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ABSTRACT

vVegive a systematic recipe for constructing the coexistence curve associated \\"ith <l

pure fluid described by an analytic equation of state. The novelty of our result lies not in

its theoretical basis, which is well-known, but in the high degree of accuracy that it will

routinely yield over a broad range of density and temperature for a relatively modest

expenditure of computing effort. The method is illustrated by applying our general

solution to four widely-known model equations of state: van der vVaals, Dieterici,

Soave-Redlich-Kwong, and Carnahan-Starling with van der \Vaals tail term. These

models show a considerable diversity of coexistence-curve shapes, and our method yields

accurate representations for each model. An investigation of the representation of

e.xperimental coexistence curves that exhibit pronounced "non-dassical" behavior over an

appreciable range of densities is also initiated.
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I. INTRODUCTION.

The Maxwell equal-area construction for pressure-volume isotherms is usually

encountered early in one's study of thermodynamics. Typically, the relatively few who are

called upon to actually implement the construction with precision for some reasonably

realistic equation of state are initially surprised and chagrinned to find how difficult it is to

do so, especially as one goes to lower and lower temperatures where there is increasing

asymmetry in the shape of the two "van der Waals loops", the low-density loop spreading

over an awkwardly large volume range. Perhaps at this point one astutely observes that

there is an equivalent construction on the chemical potential versus density that is

generally easier to implement because it is more symmetric, with the loops less spread out.

Or perhaps it is suggested that the equivalent construction that involves locating the

crossing of isotherm-segments when one plots chemical potential versus pressure may he

ea.sier to handle, at least as long as the crossing lines are not almost parallel.

Such observations and suggestions are helpful and useful, but even when they are

exploited, it is not hard for a serious student of thermodynamics to conclude that the task

of locating phase boundaries is akin to coming down with a bad cold - some traditional

treatments seem more effective than others, but no matter which ones are used, a certa.in

amount of tedious misery must be endured.

These reflections suggest that dispite the venerability of the problem at hand, there

may still be a real market for a systematic coexistence-curve algorithm of wiele

applicability and reliability. The subject of this paper is such an algorithm.
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For the class of on~omponent fluids described by analytic expressions 1 for

pressure and chemical potential (in terms of density and temperature) we derive an

analytic representation of the coexistence curve. Our method has its origin in the

series-expansion techniques developed recently for calculating the dewjbubble curves of

multi component and polydisperse fluids.2-5 Given the pressure, p, as a function of

temperature, T, and density, p, we find that the coexistence curve may be represented by

the series

00

Ts = Tc + 1: Ti(P-PC)l ,
i=2

(1)

where the coexistance curve is the locus of points (p, Ts)' Tc is the critical temperature,

and p is the critical density; {T.} are constants that depend on derivatives of the pressurec 1

with respect to temperature and density, evaluated at the critical point.

The series representation of Ts(p) can be used to determine series representations

for all thermodynamic properties of the fluid on the coexistence curve. For instance, the

saturation pressure, ps(Ts), and the latent heat, h(Ts), may be easily calculated, as well as

piT) and p (T ), where po and p are the densities of the liquid and gas phases.f's gs ~ g .

respectively.

We have not evaluated the complete set of coefficients {Ti}' but only {Ti' i -

2,...,13}. Thus we have obtained only an approximate representation of the coexistence

curve. However, we find that by forming Pade approximants6 from the truncated series,

very accurate and compact approximations are obtained.

Series expansions have been used to determine mean-field phase boundaries of fluids

and magnetic systems near the critical point for many years. 7,8,9 Our results may be
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viewed as a systematic extension of the well-known methods used in such studies. It came

as something of a surprise to us that a globally accurate representation of the coexistence

curve could be obtained by systematically extending the relevant series somewhat farther

than earlier workers. This extension is not simply an embellishment that adds somewhat

more accuracy to these earlier results. Although many of the hallmarks of "non-classical"

critical behavior are important only in a small neighborhood about the critical point, a few

appear to dominate the thermodynamic behavior of many fluids in a more global way. A

notable example relevant to our study here is the shape of the coexistence curve in (p,T)

space about the point (pc,Tc); the "non-classical" form Tc - Ts = constx I p - Pc 1:3has

long been known to be a far better approximation to the coexistence-curve shape than the

leading term of the analytical expansion Ts - Tc = T2(P - Pc)2 + T3(P - pc)3 + . .. that

follows from Eq. (1). However, as we discuss at the end of Section III with the addition of

some illustrative examples, it turns out that as soon as one uses 8 or more terms in the

right-hand side of this expansion, one can fit the coexistence for fluid (and magnetic)

systems with overall precision comparable to that obtained, for example, by the famous

nonanalytic "Guggenheim fit" [Eqs. (60) and (61) below]. Thus our method promises to be

able to cope quantitatively with the most important "non-classical" thermodynamic effects

(except in a very small neighborhood of the critical point) despite its analytic nature. One

can not use an analytic expansion of this form with only two or three terms and hope to

attain quantitatively reasonable results, however.

