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'ABSTRACT - 
. - 

I n  t h i s  work t h e  author presents two analyses of time dependent 

processes i n  which diff'usion and non-linear reaction take  place simul- 

taneousl j .  I n  t he  first case a t t en t ion  i s  focused on t h e  d i s t r ibu t ion  

of a s ingle  reactant  i n  a stagnant medium when the  reac t ion  r a t e  i s  pro-- 

' por t iona l  t o  i t s  concentration squared. I n  t he  second case there  are two 

reac tan t s  and the  react ion r a t e  i s  proportional t o  t h e  product of t h e  concen- 

t r a t i ons .  The analyses a re  carr ied out assuming t h a t  t h e  space var ia t ions  

of  t h e  i n i t i a l  d i s t r ibu t ions  and t he  d i f f u s i v i t i e s  a r e  l a rge  compared with 

t h e  i n i t i a l  average concentrations and react ion constants. Under these  

circumstances, i n i t i a l l y  most of t h e  changes i n  the  d i s t r ibu t ion  a r e  due 

t o  diffusion.  However, eventually the  processes become reaction dominated. 

The two d i s t i n c t  behaviors a re  represented by corresponding asymptotic ex- 

pansions which are matched i n  t he  usual  manner. - 

The processes under consideration a r e  assumed t o  t ake  place i n  

unbounded containers y e t t h e  i n i t i a l  concentrations a r e  taken t o  have 

non-zero space average. The res idual  amount of reac tan t  i n  the  s ing le  
\ 

cozuponent case i s  found t o  be inversely proportional  t o  t h e  time elapsed 

s ince  t h e  beginning of t h e  process. The decay of a binary process i s  

s imi la r  provided t h e  supplied quant i t ies  of reac tan t s  are well  proportioned. 

If there  i s  a disproportion t he  decay i s  exponential r a t h e r  than a lgebraic .  

In a l l  events a t  a l a t e  stage t he  res idual  amounts a r e  independent of t h e  

d i f fus iv i ty .  



INTRODUCTION 

This work contains ana ly t i ca l  so lu t ions  which represent  t h e  i n t e r -  

play between mass-diffusion and concentration-decay due t o  non-linear 

react ion.  I n  t h e  first case t r ea ted  here,  he rea f te r  designated by 

( i ) ,  the  author obta ins  the  space and time dependence of t h e  concen- 

t r a t i o n  of a s i n g l e  component i n  a s tagnant  medium. Reaction is assumed 

t o  be proport ional  t o  t h e  square of t h e  concentration. For the  binary 

system s tudied i n  case ( i i )  the  react ion r a t e  is taken .to be propor t ional  

t o  the  product of t h e  concentrationsof the two r e a c t a a t s ; '  Since a t t e n t i o n  

i s  focused on t h e  re la t ionsh ip  between di f fus ion and chemical r eac t ion ,  

t h e  author avoids,  a s  much a s  possible,  discussions of  the  i n t r i c a c i e s  

of t h e  former mechanism. The complications of boundary-conditions and wall .- 

e f f e c t s  are  circumvented by assuming t h a t  t h e  processes take  p lace  i n  

unbounded containers and t h a t  a t  i n f i n i t y  t h e  concentrations a r e  f i n i t e .  

Since engineering p r a c t i c e  requires  an e f f i c i e n t  use of r eac to r s ,  t h e  

amounts of r eac tan t s  supplied a r e  taken t o  be correspondingly l a r g e .  

Accordingly the  i n i t i a l  concentrations of s o l u t e s  are assumed t o  have non- 

zero  space averages, It is f u r t h e r  assumed t h a t  these  i n i t i a l  d i s t r i b u -  

t i o n s  are '  e i t h e r  spher ica l ly  symmetric o r  one-dimensional and s p n e t r i c  

with respect  t o  t h e  o r ig in .  Hopefully, it w i l l  become apparent t h a t  by 

overcoming a lgebra ic  r a t h e r  than fundamental d i f f i c u l t i e s  the  proposed 

analysks could be appl ied  t o  more complicated cases. 

