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ABSTRACT

The Lagranglan History Direct Interaction approximation is
applied to iscotropic furbulent mixing of a éecond‘order chemical
reaction and the resultiné closed sets of equations are presented.
An abridgement of them is carried ouﬁ and the equations which apply
to a specific stationary turbulence field and a staﬁistically
specified initial scalar field are displayed. It is shown that in
the 1limit of a stochastically distributéd second order reaction

the equations reduce to those of Direct Interaction.
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1. INTRODUCTICHN

It is the purpose of this paper to derive é closed set of
equations describing the behaviour éf a passive reactant when its concentration
is decaying due to an isothermal reaction of second order and when it is
simﬁltameously advected by a turbulent fluid. We propose to make use of the .
Lagrangian History Difecﬁylnteractioh (L.H.D.I.) closure which was devised by
Kraichnanl for his studies of.the dynami;s of turbulence and turbulent
cenvection. The approximation has been applied to other statistical
{problerﬁ in which there exist  non-zero mean52 and it appears to be the most
promising of existing closures for deaiing with this class of phenomena. i
In a previous work3 another closure scheme called the Direct Interaction (D.I.)
approximation, which is also due to Kraichnan, has been employed to obtairn
a closed set of‘equations for this same reactive situation; It is our
ultimate purpose to compare the performance of each closure under certain
quantitative tests that can be devised, but the immediate objective to which
this report is limited is to present the equations.which result from applying

the L.H.D.I. approximation and also to derive an abridged form of them.




2, THE DIRECT INTERACTION EQUATICNS

L.H.D.I. equations have been obtained for the non-reactive passive
scalar field in iéotroPic turbulencel. Subsequent reference to this péperl
will be by the letteg K and, where appropriate, an equation number taken
from that paper. TFor example, the non-reacting scalgr field equations using

a generalized field is given by

(%{ - DVZ) ¢(x,t) = ~ulx,t|t). vo(x,t) K(i.g)’
¢(x,r|r) = ¢(x,1) - K(2.10),
%%-(x,tlr) = ~u(x,t|t). V¢(x;t[r) K(2.11),

where D is the kinematic diffusivity, and u(x,tlr) is the generalized
velocity field which may be defined as the velocity measured at time r within
i ‘ )
the fluid eclement which passes through the point x at time t. Similarly,

@(x,t[r) is the value of the scalar field (e.g. concentration) measured at

time r in the fluid element which passes through the point x at time t.

The apﬁrOpriate eqﬁations for the generalized concentration field
¢ in the case of a second order reaction are K(2.10), K(2.11) and the following

replacement for K(2.9)

(“g”g *DVZ> o(x,t) = - ulx,t|t). velx,t) —co?(x,t) (2.1),

It is pertinent to decompose the field ¢(x,t[r)into a mean and a

fluctuating component

$Ge,t|D) = T + v(x,t]x) (2.2),

~ where statistical homogeneity has been assumed.
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4,
and, finally, it propagates from (r,r) to {t,r) acccrding to
’ 3G ' t 'l / A R SR B )
¥ o Gl et e = —ultfn) .V etz ") (2.10)

Similarly, it is easy to deduce from (2.4) and (2.5) that the
covariance w(x,t|r;x',t‘{r'), which is defined by
pGtlmxt et o) = (reeloyes, et ey,

obeys the following equations;

(gt ‘DV; + 26?(t5> w(x,tlt;x',t‘lr') = —<65(§,t|t).ny(f,t[t)y(g',t'lr'i

e MM IR Eb )

(2.11)

SE'w<§,t!r;§',t'lr'5l=;“<f8(§’tlt)'VxY(f’tlr)Y(f"t'lr'i>(2 12)

where.<: :>denotes an ensemble average.

It is also of use to have available the complimentary equations of (2.9) and '

(2.10) . These follow precisely as in K (appendix B). The propagation from

.

