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'ABSTRACT

In this work the author presents two analyses of time dependent
processes in which diffusion and non-linear reaction take place simul-
tanéously. In the first case attention is focused on the distribution
of a singlé reactant in a stagnant medium when the reactién :ate is pra;’
‘vortional to its concentration squared. In the second case there are two
reactants and the reaction rate is proportional to the product of the concen-
trations. The analyses are carried out assuming that the space variations
of the initial distributions and the diffusivities are large compared with
the initial everage concentrations and reaction constants. Under these
circumstances, initially most of the changes in the distribution are due
to diffusion. However, eventuslly the proceéses become reaction dominated.
The two distinct behaviors are represented by corresponding asymptotic ex-
pansions which are matched in the usual manner. -

The processes under consideration are assumed to take place in
unbounded containers yet the initial concentrations are taken to have
non-zero space average. The residual amount of reactant in the single.
compénent case is found to be inversely proportional to the time elgpsed
since the beginning of the process; The decay of & binary process is
similar provided the supplied quantities of reactants are well proportioned.
If there is a disproportion the decay is exponential rather than algebraic.
In all events at a late stage the residual amounts are independent of the

diffusivity.



INTRODUCTION

This work contains analytical solutions which represent the inter-
play between mass-diffusion and concentration-decay due to non—linéér
reaction. In the first case treated here, hereafter designated by
(i), the author obtains the space and time dependénce of thé concen- -
tration’of a single component in a stagnant medium. Reaction is assumed
to be proportional to the square of the concentration. For the binaﬁfﬂ
system studied in case (ii) the reaction rate is taken to be proportiomal
to the product of the concentrationsof the two_reactantS]‘ Since attention
is focused on the relationship bétween diffusion and chemical reaction,
the author avoids, as much as possible, discussions of the intricacies
of the former mechanism. The complications of boundary-conditions and wall
effects are circumvented bf assuming that the processes take place in
unbounded containers aﬂd that at infinity the concentrations are finite.
Since engineering practice‘requires an efficient use of reactors, the
amounts of reactants supplied are taken to be correspondingly large.
Accordingly)the initial concenfrations of solutes are assumed to have non-
zero space averages, It 1s further assumed that.these initial distribu-
tions are either spherically symmetric or one-dimensional and symmetric
with respect to the origin. Hopefully, it will become apparent that by
overcoming algebraic rather than fundamental difficuifies the proposed
analyses could be applied to more complicated cases.

In view of the non-linear nature‘of the reaction rate the absorption
of the solutes is very fast wherever the concentrations are high. Therefore,
not only the diffusion ;echanismlbut the reaction téq,tend’to supress the

peaks in the mass-distribution profiles. Hence, when the combined



diffusion and reaction processes have been in progress'fcr a long time
the solutes are distribuied fairly evenly thrbughout the container(g).

At this stage diffusion plays a minor role and the processes are domin-
ated by the effect of the reaction. It follows that the diffusion can
play a major role only at an early stege in the processes and only if

the initial concentrations are sufficiently uneven. Interest in such
cases is not only theorétical. These cases resemble those encountered

in practice when reaétanfs are poured into a container but only a limiteq
effort is made to spread them evenly.

A measure of the initisl relative rapidity of>fhe reaction, as
-compared with that of the diffusion, is given by a non-dimensional
parametef €. As explained, € 1is assumed to be small. This assumption

- makes it possible to employ € s&s a parameter in the singular perturbation
method, which is applied to the problems at hand. A power series in €
represents the initial, 'diffusion dominated! stage of the process. It

is matched with the large time eipansion which characterizes the 'reaction

dominated' stage. In that sense the author adheres to the acceptable

(1)

that in the processes under discussion the chemicals "first

(2)

diffuse and then react". Evidently Pearson was the first to point out

notion

the correspondence between the two distinet behaviors and suitably matched
asymptotic series. By eapplying this method to the case at hand both useful
and instructive results are obtained. OFf these the more important ones are

the apparent limited overall influence of the diffusivity and the sensi-~

tivity of the binary process to disproportion in the amounts of reactants

‘supplied.
(3)

Toor and others have shown that for case (ii) numerous significant

results can be obtained by going through much simpler calculations. However,
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that shortcut is useful when the diffusivities are equal and the reaction
rate is very fast, i.e. in the limiting csse of ¢ =+ », Here g 1is taken
to be arbitrary but small. Again although to simplify the calciul;;ion
here too the diffusivities gre assuméd to ‘oé equa} - vthre aﬁalySis clearly
ho]_:ds when they are not. Consequently, the methoa and ap@roach proposed

complement those mentioned.