Our results will be especially useful for two-types of work: fluid-process design and

model-fluid investigation. In the case of fluid-process design our method provides

compact (Le., easy to evaluate), accurate expressions for all two-phase quantities of

interest, making it easy to incorporate the correct two-phase properties into process

simulation codes. In particular it provides a representation of the two-phase region that is
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consistent with the equation of state of the fluid. In the case of model-fluid development

our method eliminates the need for time consuming phase-€quilibrium calculations when

one is exploring the properties of a particular model fluid. Sinceit is possibleto determine

the {T) as functions of various parameters in the equation of state, one may easily study

the effect that those parameters have on the phase boundaries of the model. In both

fluid-process and model-fluid work, the great bulk of the thermodynamic descriptions

currently being used yield representations of pressure and chemical potential that lend

themselves to our technique.

In Sec. II we show in detail how the coefficients {T.} are determined for an equation1

of state of the analytic form we consider. Then in Sec. III we apply the method to four

model equations of state: van der Waals, Dieterici, Soave-Redlich-K wong, and the

so-called Carnahan-Starling with a van der Waals "tail". We describe how the

coefficients {Ti} may be used to calculate other thermodynamic properties along the

coexistence curve, and compare the series~xpansion representation to numerical solutions

obtained using the equal-areas rule. We find that Pade approximants of the series

expansions provide very accurate representations of coexistence-curve properties. Finally,

we briefly discuss the way in which our method promises to be useful in fitting

experimental data even in cases in which it is important to approximate with quantita.tive

accuracy the "non-classica.l"nature of the coexistencecurve about the critical point over a

substantial range of density.
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II. DETERMINATION OF {T.}.1

In this Section we solve the two-phase equilibrium conditions using the method of

series expansion. The equations that determine the coefficients {Ti' Yi} are derived in part

A; the method of solution is described in part B.

A. The Equilibrium Conditions.

The pressure p and chemical potential Jt of a one-component fluid depend on the

temperature T and number density P

p = p(T,p) (2)

and

Jt= Jt(T,p) . (3)

\Ve shall assume that the units for T and p have been chosen so that at the critical point

Tc = 1 and Pc = 1,wherethe criticalpoint (Tc,pc)is determinedby the equations

(fJpjoP)T = 0 (4)

and

(cJ2pjop2)T = 0 . (5)

In the neighborhood of the critical point we may represent p and Jt by their Taylor

seriesexpansionsabout (Tc,pc)
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00 00

p(T,p) = L L qk nbpkorn,
n=O k=O

(6)

00 00

Jl(T,p)= L L ck,n bpkorn ,
n=Ok=O

(7)

where bp = p - PC'or = T - Tc'

#+np j(k!n!) ,
qk,n = opk &Tn

(8)

#+n Jl j (k!n!) ,
ck,n = opk &Tn

(9)

and all derivatives are evaluated at T = Tc' p = Pc' In view of Eqs. (4) and (5),

q1,0 = q2,0 = O.

Two phases, with densitiesx and y, are in equilibrium at the temperature T if

p(T,x) - p(T,y) = 0 (10)

and

Jl(T,x) - Jl(T,y)= 0 . (11)

Using the series representations for p and Jl [Eqs. (6) and (7)], Eqs. (10) and (11) become

00 00

L L qk n(bxk - byk)orn = 0,
n=O k=l

(12)
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and

00 00

L L ck,n( bxk - byk)8I'n = 0 .
n=O k= 1

(13)

(Note that the k =0 terms have been dropped since bxO- byO= 0.) Eqs. (12) and (13)

have the obvious solution x = y, whichfor our purposewe consider to be trivial. Since

k

ak - bk = (a - b) L ak-fbf-l ,
f=1

(14)

the nontrivial solutions of the equilibrium conditions [Eqs. (12) and (13)] satisfy

00 00 k

L L qk,n L bxk-fbyf-l8I'n = 0
n=O k=l f=l

(15)

and

00 00 k

L L ck,n L bxk-fbyf-l8I'n = 0 .
n=O k=1 f=l

(16)

The coefficients Ck and qk are related by the following equation, which may be derived,n ,n

using the Gibbs-Duhem equation (see Appendix 1)

k-l .
-

L (-l)Jfk-j)Ck - qk
' .