I I n  view of t h e  non-linear nature of t h e  reac t ion  r a t e  t h e  absorption 

of the  so lu tes  i s  very f a s t  wherever the  concentrations a r e  high. Therefore,  
P - not only t h e  d i f fus ion  mechanism,but the  react ion too,tend t o  supress  t h e  

peaks i n  t h e  mass-distr ibution p r o f i l e s .  Hence, when t h e  combined 



dif fus ion and reac t ion  processes have been i n  progress f a r  a long time 

t h e  so lu tes  a r e  d i s t r i b u t e d  f a i r l y  evenly thr&ughout the  con ta ine r ( s ) ,  

A t  t h i s  s tage  d i f fus ion  plays a minor r o l e  and t h e  processes a r e  donin- 

a t e d  by t h e  e f f e c t  of t h e  reaction.  It fol lovs  t h a t  t h e  d i f fus ion can 

play a major r o l e  only a t  an ea r ly  s tage  i n  t h e  processes and only i f  

t h e  i n i t i a l  concentrat ions are s u f f i c i e n t l y  uneven. I n t e r e s t  i n  such 

cases i s  not only t h e o r e t i c a l .  These cases resemble those encountered 

i n  p r a c t i c e  when reac tan t s  are poured i n t o  a container but only a l i m i t e d  

e f f o r t  is  made t o  spread 'them evenly. 

A measure of t h e  i n i t i a l  r e l a t i v e  ra? id i ty  of  t h e  react ion,  as 

cmpared with t h a t  of t h e  diff'usron, i s  given by a non-dimensional 
' 

paz-meter E .  As explained, E i s  assumed t o  be small.  This ass-tion 

makes it poss ib le  t o  employ E a s  a parameter i n  t h e  s ingular  pe r tu rba t ion  

\ method, which i s  appl ied  t o  t h e  problems a t  hand. A power s e r i e s  i n  E 

represents  t h e  i n i t i a l ,  'diffusion dominatedt s tage of the  process. It 

i s  matched with t h e  l a r g e  t i n e  expansion which characterizes t h e  ' r eac t ion  

dominated' s tage .  In t h a t  sense t h e  author adheres t o  the  acceptable 

I notion'') t h a t  i n  t h e  processes under discussion t h e  chemicals "first  

d i f fuse  and then react".  Evidently Pearson(2) was t h e  f i r s t  t o  p o i n t  ou t  

t h e  correspondence between the  tvo d i s t i n c t  behaviors and s u i t a b l y  matched 

a s y q t o t i c  s e r i e s .  By applying t h i s  method t o  the  case at hand both  u s e f u l  

and i n s t r u c t i v e  r e s u l t s  ape obtained. O f  t h e s e  t h e  more important ones are 

I t h e  apparent l imi ted  overa l l  influence of t h e  d i f f u s i v i t y  and t h e  sens i -  

t i v i t y  of t h e  binary process t o  disproport ion i n  t h e  amounts of r e a c t a n t s  

supplied. 

~ o o r ' ~ '  and o the rs  have shom t h a t  f o r  case ( i i )  numerous s i g n i f i c a n t  

I 
r e s u l t s  can be  obtained by going through much simpler ealcula%ions.  

C 

Hovever, 



-that i s  useful when the  d i f fus iv i t i es  are equal and the  reaction 

ra te  i s  very f a s t ,  i - e .  i n  the  l imi t ing case of E -t a. Rere E taken 
' '. 

to be a rb i t r a ry  but small. Again although t o  s i m ~ l i f ' y  the  calculation 

here too t he  d i f f u s i v i t i e s  are  assumed to be equal - the  analysis c lear ly  

holds when they are not.  Consequently, the  method and c>proach proposed 

comDlenent those mentioned. 



4 

SINGLE COMPONEBT; --- SECOND ORDSR WACTION 

Let t he  concentration of solute F be governed by 

- 
where 2 i s  a cartesian coordinate and f i s  t i m e ,  The constants k 

I and k designate mass dif fhsivi ty  and reaction coeff ic ient ,  respec- 

t ive ly .  The i n i t i a l  concent ra t i~n  p ro f i l e  E(%, o) can be any function 

which i s  even i n  2 and has a non-zero space average C, . 
No generali ty i s  los t  i f  it is expressed as follows 

where 

The maximum value of G(Y) i s  unity and it i s  a t  = Unboundedness of 

t the  container can be interpreted as  >>I, where [ i s  i t s  characteris-  

I t i c  dimension. Therefore, the parameter e i s  a measure of t h e  i n i t i a l  

I fluctuation of C (  $0) with respect t o  t he  mean C, . I n  terms of t h e  

I non-dimensional variables 

the  d i f fe ren t ia l  system under discussion reduces t o  



where 

Let the following expansion hold at  the i n i t i a l  s tage of the  process 

Substi tut ion of t h e  l a t t e r  form i n t o  equation (I ' ) y ie ld s  

Since t he  r i g h t  hand s i d e  of equation (2' ) i s  independent of E,  t h i s  

1 i n i t i a l  condition must be imposed on C: . Functions of higher index a r e  

I made t o  vanish a t  t = O .  Consequently, every component of t h e  s e r i e s  (4 )  

f i s  governed by a determinate d i f f e r e n t i a l  system. The solut ion f o r  C" 

I i s  therefore 





follows -1- 

It from t h e  arguments brought i n  t h e  introduction t ha t  when the  
c. 