SINGLE COMPONENT; SECOND ORDER REACTION

Let the concentration of solute € he governed by

2ifof v kot = k2R W

where 3 is a cartesian coordinate and 7 is time., The constants &
end h designate mass diffusivity and reactioi; coefficient, respec-
tively. The initial concentration profile E(D':, O) can be eny function
which i1s even in X and has a non-zero space averagé. C, K

No generality is lost if it is expressed as follows

Co<‘i + E/z?fG(z?)wS(fi)O(f ) (@)
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where

5 - (3)

G (o)
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The maximum value of G(¥) is unity and it is a‘t“ Y¥=Y. Unboundedness o.f
the container can be interpreted as {4 >>1, where f is its characteris-
tic dimension. Therefore, the parameter € 1s & measure of the initial
fluctuation of (C( X ,0) with respect to the mean C, . In terms of the

non-dimensional wvarisbles

X - %% c = /e, £ox 8 ¥ -7/%

the differential system under discussion reduces to

Bc/m‘, + et = ‘a’c/'()xl (1)



c(:c,o) l:: | + e/ﬁ(ﬁ)cos(b’x}o{f »_ (21)

e = ko ki G(x3) = g(¥)

Let the following expansion hold at the initial étage of the process
« «w) 4 )
c = o0 ) s oeg ey (1)

Substitution of the latter form into equation (1!') yields

- ‘a:cff)/az‘ + ?’ ‘”/ax = 0 - T (9)
N I 3 ’/ax - (¢?)%, (6)
_ zc"/)f + bch’/zx’ - acvel ) ()

Since the right hand side of equation (2') is independent of €, this

initial condition must be imposed on Ci’ . . Functions of higher index are

made to vanish at t=0. Conseguently, every component of the series (k)
is governed by a determinate differential system. The solution for c“"

is therefore

.9
4

e(1 - 26l o+ 3gtt 4 )Js(x)cos(xx)exlk@ff>dx

E t))j.f_)ﬁ_gé. (cos( 2$+/3)x) - cos{(¥ /3)1))2 }> (54,/33){)



-2 Cos ((b’-r/g)x)g,le (—(25173)21‘) +2 cog((ﬁ -b’)x)ex‘/D (.l@-zyzt)] c»[?fo(.'/s

+ 8 13 J[S ﬁ(f) c,os((/;\-b’)x) - COS((/s+2{)1)> ex‘L <_. @u/g"‘)?{)
+ cos(/s+5)D<)€x/> {(HU)Z{) - cos((ﬁq@x}éx%(—(@—i)’z‘)] c{zo//s

+ {%Ej ojo ,3%_%%/3)[ cos (X+F)x)1x}> QS+/5) f) + Cos [/g ?5)’6) 91}3( b’)lf)
- (cos((/ua’)x) + CDb((/% zs’)x)) gx/> 4‘5){)] 5/2{(//‘%
+ e3§1 J [ ‘\(“)3@3(79 [ cas((/%zuol)x)j(

5 R | '("‘/5,_‘/55/ - /%)
X [.Q’JC; (— (D{L4-F>L+b)1)f) - 21%(‘@ - *0()21()]

yeT N a(fs)c 5((/s - o()%)[-@l%((o{-f-/a—[-j){) mclé (/5,,5 ‘?()-f)] |

4 (ft i D(sz =5 cos (({HZ “a()x)l-el%(_(x’z_‘ﬁ/gl'f Zz)f) - ex/ﬂ (- (g +%- d)"-{) 1
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s
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follows
It from the arguments brought in the introduction that when ‘bhe

process is reaction-dominated both time and space variations are much
smaller than at the initial stage. This is reflected by the appropriate

scaling of the corresponding independent variables. There are various in-

dications thet the appropriate scaling ratios are given by " :

X - E‘Ax ' T: E?l (9)

Eowever, the author knows of no chain of rigoroﬁs arguments which leads
to rélationship (9) as the unique choice. The fact that it yi_e:lds an asymp-
totic expansion for large l‘/ Cw) which matches with CG) , offers some
a posteriori justification.

When rewritten in terms of X and ] and rearranged as a se-

quence of terms of descending orders of magnitude, equation (8) reduces to

() Q) ( T - * )
¢, + ec, +ec) = ( L=+

+ (1 - 2T+ 371>[53/l€,(l/2)3?0)x

.
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In obtaining the latter, use is made of the following change of ;rariable:

Z _ E’AZ{

and of the Taylor expansion
l/ 2 4
g) 3(0 + g 43(") + /264’3(0

Note that in view of equation (3) and the symmetry of e 5¢ ,0) with res-
pect to the origin 3(O> and the odd derivatives 520) j 5(0) vanish,

The form (10) suggests that the "late" expansion is given by
¢) @) A 3/ (‘ S/z «)
c=cCc ~ ¢ (T) + ) e, (X, T) (11)

It is substituted into the governing equation, which is rewritten in

s

the form
C/DT it . /et | (a")
and the components CLf) are found to be govgrned by
! /)’F 4 (df’}z : o | (12)

) @ :
— ¢, /)'F - 1Cf)c, - B’c/w(1 (13)

it
o
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The solution of equation (12) is
Cao) = A /(’ + AT)  (5)

) 0
where A 1is a constant of integration. By matching co) with C(‘) B

a

.one finds that A 1is unity. The matching of higher order terms is in

agreement with this result.