,n --J,n
j=O

(17)

Substituting Eq. (17) into Eq. (16) we obtain
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00 00 k-1. k

L L L (-l)J~k-j)qk-j,nL bxk-lbyl-1bTn=O .
n=O k=l j=O l=l

(18)

In summary, the two-phase equilibrium conditions are

00 00. k

L L qk,n L t5xk-l8yl-l bTn = 0 .
n=Ok=l l=l

(19)

00 00 k-1. k

L L L (-1)J~k-j) qk-j,n L 8xk-l8yl-1bTn = 0 .
n=Ok=lj=O f=l

(20)

The equilibrium conditions are solved by finding T and y as functions of x. Noting

that the top of the coexistence curve is parabolic in the density-temperature plane, we set

00

bT = L Tlxj
j=2

(21)

and

00

by = - 8x + L yl) .
j=2

(22)

[Note: it will turn out that Y1 = -1 so for conveniencewe make use of that fact now.]
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Solving the equilibrium conditions is then reduced to the task of finding the coefficients

{T.,y.}.J J

We begin by denoting

00

8I'n = '\ A 8xs
L n,s (23)

s=2n

and

00

£--1 '\ 0 ~ r
by = L £-I,rux .

r=£-1
(24)

Here A depends on the coefficients {T.} and 0C l depends on the coefficients {y.}. Inn,s J (:,r J

Appendix 2 we give the formal expressions for An,s and °1-I,r' [Note that AO,O= 00,0 = L

/\ = 0 for s < 2n, and OCI = 0 for r < 1- 1.) Substituting Eqs. (23) and (24) inton,s ~ ,r

Eqs. (19) and (20) we obtain

00 00 k 00 00

L L qk,n L 1: °1-I,r L An,sbxk+r+s-£ = 0 .
n=O k=1 1=1 r=I-1 s=2n

(25)

00 00 k-l. k 00 00

'\ '\ '\ (-1)J~k-.i.l . '\ '\ 0 '\ A 8xk+r+s-l = 0 .L L L qk-J n L L I-I r L n S, "
n=O k=1 j =0 1=1 r=£-1 s=2n

(26)

When j = 0, Eq. (26) becomesidentical to Eq. (25). It is convenient therefore to eliminate

that degeneracy by replacing Eq. (26) with the difference between Eqs. (26) and (2.5).

Thus we express the equilibrium conditions by

--.
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00 00 k 00 00

\' \' q \' \' () \' A bxk+r+s-i = 0L L k,n L L i-l,r L n,s
n=O k=1 i=1 r=£-1 s=2n

(27)

and

00 00

[

k-l .

]

k 00 00

\' \' \' (-1)J~k-n q . - q \' \' () \' A bxk+r+s-£ = 0L L L k-J,n k,n L L i-l,r L n,s
n=O k=1 j =0 i=1 r=i-1 s=2n

(28)

As a practical matter, we will not solve these equations for all the coefficients, but

only for those coefficients that occur in these equations through order bxm. For

convenience let us choose m to be even and let M = m/2. Then for a specified m (14 is the

largest value we have used) the equilibrium conditionsare

M m m+ 1-s k m-k-s+i

L L Ans L qk n L L ()£-1rbxk+r+s-£ = 0" ,
n=O s=2n k=1 £=1 r=£-1

(29)

and

M m m+ 1-s k-1. k m-k-s+£

\' \' A\'\' (-1)J~k-j) q . \' \' () bxk+r+s-e = 0L L n,s L L k-J,n L L £-1,r
n=O s=2n k=1 j=1 £=1 r=£-1

(30)

B. Solution Method.

To solve these equations, MACSYMAis used to evaluate the A'S and (j's and then

expand the summations in Eqs. (29) and (30) into the forms
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m

L PCOEF[i] bxi = 0
i=2

(:31)

and

m

L MCOEF[i] bxi = 0 ,
i=2

(32)

and therefore the equilibrium conditions become

PCOEF[i] = 0 ,i = 2,...,m (33)

and

MCOEF[i]= 0 ,i=2,...,m . (34)

We find that MCOEF[2] and MCOEF[3] are equivalent to PCOEF[2] and PCOEF[3].

PCOEF[i] is linear in T. and depends on all T. and Y" j < i; MCOEF[i+2] is linear in v.1 J J . J

and depends on all Tj' j~i, and all yj' j<i. Thus one obtains first T2 by solving PCOEF[2]

= 0, then Y2by solvingMCOEF[4]= 0, and so on until Tm-l and Ym-2 are obtained.