(r',r') to (r,r) obeys the equation
y q

‘ (gt' + Dvi,) G(}j,t]r; §',t'|r')+ 2¢T(t) G (}f,tlr;:f‘,t'lr')
=—u(x',t'It‘)Vx,G(x,tIr;x',t'lt')
—ZCY(X',t'lt')G(x,t[r; X',t'[t') (2.13)

whereas, for example, from (r,r) to (t,r) the perturbation is described by

%E' CGr, tlrsx', e ") = ~ulx',t'[£").V, .60 bl e x")
(2.18)

An ensemble-averages Green's function is defined by

-
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+
{ The direct Intaraction approximations for §, H and H are fully
displayed in K(5.9),(5.10) and will not be repeated here. The same
' : +
approximation can be applied immediately to R, Q and Q using the above

definitions and Eraichnzn's construction. One finds
T

RGx, £yttt [r)=be? iy fastx, el rsy, sl )G t| sy, sl9)a et r
N - tO ” ° Zssif’)
t

- |
+2e?fa%y fasy(x, t] vy, s )V x, el sy, sl et x 'y, 8]s)

t ~ ~ ~
o : (2.21)

r-
Q(x,t]r;x',t'lr')=4c2fd3yf asp(x,t|r;yv,s|s)G(x,t|r;y,s|s)G(y,s]s;
~ ~ ] rt ~ -~ ~ ~ N)‘E',t'!r')
(2.22)

Q+(x,t[r;x',t'!r') is obtained from Q(x,t]r;x",t'|r")

by a formal substitution into (2.22) to obtain Q(x',t‘lr’,x,tlr) and then chenge
every G function in the resulting equation according to the rule

G(zy,ty |xy32,,85|Tp) > 6(zp, 85l x5z 5t 1)
To the above set of equations it is .necessary to append that which describes

the behaviour of the mean concentration. From (2.3) we have

Im

— —2
I'(t) = —cT(t) - cw(§,t]t;§,t[t). (2.23)

[a %

A significant formal simplification of the previous set of equatioas
occurs when we invoke isotropy for both the velocity and scalar fields. It is
also very convenient to introduce Fourier transforms of the dependent variables
w,G,S,R,H,H+,Q and d+. To aroid a proliferation of symbols the transformed
~variable will be denoted by an explicit display of the wave number k as an

~ independent Qariable replacing §—§'. For example, by invoking isotropy tha

‘Fourier transform of Y(x,t|r;x',t'[r") is written Yk, tlr,t?c").
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€
»ﬂk! dsij(k,slr,t'ir')G(q,tlr,slr)(l%wz)U(p,tit,s]s) pq dp dq
r ‘ » o v

(2.32),

i AT .
Q(k,tlr,t'!r‘) = 8ﬂc2k.lf dsffG(K,sls,t‘lr')G(q,t[r;s!s)S(p,t]r,sls)pq dp dg.
t : . _

T

(2.33)
and the sumboi{f? mezns integration over all triangles P +'S = k.
H+(k,tlr,t']r‘) is obtained by forming H(k,t'|r',t]r) through formal

substitution into (2.32).and thien, in the result, changing every G function
.according to the rule

G(k,tllrl, tzlrzj -+ G(k,tzlrz,-tllrl).

The same sequence of operations applies to forming Q%(k,t'[r',t[r) from
Qle,t]r,t'[r").
We also have 4

2 o
35 T(0) = =cT (&) -4uc? fkPy(k, t]e,tt)de (2.34)
. &

In equations (2.30) and (2.32) we have written the Fourler transform
of the velocity cova:iance«<§i(§,t[t)uj(§‘,s|siﬁp terns of the scalar
U(k,tlt,s{s) to which it is related by

k, k
1
. Uij(g,t]t,s[s) = §(§ij - —;EYJDU(k,tlt,s]s)

It should be n§ted that in so doing we have assumed that Uij is
solenoidal in both indices i and j. This is not necessarily true as Kraichman
has carefully peointed out. Houwsver, in transforming these equations to thé .
L.H.D.I, approximation, part of the preséription for the transformation is
that Uij be sclenoidal in beoth indices and we assume it here prematurely

simply for convenience.
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3. T¥E L‘\"wit- HGLIA HISTOLY DIRECT INTERACTION EQUATICHS