Once c, is known the solution for the higher terms in the ex-

pansion is immediate. The general solution of equations (13) and (1) is

@)

¢, = (1+7T)7 J(ﬁ(ﬁcos((jx)m/s(—él‘r) Af - we12. 06

The transforms

)

expansion c

()

e T e el +T)‘2ﬁ&3/*37o)51/2{

i)
k({,) are obtained by matching with ¢ . The

is thus found to be

o

oy g falleos(gx)enp-T) AL o

Solution for the spherically symmetric case can be constructed in a

similar manner. With r as the non-dimensional radial coordinate, the

initial condition is
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c(r0) = ] -+ eF(r), e
where F(r) is & function even in r which satisfies
o° ' .
40 j””ll-—(*)c["“ = o . . (9)
o ] -‘1

_Up to terms of 0(54) the initial expansion is found to be -

SO (1 - st) +_’e(/

et ﬂx)nf'sam(ozv)m}(-ofociof + se’ﬁ?(d )JP(/D Jrs
[?2(4” o(/g)cos Ov) - H (a(/s)sm *v) ]ex}o(—?« ‘) 010(0//1’ (20)-

In this expression is 4(3/) and the transforms are given by

]Q(OJ\ /Of fl' (+) + stn(Av) o

4 Cil(tp 0 )= Cellaopt ) - Ce ((wf-*)”?)] A7,

oo

H(o(,/S) = @/JT sz(w)cm(w)?z(’”) d//i)al*' (21)

The scaling scheme (9) is adopted here too, hence the leading term in the

- {
" . . . — - -
late" expansion is again (] + 1) . However, since in the present case

| .
the masqdiffuses in more than one direction, one can expect uniformity to

be attained earlier in the process, Thus, while in the one-dimensional
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3/2

), the corresponding ra-

5/2,

(4
case the X variations of ¢ are or  ofe
1
disl veriation (R= € °r) in the present case are of O0fe . -This is
. . ) - N
e consequence of the facts that f(a) is odd in e« and that f(o) is pro-

portional to the left hand side of equation (18). The "late" expansion is

given by

¢ = CC"):‘ (} + T)_' +

-

e o7 g e

3
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BINARY SYSTEM: REACTION RATE PROPORTIONAL TO THE PRODUCT OF CONCENTRATTONS

LA nondimensionatization.scheme similar to that employed in the pre-
vious section reduces the differential system which governs the present
‘case to

za/’ﬂf - B‘a/?f . ek (23)

)

’)é/’;f Y /’a;z‘ - - geaé) | ‘ (21)
| 4 heasti dy - )

where

i

alx, o)

(}‘(x,O)

The diffusivities, x, and the length characterizing the initisl space

T

S A
] 4 eé_jm (X)co&(fj)o/b/ . (26)

variations, % -l, are assumed to be the same for the two componénts; The
parameter. € 1s the initial ratio between the rate absorbed in the reaction
to the rate diffused -- for component ‘a. The product €8 is the corres-
ponding ratio for component b.

As in the analysis of the single component hefe too both € and §e
depend on the initial average concentrations of reactants a and b. The
paraneter § 1is associated with the proportion of the initial gquantities of
reactants. VWhen & 1is unity these amounts are chemically balanced so that
both will eventually be completely absorbed in the reaction. Thé cases
6> 1 and § <1 correspond to binary systems with excess amounts of reac-
tants & and b, respectively.

The initial, diffusion dominated behavior is again represented by
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regular pover series in e. Up to terms of 0(et) these are given by:
« S ‘
O.=0.‘)= (/—81[> + Eq(l—gf)x

J/\(Y)cos(m)m/l(~3{)c(25 ~ Z(r(g{)/}m(x)cos(z{a)eoc/i( z/)a/b’

4 2 %

] Q

- Efaebj 5 Z/)_/X }’YI/Z() COS [x X)x)(,@x; D{t‘bf)f)