In Table I we list the low-order coefficients. They depend on the derivatives, qi n',

defined by Eq. (8). We find that to determine the coefficientsup to Tm-l and ym-2 only

q. for i = 1, ... ,m and n = 0, ... ,[[m 2" 1]] need to be evaluated. (Here [[ ... ]] signifiesl,n

the greatest integer less than.) Eqs. (4) and (5) imply that ql 0 = q2 0 = O., ,

It is interesting to note that the T. and y. are not entirely independent. Since1 1

Ts(X) = T/y(x)) we find that T3 = - T2Y2'Y3= - y~, T5 = - T2Y4+ 2T2Y~- 2T4Y2'

Y5 = 2y~ - 3Y2Y4' etc. It may be possible to use these relations to simplify the calculation

of {T.,y.}, although we did not make explicit use of these relations ships in the1 1

calculations reported here.



14

III. Application to Several Models.

We shall examine here the series derived in the previous Section within the context

of four representative model equations of state. We begin by showing how the coefficients

{Ti} and {y i} may be used to develop series for the liquid and vapor densities, p£ and pcr'0

the saturation pressure, Ps' and the latent heat, h, as functions of the temperature. These

series, as well as the series for the saturation temperature as a function of density, are

evaluated in IILB and compared to results obtained by numerically solving the equilibrium

conditions. We find that the series representation is quite accurate near the critical point

and that Pade approximants formed from these series are quite accurate over most of the

saturation curve.

A. Additional Coexistence Curve Series.

The series coefficients{T.} can be used to construct the coexistence curve, but it1

would, in many cases, be more convenient to represent the curve by giving the liquid and

vapor densities, p£ and Pg' as functions of Ts' Also, series for the saturation pressure, Ps'

as a function of Ts and the latent heat, h, as a function of Ts would be useful to have.
Belowwe document the calculation of these additional series. For conveniencewe choose

to work in units such that Tc = 1 and Pc = 1.

1. Series for otIs) and °g.LI:s1 We have

2 3
Ts = 1 + T2lip + T3lip +... (44)

whereT2 < 0 and lip= p -1. Thus
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00

T - 1 = or = \' T.bpi,s L 1
i=2

2
[

T3 T4 2
]= T215p 1 + T2bp+ T2bp +... ,

(4.5)

(46)

or

'>

[
T3 T4 2

]or IT,>= bp- 1 + ~t5p + T;.t5p +... .- .L2 2
(47)

Since or < 0 and T2 < 0, or IT 2 > O. Taking the square root of both sides of Eq. (47) \ve

obtain

[

T3 T4 '>
]

1/2

w = I t5pI 1 + T2bp+ T2bP-+ ... ,
(48)

1/2

where w = [or IT2] . Expandingthe right-hand-side of Eq. (48) in a Taylor series
about bp = 0 we obtain

w = Ibp I

[

1 + I riopi
]

.
1=1

(49)

When p = Pf (i.e., bp> 0) we have

00

2 3 i
w=bpf+r1bpf+r2bpf+ ... = l ri-lbpf '

i=l

with rO= 1; whenP = Pg (i.e., bp< 0) we have

(.50)



00

23'
- w = 8p + r1{jp + r? 8p +... = \' r. 18pl .g g - g L 1- g

i=l

Reverting Eqs. (50) and (51) to obtain seriesfor Pi and Pg in terms of w we obtain

00

Pi = 1 + L Sjwj ,
j=l

and

00

Pg = 1 + .L S/-l)jwj
J=l

2. The Saturation Curve Pressure. DS':'Since

00 00

p = L L qi,jITj8pi ,
i=Oj=O

where IT = T -1 and 8p= P- 1, if followsthat

00 00 00 .

Ps =): ): qi,j[ L Tk8pk]J8pi .
1=0J=O k=2

Expanding the right hand side will lead to

00

Ps = L ui8/ .
i=O

16

(.51)

(52)

(.53)

(54)

(5.5)

(.56)
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00 00

Now, substituting either bp = L Sjwj or bp = L Sj(-I)jwj into Eq. (56) yields
j=1 j=1

00

pS = 1 + L uiWI

j=1
(.57)

We find that all coefficients u. = 0 when i is odd. Thus p has an expansion in powers ofI s

bT=T-l.
s s

3. The Latent Heat. From the Clapeyron equation we have

h = latent heat = T(l _l )(dPs/dTs)
Pg Pf

(58)

To calculate h all we have to do is differentiate p with respect to T , substitute in thes s

series for Pg and Pf and expand Eq. (58) in a Taylor series about T = 1. Since P, Pg(T:/

and PIT) are series in w, and dw/dTs = 1/(2T2w) we have

hiT = (Pi - Pg) (dPs/dw)
2T2 wpfPg

(59)

We note that since the series for Ps may be reverted to yield Ts as series in (ps - 1),

it is also possible to obtain Pf' Pg' and h as functions of Ps'
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B. Comparison to Numerical Solutions of the Equilibrium Conditions.