. - 
p r o c e s s  i s  reaction-dominated both time and space variat ions are much 

s m a l l e r  than a t  the  i n i t i a l  stage. This i s  ref lected by t he  appropriate 

s c d i n g  of t he  corresponding independent variables. There are  verious in- 

d i c a t i o n s  t h ~ t  t h e  appropriate scaling r a t i o s  are given by 
- 

Eowever, t h e  author knovs of no chain of rigorous arguments which leads 

to re la t ionsh ip  ( 9 )  as the  unique choice. The fact  t h a t  it yields an aspp-  

c") which matches with 
c(i) 

t o t i c  expns ion  f o r  l a rge  f, , offers  some 
1 

a P o s t e r i o r i  j u s t i f i c a t i on .  

When rewri t ten  i n  terms of )( and and rearranged as a se- 

quence  of terms of descending orders c$ magnitude, equztion (8  ) reduces t~ 



0 

In the  l a t t e r ,  use i s  made of the following change of variable: 
i 

and of the Taylor expansion 

Note tha t  i n  vie7 of equation (3) a d  the symmetry of c (  x ,o) w i t h  res- 
14, 

pect t o  the or igin  3 (0) and the  odd derivatives CJ ?o) , 3 ( 0 )  vanish. 

The form (10) suggests t h a t  the "late" expansion i s  given by 
- - ..- . - 

It i s  substi tuted i n t o  the governing equation, which i s  rewritten i n  
I 

1 . -- 
t he  form 

cP) 
and the  components C; are found t o  be governed by 



The solution of equation (12) is 

@) Ci) 
w h e r e  A i s  a constant of integration. By natching C, with C, 

. one finds t h a t  A i s  unity. The matching of higher order tkrns i s  i n  

agreement with t h i s  r e su l t .  

0) 
Once C ,  i s  knotm the solution fo r  the higher terms i n  the ex- 

pans ion  i s  immediate. The general solution of equations (13) and (14) i s  
-* , 

- .  -. -- 

ti) - 
The transforms { ( d )  are obtained by matching with C . The 

expansion c 
CP) 

i s  thus found t o  be . CO 

Solution f o r  the  spherically symmetric case c& be constructed i n  a 

s i m i l a r  manner. With r as the non-dimensional rad ia l  coordinate, the 

i n f t i a l  condition is 



where ~ ( r )  i s  a flrnction even i n  r' which s a t i s f i e s  

.Up t o  terms of O(cl) the  i n i t i s l  expansion i s  found t o  be - - -  . -  

I n  t h i s  expression is &'+ P')'~ and the' transforms are given by 

The scaling scheme ( 9 )  i s  adopted here too ,  hence the  leading term i n  the 

I t  
I 

l a t e "  expansion i s  again ( I  4- 7)- . However, since i n  the  present case 
I 

the mass'dlffuses i n  more than one direct ion,  one can expect uniformity t o  
L 

I 

e at ta ined e a r l i e r  i n  the process, Thus, while i n  the  one-dimensional 



,,,, t h e  X var ia t ions  of C '" a r e  of O ( C ~ / ~ ) ,  the corresgonding ra- 

4 
dial var ia t ion  IR= c r) in the  present case rue of 0 ( ~ ~ / ~ ) .  This i s  

, of t h e  f a c t s  t h a t  f(a) i s  odd i n  a and that ;(c,) i s  pro- 

po r t i ona l  t o  t he  l e f t  hand s ide  of equation (18). The "late" expansion is 

g i v e n  by 



BINARY SYSTFI;REACTION RAT3 PROPORT1:01\?& TO ,TEE PRODUCT OF COXCEXTRATIOE 

I A nondimensionatization scheme similer to that eqloyed in the pre- 
1 

vious section reduces the differential system which governs the present 

case to 

where 

The diffusivities, K, and the length characterizing the initial.space 

2 -1 variations, , are assumea to be the same for the two components. The 

parameter E is the initial ratio between the rate absorbed in the reaction 

to the rate diffused -- for component a. The product ed is the corres- 

ponding ratio for component b. 

As in the analysis of the single component here too both c and 6 ~ :  

depend on the initial average concentrations of reactants a and b. The 

parameter 6 is associated with the proportion of the initial qumtities of 

reactants. then 6 is unity these amounts are chemically bzlanced so that 

both will eventually be completely absorbed in the reaction. The cases 

6 > 1 and 6 < 1 correspond to binary system with excess amounts of reac- 

tants a and b, respectively. 