The L.H.D.T. equations can be written down dmmediately from those

gf Directllnteraétion (2.243~(2.34) by making use of Kxaichnan's prescripﬁion
for such a fransforWQtton. As we mentioned at the end 01 Sectlon 2, part of
t@e prescertion has already been applied to -the derivatlon of (2. 3€)and (2. 37)
-The repainder of it requires that in (2.30) to (2.33) every labelling time s
should be changed to t if it arises from the perturbation ezpansion of a

factor in (2.15)~(2.20) with a labelling time t or to t' if it arises from

expaunsion of a factor with labelling time t' (tﬁe labelling times are the time

arguments which precede the vertical bars).
The consequences of these operations are that (2.30)-(2.33)
transfora to

S(k,i;!‘r:,t'[r') = Tk
|

x'
el
o
t'
+ T f sfqu dp dq (1= YU(p, t{t t'ls)w(q,t]r t' !r
r'
r
> - .k{ sf{pq dp dg (L-w®)U(p,t]t, t‘s)G(q,tir tls)p(k t']z! t]s)
t & ,
t

- ﬂkf défqu dp dq (lvwz)Utp,d t,q s)v(klt1 rt|r) o
T b ‘ ) (3-1))

x
R(k,t|r,t'|r") = chzkflf &s!qu dp dq ¢(p,t]r,t|s)w(k,t'[r',tls)G(q,t]r,tls)
A -n

t
e}

x' , '
+ aﬁczkulf dé[qu dp dq w(p,tlr,t']s)w(q,tlr,t'[s)G k,t'[r',t"]s)

t Pa)
0
(3.2,
r‘
H(k,t]r,t'|c") = -nkf dsffee,t]r',t'[r)e(q t]r,t']r") (1w ule,t]t,t]s)pg dp dg
t
Y
~ﬂK§ ds f Gk i ,t! Ir )G(q,t!r tlﬂ)(l"wz)U(p,th tfb)pq dp dq
r' A B

6°J{f pg dp dq (l-vw?)U(p,t'lt,t'[S)G(k,t'Ir',t'ls)U(q,tfr,t'!s)

s
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t . ' -
~ka ésffpq dp dq Glk,t]r,t"|x") 1wH)U(p,t|t,t]s) ‘
r A R (3~3)
" ' T | |
Gt e) = kS asffed, ], et [ r6(g ], et e Q=) Up, et e, et )
t A : . pq dp dq

r .
—ﬂkf dsffG(k,tfr,t']s)G(q,t‘]s,t'Ir')(l«wz)U(p,t'It',t']s)

r 4 ' pq dp dq
t! .

-7k dsffG(k,tIr,t'Ir')(l—wz)U(p,t'lt‘,t'ls)
r’ A . (3.4)

Q(k,tlr,t'lr') = 8ﬁc2k~lf dsffG(k,tls,t'!r')G(q,t[r,t{s)w(p,tlr,tls)pq dp dq
r' A
) (3.5)
o, : ;
Sﬁczk_lf dsffc(k,t]rt"s)c(q, t s, t' [r DV (p,t' |, t"|s)pq dp de
T A ‘ 3 6)‘ ‘

f

Q+(k,tlr,t']r')

It is also pecessary to prescribe how the integration of (2.24)-(2.29)

and (2.34) should procede. It is easy to show that the prescription given in

R R R R

K (appendix C) is still pertinent for these extended equations. We will not

X3

pursue the matter further in this paper as we wish now to derive an abridged
form of the L.H.D.I. equations and to present them in a form suitable for the
calculation of the behaviour of a specific initial scalar spectrum in a

specified staticnary isotropic turbulent field.
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4. THE AJRIDGED LAGRANGIAN HISTCRY DIRECT INTERACTIOH EQUATIONS

VWe first obtain equations for the pure Lagrangian functicns which,
by definition, are those in which all labelling times are equal. From (2.24)

to (2.29) and.(2.34) we have,

2 co
-‘g-g T(t) = T ~4me? kP(k,t]t,t]t)dk (4.1)
0 .