We have assumed that Tc = 1 and Pc = 1 so the equation of state for each model

considered must be appropriately scaled before the q. are evaluated. Given the {q. } thel,n l,n

coefficients {T .,y.} may be evaluated. Since the expressions for {T"y.} contain manvJ J J J v

terms for large j, the evaluation must be carried out carefully to avoid loss of precision.

Using MACSYMA to evaluate {T"y.} is complicated when the q. are irrational numbers;J J l,n

MACSYMA does not handle irrational numbers very well. Of the models we examine

below only for the van der Waals and Dieterici models are the q, rational numbers.l,n

In Table II we list the equations of state of the four models for which we have

calculated the series coefficients. We chose these equations of state because they are

representative of the types of equations used to model simple fluids and for these models

the shape of the coexistence curves are quite distinct from each other. Each of these

equations of state depend on two microscopic parameters, "b" (or 0")and "a", ("b" and 0"

represent the excluded volume of a particle and "a" represents the mean attractive

potential energy of two particles.) For the models we consider here these parameters are

scaled out of the equations of state when reduced variables are introduced. This feature

makes the evaluation of the {qi n} relatively straightforward, but it is not a necessary,

feature; more complicated equations of state can be used. (We note, however, that it

becomes more difficult to evaluate the q. when the equation of state contains manyl,n

additional constants.)

In Table III we list the coefficients {Ti' i=2,13} for each model. (For the van del'

Waals model, which has a particularly simple form, TI4 and TI5 are also given.)

The coexistence curve, as represented by the series expansion Ts(p), is shown in

Figs. 1 - 4 for each of the models considered. In those figures the solid dots represent
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numerical solutions obtained using the equal areas rule; the series expansions are

represented by the dotted curves; the solid curve represents a Pade approximant formed

from the series expansion. In each case the series are quite accurate in the reduced

temperature range (0.9,1.0); the Pade approximant formed from the series is accurate over

a much broader range of temperatures. For the van der Waals model it was possible to

construct a useful Pade approximant that had the correct T = 0 solution (Pi = 3, Pu = 0).0

For the other models we found that imposing the correct values at T = 0 gave rise to

singularities on other portions of the coexistence curve.

In practical applications, of course, the vapor-liquid coexistence curve will

terminate at the triple point, below which there will be vapor-solid equilibrium. Thus the

vapor-liquid coexistence curve at very low temperatures is not generally of interest. For

the model using the Carnahan-Starling equation plus a van del' Waals tail term, which is

an excellent approximation to a system of hard spheres with a weak, long-range attractive

potential, we estimate the reduced triple-point temperature to be 0.4625 and the reduced

triple-point densities to be 2.1390 x 10-3, 3.6218, and 4.4075.10 The Pade approximant

shown in Fig. 4 was constructed to give the correct temperature at the triple-point

densities. This Pade gives an excellent representation of the entire liquid-vapor

coexistencecurve; the relative errors are listed in Table IV.

The series coefficientsfor pIT), Pg(T), p/T), and h(T) have been calculated for
each of the four models consideredhere. We find that the Pade approximants formed from

these series are accurate to better than 1%in the reduced temperature range (0.65,1). The

relative errors of the Pade approximants for the CS + vdW model are listed in Table V.

For most purposes these Pade approximants may be considered exact: the largest relative

error between the critical point and triple point (T f [0.4625,1]) is 0.0074.
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We remark that when the equations of state considered here are used to model real

fluids, the parameters "b" (or 0")and "a" are often temperature dependent. The simplest

way to deal with this additional complication is to remove these temperature dependent

parameters from the equation of state by introducing a set of reduced variables
* *

T = Ta(T) and p = pfJ(T) (e.g., for the van del' Waals model a good choice would be

a(T) = 27Rb(T)/(8a(T)) and fJ(T) = 3b(T)), then evaluate the desired series-€xpansion

coefficients,and form the Pade approximants as functions of the reduced variables. The

representation of the real fluid's saturation properties is obtained by substituting Ta(T) for
* *

T and pfJ(T) for P .