The initial, diffusion dominated behavior is again represented by 



regular power series in E. Up to terms of O(EO these are given by: 



~y rewriting these i n  terms of the  scaled variables X and T , one f i ~ d s  

that i n  the s ingle  reactant process the mathematical form of the l a t e  

expansion i s  : 

Eowever, it w i l l  be shown tha t ,  under certain circumstances, the manner of 

the  reaction-dominated decay i s  substantially different. 

0') It follows from the governing equations tha t  (2, and 
b 

are  

governed by - -- 

a a:) /a T + (3, @) Ju) a s;. a 

I 

- 6"' c)  + - C 
f 

where  C i s  a constant. By substi tuting the l a t t e r  resu l t  in to  equation (30) 
f 

, 
or equation (31) one gets  



I Here, D and B a r e  a l so  constants of in tegra t ion  which, together  with C, 

are deteminea by matching ~ i t h  (a:,bt)) . 
I These constants are  thus Found t o  be governed by: 

Since C may be e i t h e r  ~ o s i t i v e  of negative, equations (32) and (33) re- 

present three  d i f fe ren t  aspptotib solut ions  f o r  l a rge  t . Zvidently, the . 

asymptotic behavior depends on 6. For 6=1, equation (35) has no solu- 

t i o n  while equation (34) i s  s a t i s f i ed  provided B i s  unity.  Consequently, 

(4 i n  t h i s  case, Qo are  given by: 

so t h a t  indeed eventually, the en t i r e  amounts of reactants  a r e  absorbed in 

t h e  reaction. Again, when 6 i s  bigger o r  smaller than un i ty ,  t h e r e  i s ,  

1 resgectively,  deficiency and an excess of t h e  reactant  b. Indeed, f o r  

6f1, equation (34) cannot be s a t i s f i ed ;  t h e  so lu t ion  (32) is ru l ed  out. , -. - r  



16 

It follows from equation ( 3 5 )  and (33) that the folloving holds: 

.- -- . 

so that for 6 5 1, a approaches the final value (1 - 6-l) while b van- 

ishes, For 6 < , b approaches (1 - 6 )  while a vanishes. The analy- 

. sis will now be completed recognizing the distinction between the cases of 
6 > 1 and 6 = 1; Clearly, the case of 6 < 1, or excess in the mount 

I 

of the reactant b, does not deserve a special treatment. 

I Whether the amounts of reactants are well proportioned or.not; the 

I terms of O(E  3/2) in the late expansions are governed by .- 

The right hand side of these is eliminated and then a general solution is 

obtained for the combination d ?  - . substituting t h ~  solution 
\ 

for this group into equation (38) the latter reduces to 



b) 
Therefore for the  case 6 = 1  the solution f o r  a ,  and b, " has the  fo& 

I By matching e i the r  a @> ('' o r b  with a 
cr ! 

( )  t h e  transiorm with b 

I functions u('5 ) and V(f  ) a r e  evaluated. It is found t h a t  the  l a t e  

behavior of the chemically well balanced -process i s  given by 

It can be similarly shown tha t  when there  i s  an excess of  reactant  the l a t e  

time and sDace dependence of the concentrations is (approximately) given by 





'DISCUSSION 

in theory, the processes under consideration never subside. In prac- 

tice, they are terminated when the rates at which the residual amounts of 

reactant decay is suitably small. Therefore, it is useful to be able to 

predict what will be the residual amounts at an arbitrarily large time 5. 

In the single component case the following holds 

(4,5) 
This known result is rederived by writing cU) in a dimensional form and .-. 

approximating it for large z. It h~lies that late in the process the concen- 

tratio~ is independent of the amount of reactant supplied initially ana of 

the initial distribution. It is worthwhile noting that when the reaction . 
is of the first order the residual concentration is proportional to-the ini- 

tial average and t h e  timewise decay is exponential rather than algebraic. 

On the other hand in the binary process the residual mount depends 

both qualitatively and quantitatively an the initial conditions. In the event 

that the initial amounts are well proportioned, 6=1, the residual amounts 

approach zero. The decay is again algebraic and the concentrations of both 

components are inversely proportional tobh). If there is an excessive amount 

of one reactant, 1 ,  a residual amount of one.component will be left un- 

absorbed when the concentration of the other component vanishes. The inherent 

disproportion m&..+, the process comparatively fast so that the timewise decay 

is exponential. T$e quantititles 6, (6-1) and (1-d which are associated 
- 

with the initial disproportion are reflected in the large t concentration 



dis t r ibut ion.  