— Jax,L -(X-X)zzl)) - co_s (z(+b/)x)(’”/0 {zﬁlm’f)f)

bl bt du en

Gré“.’: (} —{aZL) + ﬁdb([_{e-()xv

X sw(g)cos(b’x).ex}@ lel)pléf - £, <%50f/.&)cos [51)1;/9(3/1{)9/{ | :

od o0

feen 5 { A/;Z,{.);Z(m [cos((1,-1,))(en} (_(Zﬁu@M

~ vevx% (- (\5‘ ~ 2&)22{) _ coﬁ({}’. +.yl)x)<_ex - (¥ + Z;z) lL)

_ mc/a(~ (4 +7,)0)) ] 0[7. 44, (28)



By revriting these in terms of the scaled variadbles X and T

, one finds

that as in the single reactant process the mathematical form of the late

e:xpa.n§ion is:
?) /s 3/2 ¢

| O b sy (297
(¢ = é’ ~ {70 (T) + £ 6. <X/T> :

However, it will be shown that, under certain circumstances, the manner of
the reaction-dominsted decay is substantially different. '
et (l) VA
It follows from the governing equations that @, and A are

governed by _ -

Y R EY)

e AL e

i
0

Subtraction and integration yields

S S C

where C 1s a constant. By substituting the latter result into equation (30)

or equation (31) one gets

@)

a, :U/é)(gﬁl-'l')-, {}(i)zv()?)”"r).’ ;Kp C=0 (32)

e T P W Y =
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@) / |
: c /% 9) CDe ;( cT) Yoo
% | -D exp (-cD 7 G D;/)(« - Cie ()

Here, D and B are also constants of 1ntegration which, together with C,

©
are determined by matching (ao . (70 ) with ‘(C"a R 60

These constants are thus found to be governed by:

({B)" = | N co (34)

C/é(l—D>=/) , ) (;D/(J'D):/)mcm (35)

Since C may be either positive of negative, equations (32) and (33) re-
present three different asymptotié solutions for large Z‘ . Evidently, the ..
asymptotic behavior depends on 8. For &=1, equation (35) has no solu-
tion while equatlon (34) is satisfied provided B is unity. .Consequently,

¢ )
in this case, di) and 60 are given by:

I

&~ (O _ (1 +T)" o =1 ¥ (36)

so that indeed eventually, the entire amounts of reactants are absorbed in
the reaction, Again, when & is bigger or smaller than unity, there‘is,
respectively, deficiency and an excess of the reactant b. Indeed, for

8#1, equation (3L) cannot be satisfied; the solution (32) is ruled out.

~r
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It follows from equation.(35) and (33) that the following holds:

i
!

I LY. (1- ) 2xb - (3-)7) {41 G
F) | - S"lQl/’(—(ﬁ")T) J o ~I__s—"ex/)(..(g_/)T') / .

so that for 6 > 1, a approachos the final value (1 - 6—1) while b van-
ishes. For & <1, b approaches (1 - §) while a vanishes. The énaly—
sis will now be completed recognizing the distinction botween the cases of
§ >1 and’ § =1, Clearly, the case of § < 1, or excess in the aﬁount
of the reactant b, does not desérve a spocial treatment.

Whether the amounts of reactants aré well proportioned or not, the

3/2y

terms of O0fe in the late expansions are governed by

)af‘o/)_,. j ,)zaz‘:)/3 o2

i

- ( a? A éf)) (38)

Béw’/aT _ ?1(?.0/3)(1; - 4 (“(i)ﬂf) + al{) é‘?) ﬂ (39)

The right hand side of these is eliminated and then 2z general solution is
) . (5 ) é,(f) ' s » -
obtained for the combination \ a,’ .- U, ) . By substituting thé solution

for this group.into equation (38) the latter reduces to
@) @) ¢\ @
ya, /a'l‘ o (6 4+ %07)0
oQ

_jzauj) /b Xt - a‘f) j(i(g)c:os(ir)()ﬁ%(-gj')‘(’j (ko)

[o)
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)

¢) _
Therefore for the case §=1 the solution for a, and b, has the form

- () U5 sy )y Tk ) :JV(%)C*‘*@X%’*/9<T‘7) )

(/)J §>cos EX)@c}(? :)Jg + 1 +T) JV(*g) ws(‘g)()ﬁuljy{‘g I) (42)

(i) (1).