Most equations of state used to model real fluids are analytic functions in the

neighborhood of the critical point; they exhibit so-called "classical" critical point

properties. The methods we have described here apply to these equations of state. Real

fluids, on the other hand, show a "non-classical" behavior, which indicates that the true

equations of state are not analytic functions in a neighborhoodof the critical point.8 In

particular, the saturation temperature generally has the asymptotic form T = T -s c
II fJ

const.xlp - PcI , where l/fJ::: 3, for P -t Pc' Moreover,this "cubic"behaviornear the

critical points is not confined to an infinitesimal region around the critical point. For

instance, as early as 1945 Guggenheim13 found that

7 1/3 3
Pi/Pc = 1 + 4(1 - Ts/Tc) + 4(1 - Ts/Tc) (60)

and

1/3

Pg/Pc = 1 - i(1- Ts/Tc) + ~(1 - Ts/Tc)
(61)

provide a good approximation to Pi and Pg for T/Tc in the range (0.6,1) for many simple
fluids.
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Although subsequent experimental work has shown that {Jis not precisely equal to

1/3 and that the true nonanalytic features of the equation of state are confined to a very

small region about the critical point, it is clear that many coexistence curves of real fluids

are basically "cubic." That is Ts - Tc ~ Ip - pcl3 is a good approximation over an

appreciable range of I P - PcI values. Our algorithm, on the other hand, always produces

Eq. (1), a Taylor series for Ts - Tc in P - Pc (not Ip - PcI, and this is important).

However,once one is able to deal analytically with the first dozen terms or so of Eq. (1), as

we do here, one can easily produce coefficients such that polynomial (or Pade)

approximants that result from the use of Eq. (1) rival Eqs. (60) and (61) in accuracy

except in a very small neighborhoodof (pc,Tc)' To illustrate this point, we have included

Figs. 5 and 6. Fig. 5 showsa fit to the coexistence-£urveshape defined by Guggenheim's

approximation using Eq. (1) with T. = 0 for i > 10. Fig. 6 showsa fit to the simpler cubic1

equation of state Ts = Tc - constxI p - Pc13 that is relevant to ferromagnetic substances

with a simple Curie point for which p - p has the significance of magnetization per atomic
c

site M, and one has exact symmetry in M about M = O. Here Eq. (1) with Ti = 0 for i > 8

already produces an excellent overall fit. We defer to a future publication the details

associated with finding the coefficients of such fits, and of considering the

equations-{)f-state that can be related to them.
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APPENDIX 1

The Gibbs-Duhem equation provides a connection between derivatives of J1and p.

Since

I
dJ1= Pdp , at constant T, (AI)

it follows that

I
(OJ1joP)T = p(f)pjoP)T . (A2)

This relation holds for all T and p. Denoting (tfJ1j opk)T by ~ and (tfpj opk)T by Pk' we

have

PJ1I= PI. (A3)

Operating on Eq. (A3) with (oj oP)Twe obtain

J11+ PJ12= P2 . (A4)

Repeating this operation k times yields

(k-l)~-l + P~ = Pk . (A5)

At the point P = Pc= 1 we have
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Ii< = Pk - (k-1 )1i<-1 (A6)

or

k-1 .

\ (-UJ(k~~rIi<= L -l-J . Pk-j .
j=O

(A7)

Taking the nth temperature derivative of Eq. (A7) and dividing by kIn! we obtain Eq. (17):

k-1 .

\ (-tlJ(k~~r (k-j)!-ck,n = L .-l-J . ~k-j,n
j=O

k-1 .

- \ (-1)JLk-.ilq- L k-j,n '
j=O

(17)

where qk,n and ck,n are defined by Eqs. (8) and (9).
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APPENDIX 2

A is determined byn,s

00

L An,sbxs = (T2bx2+ T3bx3+ ... )n
s=2n

(Bl)

T T
= T?bx2n(1 + ,)bx + ,jbx2 + ... )n

2 .12.12
(B2)

n k

= T~bx2n L [~l] AI,
kl=O

(B3)

where

T3 T4 2
A = T:bx + T:bx +... .2 2

(B4)

Applying the binomial theorem repeatedly we obtain

00 n kl k2

L An,sbxs = L L L ... [~l] [~~] [~~] ...
s=2n kl =0 k2=0 k3=0

n-kl kl-k2 k2-k3 2n+kl +k2+k3 . . .
.T2 T3 T4 ... bx .

(B5)
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Similarly,

00

. ~ 3
\' e .b'xJ= (-b'x + Y ox- + v b'x + ... )n

.L n,J 2. 3
J=n

n kl k2
- \' \' \' n+k

[- L L L . . .(-1) 1 n kl k

kl=0 k2=0 k3=0 kJ [~][k~]

kl-k2 k2-k3 k3-k4 n+kl +k2+k3 . . .
'Y2 Y3 Y4 ... ox .