Both f o r  the  s ingle  colnponent and bina.r$ processes the  concentrations 

- 
at large t are independent of the  d i f fus iv i ty .  Indeed i n  view of the  

scal ing ( 9 )  and the nondimensionalization scheme adopted, T, i s  independent 

of K. Therefore inasmuch as a " and C") are ,  t o  within a cer ta in  . 

e r ro r ,  functions of T only then the  l a t e  stage d i s t r ibu t ion  a re  independent 

of t he  diffusivi ty .  This conclusion implies t h a t  as  they subside, t he  

processes become reactlon dominated. I n  f a c t ,  the  ant ic ipat ion of t h i s  

result motivated the scaling choice ( 9 ) .  The f ac t  t h a t  the  two expansions 

I match shows tha t  the  choice i s  correct and t h a t  the  solution is val id .  It 

would have been considerably more d i f f i c u l t  t o  construct the  solutions by 

adopting a, pure mathematical a2proach. .. 

1 Though the  expressions for the res idua l  amounts do not  show it, i n  

1 pract ice  diffusicn plays a very important ro le .  !?he governing equ.ations edopted 

I a re  based on the  implicit  assumption t h a t  t h e  reactants  a r e  comyletely dis-  

I * 
solved. However when, i n  practice, the  reac tan t ( s )  i s  (a re )  poured in to  a 

i container t h i s  is  not so. It takes t i n e  (an& somethines e f f o r t )  t o  have 

I the  concentrations everywhere below the sa.turation point.  I n  t h i s  i n i t i a l  

I mixing stage the d i f fus iv i ty  i s  very important but t h i s  stage i s  not accounted 

f o r  here. 
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ABSTRACT 
I. 

-- -. 1: 

! 
i 

v ': 
i 
9 ,  

The author analyses s teady-s ta te  reactant  concentration d i s t r i -  ! 

pansions t o  represent  these .  Downstream, t h e  react ion i s  spread more- 

-butions throughout f ini te-width streams, when convection conduction and 
" I ' / /  
I .  

I. 

or-less evenly across any t ransverse  sec t ion-  so t h a t  t h e  reac t ion  i s  
.. -- 

second order chemical r eac t ion  take  place simultaneously. This i s  done 
i i: 

by recognizing t h a t  t h e  process under considerat ion has two d i s t i n c t  be- . t; 

responsible f o r  most of t h e  changes i n  t h e  concentrations. Upstream, i . 1  

, ! 

the  e f f e c t  of d i f fus ion  i s  dominant. It i s  -found t h a t  once t h e  reac- 

:. 1' 
haviors at t h e  i n l e t  m d  downstream, and developing two asymptotic ex- 1 I 

t a n t  i s  completely dissolved,  t h e  diffusion mechanism has very l i t t l e  

addi t ional  o v e r a l l  influence on the  process. Thus, a t  any s e c t i o n  

downstream, t h e  r e s i d u a l  mount of reactant  i s  independent of t h e  d i f -  . - 
f'usivity and of t h e  quan t i ty  supplied a t  t h e  i n l e t .  The decay i s  such 

t h a t  t h i s  r e s i d u a l  amount is  inversely proport ional  t o  t h e  d i s t ance  

of t h e  sec t ion  from t h e  inlet. 



INTRODUCTION - 
. -- 

I n  t h i s  work, t h e  author analyzes a process i n  which a reac tan t  d i f -  

fuses across a stream, gets convected along it, and is absorbed i n  a chemi- 

c a l  reaction.  The stream i s  of f i n i t e  width and i s  bounded by impregnable 

surface o r  surfaces.  A t  t h e  i n l e t ,  the  flow is f u l l y  Cevelo_~ed, t h e  reac- 

t an t  i s  completely dissolved,  and i t s  concentration has an a rb i t r a ry  non- . 

uniform p ro f i l e .  Axial conduction i s  neglected. The amount of mass ab- ' 

sorbed i n  t h e  react ion per  u n i t  time i s  proportional t o  t he  concentration 

squared. This non-linearity makes t he  mathematical analysis d i f f i c u l t .  

- .. 
The author considers two gefrmetrical pat terns :  a c i rcu la r  pipe and a t t ~ o -  

dimensional channel. The flow prof i l es  are  taken t o  be parabolic i n  both 

cases. The d i s t r i bu t i on  of reactant  at the  i n l e t ,  and hence a l s o  across 

any transverse sect ions  downstream, a r e  assumed t o  be, respectively,  ro- 

t a t iona l ly  s ~ w n e t r i c  and one-dimensional. It w i l l ,  hopefully, become appa- 
-- 

rent t h a t  t h e  method of solut ion used here i s  not r e s t r i c t ed  t o  these  

geometries. 