(%E'+ 2Dk2+4cT(t))w(k,t]t,tit) = 25(k,t|t,t] £)+2R(k,t]t,t]x)

(4.2)
(g;:— + Dk2+2c—f(‘t)>¢(k,tit,tlr) = SQ,t]t,t]| )48 Gk, t]r, ] )R, £ £, t] 1)
: ' | (4.3)
3 Yk, tlr,t'rY) = Sk, t|r,e'{xr") + S(k,t'|r',t]x) (4.4)
ot |
G(k,t]r,t[r) = 1 ) (4.5)
{%E-+ Dk2+2c?lt)}c(k,t[t,tlr)=H(k,t[t,t|r)+ﬁ+(k,t[t,tlr)+Q(k,tlt;t[r)
/ ' r<t (4.6)
3 . y- + 1
57 GG elr,t'[") = HGelr,e' (2D + H (ktfr,t]e)
' r_z_r' “.7)

The abridgement is realised by employing the following approximations
or transformations.

U(k,t[r,tlrz) - U(k,rllrl,rllrl)

2
—
\"
la)
[ (V)

U(k,rzlrz,rzlrl) r, > 1)
c;(k,tirl,t[rz) > c(k,rllrl,rl]rz)
y(k,tlrl,tlrz) - w(k,rllrl,rl[rz) 2T,

-> w(k,rzlrz,r2|r1) r, > 1)
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Before displayiang the consequences of this approximation, it is

useful to iantroduce some notational sherthand.

UCk,tfx) = Ulk,tle,t|r)  t2x
= Ulk,r|r,rlt) t<r=r

Clk,tlr) = Gk, t]t,t]r)

Yk,t]r) = ok, tit,ely)  t >

Yik,rlr,x]t) t<r

We finally have

2 (o)
gz-fkt) - ~cf'(t)-4wc£ K2y (k, t| £)dk (4.8),
%E’* 2DK2+4cT () U(k,t|£)=25 (k,t | £)+2R (K, | £) (4.9),
gE'+ Dic?+2cT(t) Y(k,t]r)=S(k,t|r)+S(k,r| )R (k,t] 1)
: (4.10) ,
t>r
| %E'+ Dk2+2cT (t) G(k,t[r)=ﬂ(k,t]f)+ﬂ+(k,tir)+Q(k,t!r)
! e r (4.11),
G(k,t|t) = 1 - : ' (4.12),
where
t
S(k,efr) = -mkf dsff(1~w*)U(p,t|s)G(q,t|s)V(k,x|s) pq dp dq
I
+k[ dsff(1-w®)U(p,t|s)C(k,x|s)¥(q,t|s)pq dp dq
e, A
t . B
+rk [ dsf[(1~*)U(p,t|s)¥(q,t|x)pq dp dq - (4.13)> ’
r A

. .
S(k,r|t) = -1kf dsff(1=*)U(p,t|s)C(a,r|s)V(k,t]s)pq dp dg
. t 4
(o)

t
vk [ dsff(1-?)U(p,t|s)6(k,t]|s)v(q,x|s)pq dp dq
] |

o © . i




13,
t
-1k ds s Ya™
S e[ UG, e )0k, o) b ap ag (4.14),
R(k t ) — 2 “1t r ‘
,t r) = 8mc“k { ds;Aqu dp dqw(p,t]s)\f)(k,rls)c(q,t s)
o : '
2,~1% '
+ime?k { dsj;qu dp dqi(p,t|s)¥{q,t]s)G(k,x|s) (4.15)
o
. »
H(k,t|r) = —nk{ dsjt;qu dp dq(l—-wz)U(p,t[s.)G(q,t!r)
: ,
1k ds{xqu dp dq(1-w*)U(p,t|s)6(k,s|r)G(q,t]s) (4.16),
T o
+ c ,
H (k,t[r) = Tka ds{\fG(k,t]s)G(q,slr) (l—WZ)U(p,tls) pq dp dq
| r ‘ _
t
—‘ﬂkf ds{fG(k,tlr) (l-—wz)U(p,tIs) pgq dp dq (4.17),
T hY
t
Qk,t 1) = 8mc?k™ [ dsffe(x,s|r)6Ca,t]e)uin,t|s)pq dp dq (4.18),