@
By matching either a ) with a or b with b( 0 the transfom
functions U(g ) end V(*g) are evaluated. It is found that the late

behavior of the chemically well belanced procéss is given by

a?: aa)z
@j bwj

~ (1+7)" + (/) ea/‘[:’ (%A'?o)

0

- Ib%n(o)) —+ (ea }1(0 + (bmzo)) (i—f-l) co;éX)m%(gu}/S (43)

It can be similarly shown that when there is an excess of reactant the late

time and space dependence of the concentrations is (approximately) given by
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a = a’ (4 __“)/g N 534 §exd((s-)T)
- §exp(-6-97) 2 (1= 5'52'3(/’("(5:")7“),)1
X [ (zg-:) $'e. }H’o) - g M'Zo)Jj§2cos(‘gX)zi/> ('EZT) o[§
¥ s 83/2 I - (Ié")é:{"{J‘CZ(‘&—‘ﬁ)' X
g $ (1 - §eap(-(§-J7))*
X[é QQA(O) - é(,‘m)QO)} J§1COS(§X>£JC/7(«§”T>J§ (L)
Lo (9 L U=l o ead (s
[ §exp(8-0m) 27 (1 - §exp-(5-0T))*
| , o0 ;
X [(Zs“’>6‘-’£a )wzo) - 4 w’fo)} jElcos(gx).zx/: (~— %"'T) alg
b2 @t enb Gl (50) - §exh(-6)T)]

$ (1 - §eap(-(5-07))>

od

X [_ 6.—8‘:‘.[\’(’0) - «(’(,W%O)}jglcas(*g X)@;{/L(~%z—,—)0€§ (L5)
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‘DISCUSSION

? . .

In theory, the processes under consideration never subside. In prac-
tice, they are terminated when the rates at which thélresidual émounts of
reactant decay is suitably small. Thefefore, it is useful to bé ablé to
predict what will be the residual aﬁounts at an arbitrarily large time %.

In the single component case the following holds

- =1 ’ i

¢ (3, 1) —— (ki) o f s e
Y
- (usS) . . sy S . s )
This known result is rederived by writing c in a dimensional form and

approximating it for large t. It implies that late in thé process the concen-~
tration is independent of the amount of reactant supplied initielly and of
the initial distribution. It is wérthwhiie noting that when the reaction
is of the first order tﬁe residual‘concentration is proportional to the ini-
tial average and the timewise decay 1s exponential rather than algebraic.

On the other hand in the binary process the residual amount depends
both qualitatively and quantitatively on the initial conditions. In the event
that the initial amounts are well proportioned, §&=1, the residual amounts
approach zero. The decay is again aigebraic and the concentrations of both
components are inversely proportional to(k%). If there is an excessive amount
of one reactant, &#1, a residual smount of one.component will be left un-
absorbed when ihe concentration of the other compqnénf vanishes. The inherent
disproportion mak+, the process comparatively fast so that the timewise decay
is exponential. The quantitities &,(§-1) and (1-§) which are associsted

with the initial disproportion are reflected in the large t concentration
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distribution.

Both for thé single component and binar} processes thé concentrations
at lerge T are independent of the diffusiviﬁy. Indeed in view of the
scaling (9) and the nondimensionalization scheme aéopted, T 1is indepéndent
of x. Therefore inasmuch as am 6“) and Ca) are, to within a certain
error, functions of T only then the late stage distribution aré independent
of the diffusivity. This conclusion implies that as they subside, the
processes become reaction dominated. In fact, the anticipafion of this
result motivated the scaling choice (9). The fact that the two expansions
match shows that the choaice is correct and that the solution is valid. It
-would have been considerably more difficult to construct the solutions by
adopting a pure mathematical approach.

Though the expressions for the residual amcunts do not show it, in
practice diffusion plays a very important role. The gqverning equations adopted
are based on the implicit assumption that the reactants are completely dis-
solved. However when, in practice, the reactant(s) is (are) poured into =
container this is not so. It takes time (and somethimes effort) to have
the concentrations everywhere below the saturation point. In this initial

mixing stage the diffusivity is very important but this stage is not accounted

for here.
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ABSTRACT - BN

The author analyses steady-state reactant concentration distri-

“~butions throughout finite-width streams, when convection conduction and

second order chemical reaction take place simultaneously. This is done

EEEEE—————

- by recognizing that the process under consideration has two distinct be-

haviors at the inlet and downstream, and developing two asymptotic ex—
pansions to represent these. Downstream, the reaction is spread more- ; | B

or-less evenly across any transverse section so that the reaction is

responsible for most of the changes in the concentratiéns. Upstream,
the effect of diffusion is dominant. It is'found that once the reac-
tant is completely dissolved, the diffusion mechanism has very little

additional overall influence on the process. Thus, at any section

dowvnstream, the residual asmount of reactant is independent of the dif-
fusivity and of the quantity supplied at the inlet. The decay is such f
that this residual amount is inversely proportional to the distance ; {

of the section from the inlet.

e S it e <u




INTRODUCTION : ;

In this work, the author analyzes a process in which a reactant dif-
fuses across a stream, gets convected along it, and is absorbéd in a chemi-
calareaction. The stream is of finite width and is bounded by impregnable
surface or surfaces. At the inlet, the flow is fully developed, the reac-
tant is completely dissolved, and its concentration has an arbitrary non-

uniform profile., Axial conduction is neglected. The amount of mass ab-

sorbed in the reaction per unit time is proportional to the concentration b

squared. This non-linearity makés thé mathematical enalysis difficult.

