similar to those done on the TW modeL6 The 
advantage of this model is that the distribution 
function does not spread in energy space a s  time 
increases, thus eliminating the need to impose 
numerical cutoffs. 

V. A NEW CLASS OF MODELS 

The major significance of the generating model 
is that it can be used to  create new models. We 
observe that (23) and (24) can both be obtained 
from the transformation 

with m =  1 and rn =;, respectively. Equation (31) 
defines an infinite class of models for a l l  m >  0, 
of which the TW and BKW models a r e  special 
cases. 

From (28) and (31) we find that the general equil- 
ibrium distribution is given by 

and using (30) we find the generalization of the 

BKW mode: 

The moments of this class a r e  related to  those 
of the generating model by 

M F )  = [r(n+m)/r(m)l M:. (34) 

To complete the description of these models, 
the corresponding P(") must be found. Mimicking 
the derivation of (19), we find 

[wxnP(m)(y,z ; ,y)  dx 

In the Appendix, we show that (35) may be inverted 
to  yield the following expression fo r  P!"): 

where 9'"') is a form of the incomplete beta function 
given by 

For m integral, q(") is a simple polynomial in u. 
For m nonintegral, we have the expansion 

Explicit expressions of 9'") for  1 . ~  = $, 1, 2, 2, $, 
and 3 a r e  given in Table I. Note that the results  
for m =  1 and m= 2 agree with (11) and (20). Plots 
of the corresponding P("' a r e  given in Fig. I .  For  
example, P2) is in the form of a trapezoid. p( l Iz)  

goes to .o a t  x = O  and x= ( y  + z ) ,  and the resulting 
increased production of particles a t  z e r o  energy 
leads to an equilibrium distribution given by (32), 
which becomes infinite a s  x- a. Note that for 
O< m <  1, the lower limit of the integral in (37) 
cannot be z e r o  but must be adjusted (or the con- 
stant of integration chosen) s o  that the normaliza- 
tion (16) i s  satisfied. The expression of q(1'2) 

given in Table I is consistent with this require- 
ment. 

As m increases, it can be seen from Fig. 1 that 
P(")- 0 in the shoulder regions, 0< x< y and y < x 
i (y  + z) .  In the mid-range, y < x < z , where PC") 



R O B E R T  M .  Z l F F  23 - 

TABLE I. Some explicit expression for q ( m ) ( ~ ) .  Equation (40), which is a generalization of the 
ser ies  expansions that have been given for the 

m q fm)  (24) BKW model' and the TW model, l 5  may be proven 

1-224 in the following way: It follows from (40) and the 
1 / 2  -- 

[U (I - U )  l i J 2  orthogonality of LI,OL) (x) that 

i s  a constant, P'") must therefore approach the 
value 1/(z -y )  a s  m - a ,  by virtue of the normali- 
zation, (16). Thus, the generating model P *  rep- 
resents the infinite-~rz, limit of the class  which 
can a lso  be proven directly from (36) and (37)l 
suggesting that the kernel in the integral transfor- 
mation (31) should become 6 ( z  - x) when nz - m. 

However, the latter does not follow, because the 
units of F("), defined such that M$ = m, a r e  in- 
consistent with the units of P, for which Mr= 1. 
If we rescale the units s o  that M : ~ ) =  l7  implying 
that F(m)(u, t) is replaced by n z ~ ( ~ ' ( ~ n x ,  l) ,  then in- 
deed the kernel in (31) becomes 6(z -x).  This 
means that f o r  any solution pm)(x ,  1) of (36), 

F*(x, t )  s lim ~ ~ F ( ~ ) ( l " r ~ x ,  t )  
r- 

(39) 

is  a solution of the generating model. 
Ernst  and ~ e n d r i k ' ~  have shown that a solution 

of the P ' ~ '  model can be written a s  a ser ies  of 
generalized Laguerre polynomials, 

where coefficients c,(t) satisfy an equation that is  
identical to the Krook-Wu moment equation, (1 5). 

FIG. 1. ~ ' " ' ( y ,  z; x )  plotted as a function of x ,  for 
Y / ( ~ +  z )  = 0.3 for the  class of models given by (36). 

By virtue of (311, we may also write c, a s  

cn = lm (X - ~).F*(x, ii dx.  (42) 

Using (42), a direct calculation of ac,/at along 
the lines of (20) may be made, and (15) follows. 

Note that the above relation (42) was introduced 
by Alexanian13 in connection with his representa- 
tion of F*(x, t ) ,  

p ( , , t ) =  f: 5$(&)n6(1-x). 
n - u  - 

Although it can be verified from (43) that (42) is 
identically satisfied for each n ,  this clearly does 
not converge to F*(x, t) since each term is always 
z e r o  for x # 1. Thus, the term-by-term applica- 
tions of (31) to  (43), and (39) to (40), which appear 
to  show the equivalence of (40) and (43), a r e  not 
valid in this case.  