Amatched asymptotic exgansions type of solution i s  developed. The 

pe r thba t i on  ~ a r a m e t e r  employed, E,  is  the  r a t i o  between t he  character is-  

ion near t i c  reaction r a t e  and t h e  charac te r i s t i c  time change due t o  diffus'  

the i n l e t .  I n  many cases which are  of p r ac t i c a l  i n t e r e s t ,  E i s  small,  

and t h i s  enables one t o  employ t he  method of singular perturbations.  Snall-  

ness of E corresponds t o  t h e  cases i n  which t he  reactant  is  in jec ted  i n t o  

a f i n i t e  number of spots i n  t he  stream, and due t o  di f fus ion t h e  i n j ec t ed  

mass spreads across it. It is  l e s s  often t h a t  pains a r e  taken,  o r  can be 

taken, t o  spread the  reactant  evenly across t h e  i n l e t .  Thus, a t t en t i on  is 

focused here on t h e  more common case i n  which the  diffusion i s  dominant 



near t h e  i n l e t .  Far downstream, the  transverse mass d i s t r i bu t i on  i s  more 

or l e s s  uniform, and hence there  the  pr.;cess'is reaction d o ~ i n a t e d .  The 

two ' d i s t i n c t  behaviors a r e  characterized by t he  asymptotic expansions con- 

s t ruc t ed  here. The r e s u l t s  a r e  compared with those of the  so lu t ion  f o r  

t h e  l im i t i ng  case of zero d i f fus iv i ty .  

Treatments of processes i n  which diffusion,  reaction and e i t h e r  t i ne -  

dependence or  convection take  place simultaneously are  of ten based on t h e  

preniise t h a t  mass "first dif fuses  then reacts" ('). Aence, t h e  imo l i c i t  

recognit ion of  the two s tages ,  dfscussed herewith, i s  anything bu t  new. 

Furthermore, t h e  correspondence between two such regimes and two a s y m ~ t o t i c  

expansions has already been exploitedf2).  Aovever, t he  author i s  unaware 

(3 )  of any work i n  which t h e  s u i t a b i l i t y  of t h i s  method t o  the  Graetz tjrpe of 

problem i s  pointed out.  The proposed a p ~ l i c a t i o n  could be of h e l ~  i n  de- 

sign. It y ie lds  information about the  amount of reactants t h a t  i s  ab- 

sorbed i n  t h e  reac t ion  over a given length of conduit and about t h e  overa l l  
- 

influence of d i f fus ion on t h e  process. 



'ANALYSIS 

-- - 

The differential system governing the concentration (5 , ,  22, %) 

- 
Here, (Fl, x2, 5) are cartesian coordinates with (+F ) pointing along 3 - 
the conduit axis. The velocity in that direction is v3. The stream is 

bounded by the surface R=O and ?i is the normal to it. Here, K is the 

diffusivity and k is the reaction coefficient. c is the 'mixed-cup' 
0 - .  

average concentration at the inlet, and the distribution there is charac- 
I 

'terized by the function f (y ,y2) 2). 

1. ' : 
8 ,  

In terns of the maximum velocity, V, and the length associated with I 

' . 1  I 

the transverse cross section 2, the following non-dtmenaional vzria'bles 1 .  

are defined: 

Using these, equations (1)-(3) reduce to 



Here, t h e  parameter E i s  de f ined thus :  

1 1  
i; 

As e q l a i n e d ,  E i s  s m a l l  and su f f i c ien t ly  c lose  t o  t h e  i n l e t  region,  t h e  
i 

influence of  t h e  reac t ion  i s  of O(cf). This I s  taken as  an i n d i c a t i o n  t h a t  

a t  t h i s  region t h e  following holds: . . I '  
8 I 

By combining t h i s  f o m  with t h e  @;&ernin; equation, one obta ins :  

and s o  on. Since the condition (2') i s  independent of E ,  t h e  following 

i n i t i a l  conditions must be s a t i s f i e d :  

It i s  s imi lar ly  c l e a r  t h a t  every component i s  governed by a w e l l  posed 



differential system. These can be solved consecutively. An expression 

for the space distribution of c near the inlet, correct to within an 

error of O(cm), is given by the sum of the first m components. Bowever, 

regardless of the nmber of terms retained, expansion (4) will not be a 

vdid representation of c far downstream. For this region, the under- 

lying assumption that the process is diffusion dominated holds no longer. 

A quantitative demonstration of the failure of this assumption when z is 

large emerges once a couple of terms (i) are calculated. Solution of 
J 

these for the case of a two dimensional channel of width 2R will now be 

presented. 