" The author considers two geaometrical patterns: a eircular pipe and"; two-
dimensional channel., The flow profiles are taken to be parabolic in both |
cases., The distribution of reactant at the inlet, and hence also across
any‘transverse sections downstream, are sssumed to be, respectively, ro-
tationally symmetric and one-dimensional. It will, hopefully, become appa-
rent that the method of solution used here is not restricted to th;se
geometries,

A matched asyﬁptotic expansions type of solution is developéd. The
pertﬁrbaxion varameter employed, €, is the ratio between the characteris-
tic reaction rate and the characteristic time change due to diffusion near
the inlet. In many cases which are of practical interest, € is small,
énd this ensbles one to employ the method of singular perturbations. Small-

ness of € corresponds to the cases in which the reactant is injected into

& finite number of spots in the stream, and due to diffusion the injected i;

hass spreads across it., It is less often that pains are taken, or can be
taken, to spread the reactant evenly across the inlet. Thus, attention is

focused here on the more common case in which the diffusion is dominant




near the inlet. Far downstréam, the transverse mass distribution is more
or less uniform, and hence there the process is reaction dominated, The
two'distinct behaviofs are characterized by thé asymptotic expansions con-
structed here. The results are compared with those of the solution for
the limiting case of zero diffusivity.

Treatments of procésses in which diffusion, reaction and either time-
dependence or convection take place simultanéously are often based on the‘

prenise that mass "first diffuses then reacts"(l)

. Hence, the implicit
recognition of the two stages, discusséd hérewith; is anything but new.
Furthermore, the correspondencé between two such regimes and two asymptotié
- expansions has already been exploitéd(2). However, the eauthor is unawvare

of any work in which the suitability of this method to the Graetz(B) type of
problem is pointed out. The proposéd application could be of help in de-
sign. It yields information about thé amount of réactants that is ab-

sorbed in the reaction over a given length of conduit and sabout the overall

influence of diffusion on the process.

i



"ANALYSIS

The differential system governing the concentration 5(f5§; Ri':iéJ

is
Q;(i., X, ) 32/3&5 + RT* =k (’b‘/})if + ‘b’/?)ij)é (1)
C(x,,%,,0) = ca'f , (2)
’aE/’bﬁ = ¢) af H(i.,iz)eo (3)

Here, (éc—l, 552, §3) are cartesian coordinates with (+SZ3) pointing along ‘
the conduit axis. The velocity in that direction is ?r; . The streain is
bounded by the surface H=0 and n is the normal to it. FHere, «x is the
diffusivity and k is the reaction coefficient. °y is the 'mixed-cup'
average concentration at the inlet, and the distribution thére is éharac—
‘terized by the function f(i‘l,i‘z .
In terms of the maximum velocity, V, aﬁd the length associated with

the transverse cross section £, the following non-dimensional variables

are defined:

/c:o O”f@/tf

M
o

(204 0m)s (5, %, 7)) z=axft

Using these, equations (1)-(3) reduce to

U(BC/DZ) + ect = (}‘/'ax.‘ + b‘/aa‘)o (1)




iC(at,oé,o) = ?(1,3) ,.“ e (2')

(3")

i
o

‘oc/bn - o |, _ a{ -H'(i,,i,_-j

Here, the parameter € 1is defined thus:

g = }qco’E‘/cok

As explained, € is small and sufficiently close to the inlet region, the
influence of the reaction is of O(s‘). This is teken as an indication that
at this region the following holds:

@ ")
c= ¢ ~ & 4+ ec) + £ ()

By combining this form with the gdverniné equation, one obtains:
C - «) ‘.
- U @C;)/’&z) + (’aL/axl + 2 /33‘) c, = O (5)

¥ a) &
A Z _ ) \2Z
- or(bc‘,’/az) + (z‘/al‘ + :?:1/33) ¢, = (¢,) (6)
and so on. Since the condition (2') is independent of €, the following

initlsal conditions must be satisfied:

C(g(l,s,o> :F
(7)
)

¢ L2y, o)

1]
Q.

|
j #o J

It is similarly clear that every component is governed by a well posed




differential éystam. These can bé solved consecutively. An expression
for the space distribution of ¢ 'near thebiﬁlet, correct to within an
error of O(sm), is given by the sum of thékfirst m componénﬁs Howéver,
regardless of the number of terms retained, éxpansion (L) will not be =
va;id representation ¢f ¢ far downétréam. For this region, the under-
lying essumption thet the process is diffusion dominated holds no longer.