(B6)
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TABLE I

Coexistence Curve Series Coefficients, T.1

T2 = - q3,0/q1,1

2
T3 = - (12q1,lq4,0 - (10q2,1 + 4q1,1)q3,0)/(15q1,1)

22. 2
T4 = - (144 q1,1 q4,0 + (- 240 q1,1 q2,1 - 96 q2,2 ) q3,0 q4,0

? 2 2 2 2
)+ (100 q2,1 + 80 q1,1 q2,1 + 16 q1,1 ) q3,0 )/(225 q1,1 q3,0

3 3 2 3 3
T5 = - (20250q1,1 q3,Oq6,0 + ((7875q1,1 q2,1 - 13725q1,1)q3,0

~ 3 2 2 4
- 94;)Oq1 1q3 Oq4 0)q5 0 - 18900q1 1q3 Oq41, , " ",

4 3 3 2 3 2
+ (6048q1,1 - 3024Q1,1Q3,0)Q4,0+ ((17640Q1,1Q2,1+ 5544Q1,1)Q3,0

342
+ (- 25200Q11Q21 -1008Q11)Q3 0)Q40" ",

2 3 4
+ (- 9450Q1,lQ3,OQ3,1+ 28350Q1,lQ1,2Q3,0

2 2 3
)

3
+ (- 23100Q1,lQ2,1- 3360Q1,lQ2,1+ 4512Q1,1Q3,0

22 3 4
)

2
)+ (29400Q1,lQ2,1+ 8400Q1,lQ2,1-1344Q1,1 Q3,0 Q4,0

2 2
+ (7875Q1,1 Q2,1 + 17325Q1,1)Q3,OQ3,1

+ (15750Q1,1Q2,2- 23625Q1,2Q2,1 - 17325Q1,1 Q1,2)Q~,0

3 2 2 3 4
+ (8750Q21- 1050Q11Q21 - 5040Q11Q2 1 - 2908Q11)Q30, " " "

3 22 43 43
+ (-10500Q11Q2 1 - 6300Q11Q21 + 336Q11)Q30)/(23625Q11Q30 )" " " "

The Q' n are defined by EQ. (8).1,
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Table II

Equations of State and Their Critica.1Constants

van der Waals:
2

p=kBT/(v-b)-a/v ,

2
pc=a/(27b), kBTc=8a/(27b), vc=3b

Dieterici : p = kBTexp[- a/(kBTv)]/(v -b)

Pc = ae-2/(4b2), kBTc= a/(4b), Vc= 2b

Soave-Redlich-K wong: p = kBT/(v - b) -aj[v(v + b)]

Pc = a(5 22/3 + 821/3 - 18)/[(24/3 - 22/3)b2],

kBTc = 3a(1 + 22/3 -24/3)/b, Vc= b/(21/3 -1)

Carnahan-Starling + "vdW" Attraction:
6k T 2 3 4 ?

P = !L (7] + 7] + 7] - 7] ) - ap- ,7]= Jr(,3p/6
Jr(j3 (1 - 7])3

p = O.15900528243669967(a/(Jr2(j6)),c

kBTc = O.O94328703133723809(6a/ (Jr(j3))

P = O.13004438841924539(6/(Jr(j3))c



T(2)

T(:3)

T(4)

T(5)

T(6)

T(7)

T(S)

T(9)

T( 10)

T( 11)

T( 12)

T(13)

T(14)

T(l.j)
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T ABLE III

SERIES-EXP ANSION COEFFICIENTS, {T.}1

van der WaaIs Dieterici

-1/4

1/20

- 9/200

193/7000

- 1537/70000

6009/350000

- 174131/12250000

4039291/336875000

- 139209837/13475000000

55422640939/6131125000000

-22317626143/2786875000000

1099077458301/153278125000000

-69486569467703/10729468750000000

10775040909775247/182400968750000000

-1/3

4/45

- 92/675

4036/70875

- 30676/354375

32524/759375

-35419988/558140625

9448380692/276279609375

-205370173612/4144194140625

157375373183396/5656825001953125

-3371430216359228/84852375029296875

2601031623009524/115707784130859375



TABLE III cont.

CS + "vdW attraction"

- 0.16410809499026

0.064661354351862

- 0.034615884039276

0.025076864066853

- 0.019121466775161

0.015296691949842

- 0.012663366769707

0.010745343100846

- 0.0092932435957978

0.0081596247330552

- 0.0072526937962850

0.0065124057076953

30

Soave-Redlich-K wong

T(2) - 0.19580035065607

T(3) 0.075359368811780

T(4) - 0.047528644539767

T(5) 0.031749700865006

T(6) - 0.023633880245896

T(7) 0.018570218584632

T(S) -0.015182427164643

T(9) 0.012763993513279

T(10) - 0.010957486604647

T( 11) 0.0095621644677698

T(12) -0.0084549642218270

T(1:3) 0.0075574335651872
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Values of p and po were found, using the equal-areas rule, for the temperatures Tsg t ,

listed in the table. Using these values of the density Ts(pg) and Ts(p£) are calculated using
the 13-term series and a [6/8] Pade approximant. The relative errors are defined by