(i 1 
Clearly, c is a solution of a Graetz type problem. It can be 

2 
expressed in terms of the eigenvalues 'n and the eigenfunctions 4 gene- n 

rated by 

as follows: 

The constants A' are given by 
n 

The first solution of the St- Louiville system (8) is , Ao=O and 4   con st. 
It, therefore, follows from (10) and the definition of 'mixed-cup' average 

that the first tern in expansion ( 9 )  is unity. Therefore, equation ( 6 )  reads 



so t h a t  c (i) has t h e  forn:  

Ab 
In this eqans ion ,  ", and x are solution of the  systems: 

nm 

Note t ha t  $n is deteminable  to w i t h i n  a constaat times 
an* 

but  s ince  

1 
I An -are adjusted so as to make C(:)(X,O) venish, the  form (11) contains no 
I .  



ambiguity. Higher terms c ( i )  drill not be calculated.  Bevertheless, it 
J 

"): contains a term which i s  can be e a s i l y  sho-m t h a t  t h e  w r e s s i o n  fo r  c 

2 
.-. 

proportlondl t o  z . 
The per turbat ion technique employed i n  generating t h e  c o m ~ o ~ e n t s  

(i 1 
= J 

i s  based on t he  premise t h a t  t h e  term E c (i) is  of an order of mag- rn m 
nitude smaller then t h e  term c m-lc(i) m-l. Therefore, t he  terms proportional  

t o  z and z2 i n  t h e  expression fo r  c (2 (i) 
1 and c , respect ively ,  1:: 

n i t s  t he  v a l i d i t y  of expansion ( 4 )  t o  the  small z range. Moreover, t he  

emergence of t he  products c2z2 suggests t ha t  an asymptotic expansion f o r  

large  z, c"), can be constructed by adopting the  following scal ing scheme: 

Rigorous proof t h a t  t h i s  i s  t he  correct  and unique choice of scal ing w i l l  . & .  
. 1 

not be offered.  We propose t o  jus t i fy  t h i s  choice on the  grounds t h a t  it 
I 

I 
, 

produces an expansion c (i 1 (') whichmatches c . 
f 

( i  1 Writing c 
- ; . .  

i n  terms OID' (x,z)('), one gets:  , .  
i .  j : 

i i '  
(i) i 

( - 3 1 ~ )  + ~ ( ~ h ) ( ~ - ~ ~ j ~  + g ~ : ) +  oiiy 
I .  

C /v 1 1 .  

i ..+ ! . 
1 I 

If c ( a  1 matches c ( ~ ) ,  it must have the  *om: 

The governing equation, wri t ten  i n  terns  of x and 2, yie lds :  



while  it follows from c o n d i t i o n  ( 3 ' )  t h a t  c(') sa t i s f i :  
j 

Equations (16) and ( 19 )  imply t h a t  c(') is. independent of x. Therefore, 
0 

- in tegra t ion  of equation ( 2 7 )  over t h e  range - l<x<l  yields:  

-. 

The general s o l u t i o n  o f  t h e  last re la t ionsh ip  is:  

( i .  1. When co ti) 
i s  matched wi th  co , it i s  found tha t  the  constant of inte- 

gration C i s  unl ty .  By combining t h e  l a s t  result with equations (17) and 

(I) bas t h e  following fonn: (19) one f inds  t h a t  t h e  so lu t ion  f o r  c 

where F(Z) i s  independent  of x.  It is  evaluated by substi tut ing the last 

resul t . in to  equation (18) and in tegra t ing over t h e  range - 1  In view 

Of equation (ig), i n t e g r a t i o n  of t h e  r i g h t  hand s ide  of equation (18) venishes. 



The solution for F(Z) IS: 

By matching two terms of c (I. with two terns of c ( ~ ) ,  one can shov that 

the initial value ~ ( o )  is equal to A:. In view of equations (12) and 

(13), the latter can be expressed in terms. of quantities which are associated 

'with the Graetz problem ( 5 )  as follows : 

In the rotetionally symmetric case, the forms of solutions for 

k )  o and c(i) 1 (r , z )  are given by equations ( 9 )  end (11) with minor 

modifications. The eigenfunctions and eigenvalues are generated by: 



The sme operator and boundary conditions appear again i n  the systeas go- 

verning %(') and X ( )  which correspond t o  epuetions (12) ma (13). 
nrn 

&ain,: i n  t h e  case at h m d ,  t h e  integration over the  area implicit i n  the 

j j=o,1 of An 5 has a s l i gh t l y  different form. Finally, t h e  

(%I. f i r s t  t e r n  i n  t h e  exDression fo r  C , %S (-2i) rather than (-3/2 z )  . 
In view of t h e  matching requirements, t h i s  change of factor must recur in 

t h e  expansion C"). 1% is  shown below t h a t  t h i s  is so. 

c lea r ly ,  t h e  expansion c( ' )(r ,z)  has the  form (15) and c") are 
,.I 

obtaiaed by a s e t  of equa t ions  s imilar  t o  (16)-(18). However, the inte- 

gration over t h e  a rea  I m g l i c i t  i n  t h e  reductton of equation (17) t o  (20) 
I t 

-- yields a dif ferent  f a c t o r  f o r  t h e  case a t  hand. Therefore, i n  the rdtation- I 

ally symmetric case,  c ('I is  given by: 
0 1 

(' ) i s  given by: 
. 