A quantitative demonstration of the failure of this assumption when z is
(1)
J

these for the case of a two dimensional channel of width 2£ will now be

large emerges once a couple of terms ¢ are calculated. Solution of

presented.

(1) _
" Cleerly, ¢ o 1s a solution of a Graetz type problem. It can be

2 - -
expressed in terms of the eigenvalues An and the eigenfunctions ¢n gene-

rated by

M 2

% + A,(I—xgﬁqzo) %(@) =o | 8)

as follows:

1]

@ =Sk Go)eap(-nz) (5)

=

>
[~

) .
The constants An are given by

i

A‘l_'j’@_f) (0" olx = f(/-x’)ﬁgq‘ ol - (10)

The first solution of the Sturm Louiville system (8) is A,=0 and ¢ =const.
It, therefore, follows from (10) and the definition of 'mixed-cup' average

that the first term in expansion (9) is unity. Therefore, equation (6) reads




- U acf;’/az . 2 /axl

l
+

+ 1 f A: %(1)@1}3(— }\iz) +

o0

INTR

me=t

so that ¢ i) has the form:

& - (3/2) 2 ) (1‘* z*)? +
| 20

4 22: )V,qx/»( »z) ‘+

.2 E X, e G+ M )z)

Nz

CA ZA;%,“%(— NE) an

In this expansion, ¢n and x o e sclution of the systems:
n
" 2 2 ’ -}
A TR A O

Xo o (i o), = Gl . Rle)e 02

Note that wn is determinable to within a constent times ¢_, Dbut since

A, ‘are adjusted so as to make c(i)(x,o) vanish, the form (11) contains no

Z A A 44, “}’(- (3+ %)%) | (67)
( o | |

s



)

can be easily shown that the expression for ¢

will not be calculated. UNevertheless, it
()
2

ambiguity. Higher terms
contains a term which is
proportiondl to 22,

‘The perturbation technique employed in generating the components

c(i) is based on the premise that the term sng(;) is of an order of mag-

nitude smaller than the term sm"lcii%. Therefore, the terms proportional

to z and 22 in the ex i (1) (1) i 1li-
pression for ¢ 1 and ¢ 5 respectively, 1li-

mits the validity of expsnsion (4) to the small =z range. Moreover, the

emergence of the products 32z2 suggests that an‘asymptotic expansion for

large =z, c(l), can be constructed by adopting the following scaling scheme:

-

7 = ¢z | W

Rigorous proof that this is the correct and unique choice of sealing will

not be offered. We propose to justify this choice on the grounds that it

produces an expansion c(z) which matches c(i).

(%) ' -

Writing c(l)k in terms of (x,2) ', one gets:

(i)

¢~ (1 - 3/22) +£(‘/i)(0“¥1)2 + gA;)fO{éz)

. ;
Ir c( ) matches c(l), it must have the form:

CQ) ~ C(:) (1, Z) + 5c,{[)(x, Z) ’ (15)

The governing equation, written in terms of x and %, yields:

o = ‘a’c(f)/b x* | (16)




8
L@ Y 2 ¢ '
(1-3‘-)?%0 YA -+ (Co) . - 225.)/332 ) an
) @@ )
(1 - X, /32 + 26 c‘, = 2, /Bxl) (18)
while it follows from condition (3') that c(§ ) satisfy:
(£) i , § . . '
2¢; /DX = o 2= 3 (19)
Equations (16) and (19) imply that c(i) is-independent of x. Therefore;

—3integration of equation (17) over the range -l<x<l yields:

eh)echz o @F < -

The general solution of the last relationship is:

&

" / . ,

C,, = (C -+ 3 2 Z ) ( l)
(). ) (1) . .

When o is matched with ey it is found that the constant of inte-

gra’cion C 1is unity. By combining the last result with equations (17) and

| A .
(19) one finds that the solution for c(l) has the following form:

C(E) . (l _ .Iz)L . F(Z> (22)
‘ 8 (1 + 32)*

vhere F(Z) 1s independent of x. It is evaluated by substituting the last
result into equation (18) and integrating over the range -l<x<1. 1In view

of equation (19), integration of the right hand side of equation (18) venishes.




