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A B S T RAe T

Relations among critical exponents are derived. They

are based upon a consideration of two correlation lengths,

not necessarily equal, that arise in our analysis.
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that when (1) is assumed,

A
if 2 ~ d(o-l)/(o+l), with the fo~~ of her) complicated by logarithmic

~

" terms if 2 = d(o-l)/(o+l). On the other hand although a scaling relation

between d, 6, and n did not appear in the original scaling-theory papers,

it was shown by Fisher8 that from scaling theory one gets, instead of (2),

(3)

regardless of the relative size of 2 and d(6-l)/(orl). It appears that in

the 3-dimensional Ising model, the special case described by 2=d(6-l)/(6+l)

may in fact occur. However, despite the resulting possibility that it is

"
therefore only the occurrence of a logarithmic term in her) that is respon-

sible for the apparent violation of (2), as we have previously suggested5,9,

we conclude in this note that the violation is instead due to the break-

~ A
do"~ of homogeneity in the functional forms of her), c(r) and related cor-

relation functions.

To examine the way in which

"
useful to subtract from her) its

,.y

(1) might be expected to fail we find it

~
value, h (r), at the critical point. (Thec M

subscript c will refer to critical values throughout this note). As in

previous work we shall provisionally assume that

A

~c(Z") ~ ~/r£-;t~..,..»a- (4)
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for lack of any direct evidence against this functional form. In fact,

Eq. (4) can serve as our definition of t. We now introduce a function

q (r, K) by writing instead of (1),~

where (5) reduces to (1) if we assume that q(r,)(. »);/0 for r»a and set

f(x)=const + f2(x). In (5) it is very natural to choose

as x~O (or f2(x)NxP , using the notation of Fisher8) and so to write

for ~ and small ~ )

"'"

Even where q(r, )( ) appears to be zero for r»a, as in the case of theNt
~

2-dimensional Ising model, one can not a priori expect q(r,)() to remain- - ~

zero as~. In particular, we now argue that along the coexistence curve

,;V

we must expect to find that when d=2 or 3 and rand)( are small q (r, )( )
......

is essentially independent of r and given by

where £:is the exponent defined by the expression )( #'I; /~ -,/Jc; / €for

points along the coexistencecurve;0 -;0.:../ ."V IT"-Tc 'I~ Our expectation

of (7) follows from the expectation that for small fixed r, the T-dependence
/\ "'-

of ;){It-hc)/JT £ ro=~c must be like that of the specificheat



Weak-Scaling Theory

For the three-dimensional Ising model~ neither the set of scaling

relations that follow from the work of Widoml~2~ Kadanoff3~ and others4

nor a modified scaling-type relation independently proposed by ourselves5

appears to be exactly satisfied6. In both the scaling-theory approach of

Kadanoff3 and others4 and in our own previous work5 a single correlation

length ~=j(.~s postulated to appear in various correlation functions.

In particular, the density-density or spin-spin correlation function that
~

we denote5 as ~(~) is assumed to have the functional form first proposed~

by Fisher7

where d
is dimensionality, ,- ~ II'/ , and ~ is a molecular diameter or

la ttice spacing. The exponen t ~ wri te as t is

In scaling theory it is acknowledged that

usually denoted as 2-n.

~
htr) does not in general~

have the form given by (1) for all ~~ including ~~~, but the scaling

theory arguments3 are nevertheless developed as though it did;

approach5 explicit provision was made for the fact that neither

in our
A

.fir".)
.......

nor ~(~) , the modified direct correlation function~ will in general be
~

a homogeneous func tion of rand g except for large r/a and large 5/ a.

This difference between the two approaches accounts for the difference in

the relation among dimensionality d. and the critical

the usual notation8) predicted by each approach. We

exponents 0 and n (in

previously concluded5
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_ol.l
C-v,-vIT-T:::/ . But for T<Tc and (J::jJe:

/\

a term that looks like the one-phase h{r) ~long the coexistence curve plus
....

A
h(r) is the sum of

....

a "1ong-rangeorder" term "";-12 for ea.ch l-ion tha.t curve (\ofhere M;:<IfJ-fJc. J )

and independent of ~y. Unless for sma~l r there were a compensating term
" Z

in the expression for the one-phase h(r) to cancel the~l-term in the sum......
A' ~

that makes up the tw'o-phase h<E.) atfJ --;:>{;)T<7;, the 1\-\ -term would yield
. .RIG- /

a I 1) T I contribution (where A T=T-T ) to the specificc

heat singularityfor ra =~c ' ~ 7 < 0 , and would thus force the

inequality eX' ~ /-;?(8 . Therefore,we concludethat in any

model in which ()(' < 1- Z IS ,as in the Ising model for d=2 and d=3,

AA
the dominant contribution to h-h along the coexistence curve for small rc

is independent of r and is proportional to M2, so that

(8)

Comparing (6) and (8), we see that P=2/£, and (7) follows. Looking ahead

for a moment we note that we shall find nothing in our argument that

If
' ~

necessitates or even suggests the breakdown of the homogeneity of f~ IH

and ~T or the associated breakdown of homogeneity of thermodynamic quantities

in these variables. If we assume the simplest form of such homogeneitylO,then a'=a .