T Pa

The set of equations (4.8)-(4.18) form a complete set which enables
pure 1agrangian quantities to be calculated when U(k,tls) ,L}J(k,tolto) and
_f(to) are specified.

The Direct Interaction equations of this same problem for purely
Eulerian quantities have been presented elsewhere by Lee3. It is important to
notice that in the case of zero turbulence the problem reduces to that of a
stochastically distributed second order reactant and the A.L.H.D.I. equations
and the D.I. equations reduce to identical statements. This is of course
proper since in the at.)sence of motion Fulerian and Lagrangian quantities are
indistiriguishable. It also means that previous investigations of the
stochastically distributed reactant case remain valid in the A.L.H.D.I.

approximation. Finally, it is easy to see by retracing the derivations of
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of section 3 and 4 that in the seme limit of zero turbulence the L.H.D.I.
approxianation coincides identically with the A.L.H.D.I. approximation.
Perhaps the easiest way to indicate why this occurs is to notice that

labelling times play only a param@tric rele in the expressions for R and Q.

5. A SPECIFIC RXAMPLE OF THE A.L.H.D.I. EQUATIQONS

In this section we present the A.L.H.D.I. equations as they -apply
to a paxticular'class of sﬁationary isotropic velocity fields and an initial
scalar spectrum., It is our purpose ultimately, but not in this manuscript,
to compute numerically the spectral gvolution for just this situvation. We
will be particularly interested in theAlimit.of no molecular diffusion
(D = 0) as a very discriminating test of thevapproximation seens to be possible
there and the following definifions and choices of dimensional groups are made

with these requiremsnts in mind.

A k A - ' CI‘(O) : u ko
. Letk=‘£ , t=r(?)ct, Ndaa"b?“-", N = — R
o o cl'(o)
K3
" o L TN TR = s
VG, ele) = 2 ple,t]e), T = T(©)/T), o = T) V)%,
: — :
U(k,t[r) = -x242-~'k2 exp 4 - (E~)2 ~ l-,ﬂ%f(t - r)z},
72 .5 k 2
™" k )
o
3
" —/y 1 koo T
Y(k,0}0) = (2m) exp {; 7 & § and T(o) = 1.
. °
vhere u? is the mean square kinetic energy of the turbulence in any component

direction. A detailed discussion of these spectra can be found in the
literatures, although it must be remembered that the velocity function U(k,t[r)

is now Lagrangian rather than Eulerian and the stationarity evident in its

. T s
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definition above is a Lagrangian stationarity. That any real turbulent field
would exhibit approximate Lagrangian Qtdtlonarlty is highly unlik ely,'but‘

it is not our purpose here to use the equations to~examine a real s@tuation..
There aré soﬁe general properties that the equations should exhibit for any
‘kinematically allowable velocity field and it is these properties for which we
will be testing subsequently. If the equations faithfully preserve these
general properties, it may then be pertinent to try to establish more
reasonable Lagrangian velocity fields and to explore their role in mixing and

in enhancing reaction rates.