Hence, F(Z) 1s governed by:

3Fe)+ 22)' - (2las)(1+322)% 4 Flz) <o

The solution for F(Z) is:

Flz) = FO +shzys 5

+ (4//05> bn (/ + 327)(1 + 3/#2)"“ (21)

(2)

By nmatching two terms of ¢

(1)

with two terms of ¢ , one can show that
the initial value F(o) 1is equal to Ai. In viev of equations (12) and
(13), the latter can be expressed in terms.of quantities which are associated ; |

‘with the Graetz problem (5) as follows:

o0

Fo) = - :}%((‘;-xl)dx. - 32,4; A‘:-[;pn dx

M=

3 i‘ooo 3 A° ] J, 0[1' | (25)
Y X 'Ah A M Sp”% 2

Nz M=

In the rotetionally symmetric case, the forms of solutions for

°(i)(x,2) and c{i)(r,z) are given by equations (9) end (11) with minor
modifications. The eigenfunctions and ;eigenvalués are generated by: .
‘ o
L I S TR OF SR DR
T ¥ 2 .
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The same operator and boundary conditions appear again in the systéms go-
verning wn(r) and Xnm(p) which correspond to equetions (12) and (13).
Again,i in the case at hand, the integration over the area impliiecit in the

. J =
evaluations of An’ J=0,1 has a slightly different form. Finally, the

first tern in the expression for c(ll)(r,z) is (-2z) rather than (-3/2 z).

In view of the matching requirements, this change of factor must recur in

(2)

\the expansion ¢ . It is shown below that this is so.

Clearly, the expansion c(Z)(r,z) has the form (15) and c(l) are

J

obtained by a set of equations similar to (16)-(18). However, the inte-
gration over the area implicit in the reduction of equation (17) to (20)
-yields a different factor for the case at hangd. ’I‘herefore, in the rotation-
(2)
o

ally symmetric case, ¢ is given by:

UG +22)" (21)

Again, c(i) is given by:

© (=2 | "
o S(TT27 ) + F (Z) | | (28)

In this case, F(Z) is governed by:

)

Fe arGery (et

Hence, its solution is:

F(Z) = F"[o)(p;- 27) " 4 (//za) A(HIZ‘)(H 275" (30)

—————-—-‘—-~
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where

["?0;« @, o | (31)
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DISCUSSION

From the analysis, it is obvious that thé diffusion plsys an im-
portent role neer the inlet. We shall now show that the influence of this
effect is not restricted to this domein. Noté that the eviélénce of ef-
fective diffusion downstream does not contradict the basic premise that
the process is reaction dominated there. Dominancy of an effect is teken
(See Introduction) to imply that it is respons‘ible for most of the changes |
in the reactant concentration. Indeed, to within an error of 0(e), c(f‘)
is uniform over any transverse cross-section so that changes in (2)

c are

mainly due to the chemical reaction.

L)

fusion, SR would not have been uniform over the section Z=const.

However, were it not for the dif-

In

fact, this uniformity is due to the fact that the highest order equation

governing the expansions in the downstream region, (16), represents the

influence of this and no other effect.
The overall influences of diffusion will now be examined. This @s done

‘by comparing the solution obtzined here. which holds for arbitrarily large «,

with the solution for «x=0. The latter is given by

-1

t(3,%,1,) - c(z,5,0)0% (0 + kLG, F,9) (32)

In view of equations (21), (27), and (32), for large 353, ¢ can be ap-

proximated by:

@'3(;{,, iz) ()2 i3 )q K =0 ay[\.{ha ‘Y _g,Qt«]‘-:Dh
£~ (2/3)\/(&23)4 ko c/\a'mu[ ‘ (33)

(’/Z)VUQJ.C_,,)"‘ R%o ' c:vw/a/ za.’zu
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Thus, the average residual reactant over the conduit cross-section ig the

ssme in all cases. Since for k=0 the stream is richer at the center, the

'mixed cup' average is slightly higher in this case. However, the dif-

ferences are minute so that the diffusion mechanism appears to have

very

little overall influence on the process at hand. Of course, in practice,

this is not so. The results (33) hold when 2'3 is measured from a some-

what fictitious inlet, mamely, a section in which the reactant is completely
dissolved. However, at the point where pure reactant is injected into the

stream, its concentration is often above the saturation point. Clearly, L,

the length of conduit reguired to have the reactant completely dissolved

“depends markedly on the diffusivity. In the limiting case of vanishing «,

L will be indefinitely large. Consequentl:f; at the section (3&'3 + L) down-

stream of the 'true' inlet, the amount of residual reactant is a much more
sensitive function of « than implied by equetion (33).

In Graetz's case, and for processes in which convection diffusion and
first order reactions are in effect simultaneously, the residual an;ount of
mass is proportional to the average concentration at the inlet. The resi-

dual amount decays exponentially with  x However, in the non-linear case

3.
at hand, the residual amount is (within an error of 0(e) ) independent of

—r— — . - =1 .
0(x1,x2,o) or ¢, and its dacay is much slower, like X3 This result,
) 2

combined with the appropriate interpretation of 'true' conduit length

5!-3=L, could be of importance in engineering design..
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