Again, c 

I n  t h i s  case, F (Z )  is governed by: 

F + 4 F ( 1  + 1z)-' - ( 1 )  ( 1  - 2 ~ ) ~ ~  

Hence, i ts  so lu t ion  is: 



where 



! em t h e  a n a l y s i s  , it i s  obvious t h a t  t h e  diffusion plays an im- 

portrznt near t h e  inlet .  We s h a l l  now show t h a t  t'ne influence of t h i s  

effect is  not r e s t r i c t e d  t o  t h i s  domain, Note t h a t  the  evidence of et- 

fect ive d i f fus ion  downstream does not contradic t  the  basic premise that  

t h e  process i s  r e a c t i o n  d o ~ i n a t e d  the re .  Dominancy of an effect  i s  taken 

(see  Introduction) t o  imply  t h a t  it i s  responsible fo r  nost of the changes 

in the reactant  concen t ra t ion .  Indeed, t o  within an error  of o ( E ) ,  c (1 

is uniform over any t r a n s v e r s e  cross-sect ion-so t h a t  chmges i n  c (I) are 

mainly due t o  t h e  chemical  react ion.  However, were it not for  the dif- 

( a )  
fusion, co would not have been uniform over the  section Z=canst. I n  

fact,  t h i s  uniformity i s  due t o  t h e  f a c t  t h a t  the-highes t  order ecuation 

governing t h e  expansions i n  t h e  downstream region,  (16), represents the 

influence of t h i s  and n o  o the r  e f f e c t .  

The o v e r a l l  i n f l u e n c e s  of diffusion w i l l  now be examined. This i s  done 

'by conparing t h e  s o l u t i o n  obtained here. whj ch holds for  a rb i t r a r i ly  large K ,  

with t h e  solpt ion f o r  K=O.  The l a t t e r  i s  given by 

- - 
In view of equations ( 21), (271, and (321, f o r  large 5 3  

c can be ap- 

proximated by: 



S T ~ ~ ~ ,  the  average r e s i d u a l  reac tan t  over the  conduit cross-section is the ., i n  a l l  cases. Since f o r  K=O the  s t rean i s  richer a t  the  center, the 

cue' average i s  s l i g h t l y  higher i n  t h i s  case. Eovever , the dif- 

ferences a re  minute s o  tha t  t h e  diffusion mechanism appears t o  have VeTr 

l i t t l e  overa l l  i n f l uence  on t h e  process at  hand. O f  course, i n  practice, 

t h i s  is not SO. The r e s ~ l t s  (33) hold when 5 i s  measured from a some- 

what f i c t i t i o u s  i n l e t ,  namely, a section i n  w3ich the reactant is  completely 

dissolved. Eowever, at t h e  point  where pure reactant is  injected into the 

stream, i ts  concen t ra t ion  i s  often above the  saturat ion point. Clearly, L, 

t h e  length of conduit r e g u i r e d  t o  have the  reactant  com3letely dissolved 

- depends markedly on the diff 'usivi ty.  I n  the  l imit ing case o f  vanishing K,  

L w i l l  be indef in i t e ly -  l a rge .  consequently; a t  the section (E + L) don-  
3 

stream of t h e  ' t rue  ' inlet,  t h e  amount of res idual  reactant i s  a  much more 

sensitive function o f  K than  implied by equation (33). 

I n  Graetz ls  case,  and f o r  processes i n  which convection diffusion and 

f i r s t  order reac t ions  a r e  i n  ef fect  simultaneously, the residual =aunt of 

mass i s  proport ional  to t h e  average concentration a t  the in le t .  The resi-  

dual amount decays exponen t ia l ly  with xg . However, i n  the  non-linear case f 

a t  hand, t he  r e s i d u a l  amount i s  (within an e r ro r  of O(E ) ) inde~endent of 

- - - -1 
c(xl,y2,0) or c and i t s  dacsy is much slower, l i k e  x3 This result ,  

1 0 ,  

combined with t h e  aop rop r i a t e  in terpre ta t ion of ' true ' conduit lengtfi 

z3=L, could be of jmpcrtsnce i n  engineering design. 
i 
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