R R Y T oy N Y WO e N SRR Y, YT YT

Equations (4.8)-(4.18) can now be rewritten in the light of the
above definitions. In displaying the results below we have omitted the
circumflex (7) throughout.
— 2 ?
wT\
T=-T® ~"z‘ f k2 Y(k,t|t) dk (5.1)
3, 22 |
(EE +5 o F 41‘(:;)} Yk, t|t)=25(k,t|t) + 2R(k,t|t) (5.2)
Da
(%— S ZF(t)j\,)(k t]r)=S(k,t|r)+S(k,r|t)+R(k,t|) (5.3)
t N
Da t>r
<%~+ K, 2T (1)) 6 (k, t| ) =H(k, tlr)+H (k,t]| 1)+Q(k,t]1) (5.4)
t N
Da t>r , -
Glk,t]t) =1 (5.5)
where
r <o
Sk, t|r) = [ ds G(k,x|s) [ Pla,k,T) ¥(q,t[s)dq
o )
© t
+ [ [ P(q,k,Dds ¥(a,t]r)dg
or
t o0
- [ as [ P(q,k,T)6(q,t]s)dq W(k,z[s) (5.6) :
o o |
L
. !
=)
N 3 14
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by o
',r[t) = -—f ds f')?(q,k,'t) G(q,r]s)dq l})(k,tfs)
o) o
t (o]
- [as [ Pla,x,mdq ¥ik,tlr)
r [}
St @ ’ ,_ :
+ [ ds [ P(q,k,T)¥(q,r]s)dq G(k,t]s) ‘ 5.7
o 0 : ’
4 % ¢ pk
R(k,t|r) = Ezzf ds f ){ pq dp dq Y(p, t]s)l}l(q,tfs) G(k,rls)
‘o olpk] :
t ®pik ' ' ‘
8
tog S as [ ] paapaq Votl9etlD Brl (5.8
(o] Olp .L{
© t
H(k,t|x) = [ [ P(q,k,T)ds G(q,t|r)dq
(o] r
= [ f Pla.k,D6(q,t]s)dq G(k,s|r)ds - (5.9)
r ©
+ t <
B (k,t|r) = [ [ P(q,k,DC(q,s|r)dq G(k,t|s)ds
r o .
- [ dq [ P(q,k,)ds  G{k,t|r) (5.10)
[¢] r )
g5t ©  kip : e
Q(k, tlr) el ds [ [ pqap dq bip,t]sdelq,tls) Glkslr)  (5.11)
. o] L=
/ ~2kqr, 2kqU  ~2kqT__2kqT
P(q,k,T) = ZNZ‘IT;quf\ 2,}“% * ) exp -(k*q?)T ,
and T = 1 -}--;—N2 (t - s)? ~

The integration of such a set of equations would proceed in exactly
the same way as that developed for the D.I. equations with one important
exception. In the D.I. equations the diagonal terms in the (t,t') matrix are

computed by using the symmetry of S(k,t,t') in t and t'. For example, if
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S(k,t+At,t) is known so is S(k,t,t+At) to which it is identically equal.

fhen the D.I. equations specifically state how S(k,t+At,t+At) is to be
computed from S(k,t,t+At). However, the A.L.ﬁ.D.I. equation for S(k,t,t')

is only valid for t > t' so that althugh symmetry in t and t' still holds,
it is of no §alua.to the computaticnal program. Instead explicit use must be
nade of (5.2) whereby S(k,t+At,t+At) can be directly computed once S(k,t,t)
and S(k,t+At,t) are established. With this exceptiog a computing program for

3,4 for the

the A.L.H.D.I. equations can be based on that developed by Lee
D.I. equations.
A subsequent report will give more detail on certain specific

computational programs designed to examine critically some important

consequences of the above A.L.H.D.I. equations.
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6. AN INVARIANCE PROPERTY OF THE L.H.D.I. EOUATIONS

An important property of the exact equations which can be demonstrated
easily from (2.1) and which is immediately evident on physical grounds is that
when D = 0 all single point‘functions—of the concentration field decay.at a rate
independent of the turbulence. Since the turbulence plays no direct role in
decreasing scalar intensity, but only alters the scale of the concentration
field, and since the reaction term has no dependence on scale, it is evident
that in the absence of molecular diffusion, turbuleﬁce does not play even an
indirect role in the dynamics of decay of single point functions. This fact is
another significant invariance which any proposed closure approximation should
necessérily satisfy. It has not been consciously built into the L.H.D.I.
approximation or into any other so that it is pertinent to ask of any closure
whether it-does in fact satisff_this'further invariance.