Besides being related to FC through (31), a solu- 
tion F'"') of the model P(") is related to a solution 
F("+') of the model P(""' through a simple trans- 
formation. From (31), it follows directly that the 
f(")(x7 t) ,  defined by 

a r e  interrelated by 

More generally, we have 

which includes (231, taking nz = $ and 6 = 2. 
It can be shown that these kinetic models satisfy 

an H theorem. Besides the symmetries of P listed 
in (9), we need an inverse-collision symmetry 
of the form 

The P(") we have found do not in general satisfy 
this relation, but by inspection of (36), it can be 
seen that 
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? ( m ) ( ) l , z ; ~ ) =  ( y ~ ) m - l ~ ( m ) ( y , z ; ~ )  (49) ~ ( f ) =  I m ~ ' m ) ( x , f ) l n  I ' ( m ) ~ ' ~ ' ( x , f )  ( 2 T ) m , y m - i  
(50) 

satisfies (38). Note that Futcher and ~ o a r e ~  intro- 
duce this symmetry on the basis of the require- 
ment of detailed balance in equilibrium. Consid- and using (8) and the various symmetry properties 
ering an H function given by of P, we find 

I 

where F(x) = x l - m ~ ( m ) ( ~ ,  t ) .  This proves the mono- 
tonic approach to the equilibrium distribution. 

VI. CONCLUSIONS 

Our new class of soluble kinetic models has been 
characterized by a kinetic equation in the form 
of (8) with ~ ( " ' ( y ,  z ; x )  given by (36). These mod- 
els,  which a r e  a kind of generalization of the 
model of BKW, each possess an exact solution, 
related to the BKW mode, and thus show explicitly 
the approach to equilibrium. 

The mathematical basis of this new class  was 
the generating model, whose kinetic equation i s  
given by (8) with the particularly simple expres- 
sion P* given by (20). The link between the gen- 
erating model and the new class was provided 
by the integral transform, (31), and the corre- 
sponding moment relation, (34), was used to find 
an explicit expression for the F". Conceivably, 
it should be possible to  generalize this procedure 
by considering other integral transforms than 
the one given in (31), and thus generate st i l l  fur-  
ther classes of models from P*, although the 
models that can be generated from P* a r e  prob- 
ably restricted to those that a re  physically r e -  
lated to the pseudo-Maxwell molecule. That is, 
it is doubtful that more general solutions of the 
BE-representing more general forms of h(g, 
cos 6)  -can be generated this way. 

The equilibrium solution, (32), i s  apparently 
in the form of the general  equilibrium distribution 
of a (2m)-dimensional system, suggesting that 
P(") represents the kinetic equation for some (2m)- 
dimensional model. However, the physical mean- 
ing of these models for dimensionalities other 
than two and three (when the TW and BKW modeIs 
a r e  given) has not been explored. One question 
to be considered is whether the new models follow 
from the complete, momentum-conserving BE 
with a well defined g, a s  does the BKW model, 
or whether, like the TW model, they represent 
some kind of modified kinetic equation. Note that 
the solution (33) i s  identical in form to  the B W -  
mode solution in Ernst's (2m) -dimensional diffu- 
sive scattering model, except that h(t) in (3) is 

I 

given by 172/2(2m+ 1) in Ernst's model, instead 
of by $, given here. 

In a forthcoming paper, we will present the 
derivation of an explicit expression for P*(Y ,  2 ;  ,y) 

fo r  a general scattering function h(cos8) and thus 
for  the Maxwell molecule. 
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APPENDIX 

Derivation of (19) and (36). We prove the gener - 
a1 expression (36), which includes (19) a s  the 
special case, m = $. Multiplying (35) by (-s)"(n+ l)/ 
r(?z+ m), and summing over a l l  n, we find 

By partial integration, the LHS can be written 

since ~ ( ~ ) ( ~ , z ; x ) = O  for  x > y  + z .  Using the inte- 
g ra l  representation 

We can write (Al)  and (A2) 
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- + aP'm)xz-m 6' d t  e-st(x - t)m-2 
dl- 

ah- 

On the  LHS of (A41 we interchange the integrations, 

LY- dJv [ dt = Lyx dt  jY I d l ,  (A5) 
t 

and on  the  RHS of (A4) we  make t h e  change of v a r -  
i ab les  (u,  v)- (21, t )  where  t a u +  U :  

where  a and b depend upon t ,  y ,  and z ,  and are 
given by 

T h i s  change of var iab les  is i l lustrated in Fig. 2. 
Thus,  (A4) c a n  be rewr i t t en  

FIG. 2. The change of variables (u,v)-(t,u), where 
t=u+v.  

(i) Say z < t < ( y  + z) .  According t o  (A7), the  
l imits  of the integral  on the RHS of (A9) a r e  (t  , 
y + z ) ,  identical to  t h e  l imits  of the integral  on 
the  LHS. Since (A9) is valid f o r  a l l  t in th i s  range,  
it follows that 

(ii) y < t <  2. Now the l imi t s  on the RHS of (A9) 

X ib du[(y - a ) h  - t + ~ ) ] " - ~ .  a r e  (z, + z ) .  Comparing the two s i d e s  of (A9), 
and using that P'm) sa t i s f ies  (A10) in the range 

(A8) (i),  we  deduce that 
We have, by t h e  uniqueness of t h e  Laplace t r a n s -  
f o r m ,  ap'"' - 0. 

ax 
( A l l )  

(iii) O <  t < y .  The l imi t s  of the RHS of (A9) a r e  
( z , z + t .  This  t ime ,  replacing x in the  RHS of (A9) 
by ( y  + z + t  - x ) ,  and using both (A10) and ( A l l ) ,  
we  deduce = - I)( y ~ ) ' - " '  Jb+' dx(x - t)m-2 

a+z 

-- aJ"? ( m - l ) ~ y ~ ) l T [ ~ ( v  + Z  -x)lv-'- 
ax 

(-412) 
x (y  + z -XI"-", (A91 

w h e r e  we have a l s o  let r = u + z on the RHS. Integrating (A10)-(A12), we find (36) and (37). 
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