~Tg = (Ts - Ts(pg)/Ts and. ~Tf = (Ts - Ts(Pf)/Ts'

TABLE IV

Relative errors, CS+vdW CXC, for T (p)s

Ts T T
Tf T£g

[6/81series series [6/8]

1.0000 .0000 .0000 .0000 .0000
.9900 .0000 .0000 .0000 .0000
.9800 .0000 .0000 .0000 .0000
.9500 .0000 .0000 .0000 .0000
.9000 .0000 .0000 -.0008 .0000
.8500 -.0005 .0000 -.0216 .0000
.8000 -.0025 .0000 -.2324 .0000
.7500 -.0087 .0000 -1.5707 .0000
.7000 -.0230 .0003 -7.9402 .0000
.6500 -.0501 .0016 -33.0285 .0000
.6000 -.0954 .0057 -119.8672 .0000
.5500 -.1637 .0138 -394.7849 .0000
.5000 -.2598 .0167 -1214.3480 .0000
.4000 -.5577 -.0950 -10218.3383 -.0003
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TABLE V

Relative Errors of Saturation Properties for the
CS + vdW Model

The relative error of a quantity f(Ts) is denoted.6.f(T) and is definedby .6.f(T) = (f -s s ex

fp)/fex' where fex is the numerically exact value and fp is the value of the Pade
approximant.

Tg!Tc .6.Pg(Ts) .6.PtTs) .6.Ps(Ts) .6.[h(T s) /T s]
[6/7] [6/5] [5/2] [7/5]

1.0000 .0000 .0000 .0000 .0000
.9900 .0000 .0000 .0000 .0000
.9800 .0000 .0000 .0000 .0000
.9500 .0000 .0000 .0000 .0000
.9000 .0000 .0000 .0000 . .0000
.8500 .0000 .0000 .0000 .0000
.8000 .0000 .0000 .0000 .0000
.7500 .0000 .0000 .0000 .0000
.7000 .0000 .0000 .0000 .0000
.6500 -.0002 .0000 .0000 .0000
.6000 -.0008 .0000 .0001 .0001
.5500 -.0029 .0000 .0013 .0001
.5000 -.0074 .0000 .0074 .0001



Fig. 1
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Fig. 3

Fig. 4

Fig. 5
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FIGURE CAPTIONS

The coexistence curve (CXC) of the van der Waals model in the
temperature-density plane. (The units are such that Tc = Pc = 1.) The
dots represent points on the CXC determined using the equal-areas rule; the
15-term series-expansion representation of the CXC is given by the dotted
curve; the solid curve represents the [7/8] Pade approximant of the 15-term
series. The Pade was constructed to ensure that the correct T = 0 result was
obtined.

The coexistence curve (CXC) of the Dieterici model in the
temperature-density plane. (The units are such that Tc = Pc = 1.) The
dots represent points on the CXC determined using the equal-areas rule; the
13-term series-expansion representation of the CXC is given by the dotted
curve; the solid curve represents the [6/6] Pade approximant of the 13-term
series.

The coexistence curve (CXC) of the Soave-Redlich-K wong model in the
temperature-densityplane. (The units are such that Tc = Pc = 1.) The
dots represent points on the CXC determined using the equal-areas rule; the
13-term series-expansion representation of the CXC is given by the dotted
curve; the solid curve represents the [6/6] Pade approximant of the 13-term
series.

The coexistencecurve (CXC) of the Carnahan-Starling + vdW tail model in
the temperature-density plane. (The units are such that T = P = 1.) Thec c
dots represent points on the CXC determined using the equal-areas rule; the
13-term series-expansion representation of the CXC is given by the dotted
curve; the solid curve represents the [6/8] Pade approximant of the 13-term
series. This Pade was constructed to ensure that the correct triple-point
result was obtained.

The "Guggenheim" coexistence curve in the temperature-density plane.
(The units are such that Tc = Pc= 1.) The dots represent Eqs. (60) and
(61); the solid curve is a tenth-order polynomial in (p - Pc), the coefficients
of whichweredetermined by a least squares criterion.

A simple cubic coexistencecurve in the temperature-density plane. (The

units are such that Tc = Pc = 1.) The dots represent Ts = 1 - Ip - pcl3;
the solid curve is an eighth-order polynomial in (p - pc)' the coefficientsof
whichweredetermined by a least squares criterion.
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