We have shown elsewheré5 by numerical computation that Direct
Interaction is seriously inadequate in this regard, which is perhaps not
surprising since it has alfeady beén shown1 to fail to preserve another related
velocity fleld property - Galilean Invariance.

In this section we prove that the L.H.D.I. approximation does in fact
guarantee the exact preservation of the invariance described above. Specifically
we show that when D = 0 T (t), - ¥Z (t) and v ¥¥ (t) are described by closed sets of
equations to which the velocity field makes no contribution.
an important property of the function G(k,tlr, tls) which is preserved by the

L.H.D.I. closure. Namely, when D = 0

ol . (6.1)

is the response measured at time r in the

G(k, tlr, t|r')
Since G(f, tlr, §', t'|r')

fluid element which is at x at time t to a perturbation in the scalar field

We first demonstrate
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applied at time r' to the fluid element which is at §' at time t' and since -
the only mechanism which transfers scalar quantity from one element to another
is molecular diffusion then, when D = 0,the following should be true;
G(E,t|r, §',t|r') = 6(§ - f') G(r|r")
and (4.1) follows. |
Now the L.H.D.I. equations for G(k,t|r,t|r') is, from (2.27) and
(2.29), '
) ' ' + '
57 Gk, tlr,t[x") = HGk,t|r,efr) + H (k,t|x,t|r",
which is identically satisfied by (6.1) independently of the velocity field
spectral description.
The equation for ?I-(t) can be obtained by integration of (4.2) ove:éll

j

wave numbers. In the absence of molecular diffusion the result is

(gt + 4cT(t)) YZ(t) = 2 [ K®R(k,t|t,t]|t)dk (6.2)
w?ere the invariance K (5.13) has been used to eliminate the direct effects
of the velocity field. Insofar as (6.2).contains the G function in R(k,t[t,tlt}
the indirect role of velocity influence on YZ(t) is possible. However, we now
demonstrate that it does not in fact arise.

Using (3L2)} (6.2) becomes

12wc2f ds [[[ kpqdpdkdq ¥ (p,tlt, tls)w(k t|t,t]s)
G(tis),

('%E‘* 4cf> Y2 ()
O

t
12mc?f ds [ K2k, t]t,tle)dk [[ £ =1 Y (p,t(t T]s)dpdq

or 9 =\ 7
(—3-£+ ACT)‘Y (t) t[s)

(o}

Hence

b 7 s (6.3)
(gt + 4°f(t)> Y (tlo= 12me?f ds Y2 (t]s) c(t|s)
t

(o]
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e ) .

where the generalization ?Z(tls) = f kZW(k,tlt,t|s)dk has been made and where
o

?T(t) has been written §Y(t|t) for notational convenience.

The equation for Y2 (t|r) is, from (4.3),
o . 3 .__ —t—
o (’a‘f* 2¢T (1)) Y2 (t]|x) = 8me?[ ds yZ(t|s) Y?(x|s) G(t]s)
to
r 2
+ 4me? [ ds y? (t]s) G(x|s) (6.4).

t
o

Finally, the equation for G(tlr) is obtaiﬁed from (4.6) and (3.5).

We have
t
(%{* zc-f(t)) G(t|r) = 8me?f ds 6(s[r) 6(t[s) Y (z|s), (6.5)
. - ‘

where (4.4) has been employed.

The set of equations (4.1)(6.3)(6.4) and (6.5) are closed and entirely
independent of the velocity fiéld specification. They determine the behaviour
of T(t), and §Iit) in terms of thgir initial descriptioms. On multiplying
(2.4) by v, taking an ensemble avérage and comparing the result with (6.3) in

the limit D = 0, it is clear that in the L.H.D.I. approximation

t
Yi(t) = énf ds ?’z(tls) G(t]s) (6.6)

t
° )

and all terms in the integrand are determined indepehdently of the velocity
field. Finally we remark that the above arguments apply equally well to the
abridged form of the equations derived in section 4 so that they too preserve

this particular invariance.
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