We are now in a position to introduce the second length A , which we
AA

define as the r at which the small-r expression for h-hc given by (8) is of

the same order of magnitude as the large -r expression given by

(9)
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/\
which we expect to hold for all r sufficiently large for h to be negligible

A ~-
compared to hfc~ In the case of the nearest-neighbor Ising model, h is surely

exponentially damped for large r, so that (4) guarantee~ that (9) will hold

:lIe -dJ-I-~
for large enough r. From (8) and (9), it then follows that)( ,v /\ .;1

-9 i
or letting 1\.'1t'}( , that

(10)

and from (10) and (7), that

(11)

(12)

We can give a physical interpretation to ~ and to 11 by comparing

(10) with the identical Eq. (16) of reference [11] In that reference we

discuss a 1eng-thA -v )( -B that characterizesthe mean size of micro-

domains of conjugate phase. This length was postulated by Widom1 to be

equal to g = X-I indeed this was a basic hypothesis of Widom's

paper, from which follows the relation .:;(_~ ; ~/€ . In ref. [11] we

argued instead that 1\ ~ g t71'- 0 < e .$ I , and that for high d,

e < I . From the argumentit follows that the length It., B

t:f -.L- - ,:z/G -,

where q is the value approached by 1( as r/al and Xa 0 .
Thus tJ and q are related by
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introduced in ref. [11] can be identifiedwith the Awe have introduced here.

Widom further identified /las a measure of the thickness of an interface
.

between a phase and its conjugate in the bulk (in the p!esence of an in-

finitisimal external field). If we retain this identification and allow

II(J but otherwise follm.rWidom' s argumentsl,~~fin0 -rt<--e);) =-2,a f- Y'

instead of Widom's/l .;-pl =;Zr<3 +if , where,? ' .r, and iJ are

the critical exponents describing the temperature dependence of the surface.
tension 0"", compressibilityKI , andK , respectively, ~long the coexistence

curve:

It is important to note that we have as yet said nothing that implies

the failure of (1), even if e <I so t~at .:<jc: < ~-;C , since as

long as (7) is assumed to hold only when r is not large compared to a, the

\

\

\

\.

leng th 1\ will

introduced ,1\

not appear in (1) in any tang~ble way, despite our having
AA

in terms of h-h. On the other hand, if we assume that fIrc

small" in (7) means r < A rather th~n r Xa, then (1) is no longer true

its functional form

~A
our definition of 1\ implies that h-h actually changesc

at r~J\. At first it might appear that assuming (7)

when d-t ~ 2/£, and

for r ~ A would imply that q would appear in lattice sums or volume integrals

"-

over h(E.)' i. e. in the expression for J<-r along with d,t, and It. Under

AV
any plausible assumptions about the way q(r,)()+O as r/,~+oo, however, it

~

turns out that we have

".

(13a)

instead of

(13b)

\
\
\
i
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as long as ()<!. To see this, we note that we would expect, letting l;tt.::;:.)(~;

The q should not affect the anticipation (!)( X-/j contribution of the

first two integrals, but the third integral can be expected to yield,

I-I}. O( .2/~-:"8{.:2./€=--f.x.".v)
)from the ~ <)f reg~on, a term )( () as well

r )(
/-0

as an additional Jt- term from the -<K< / region. Thus we

must have .;2/ ~ - eJ {.2./<: +;:c -(- 3) ~ -,;C
(13a), but from (10) and (11), this is just the condition ~ ~ I

to recover

(If

~= 1, we have (13b) instead, but from (12),8=I=>q=0 and we are back to

the scaling-theory assumption). Eqs. (l3a) and (10) yield 9(d-t) = 2 t/(o-l).

Since the widely accepted values of ;? ~ and r>(Jfor the 3-d

Ising model are inconsistent with our previous results5 based upon the

"'" "v

assumption that qS;.aX )~O for a«r, we surmise that q~,)( ) is instead
AJ

given by (7) for a«r«A while q(r, ;( )%0 for r»A in the 3-d Ising case.
......

~

(For the 2-d Ising model, q appears to be 0 for both r~a and r»a, since

the rhs of (7) is 0, while for the spherical model, a direct computation

~
shows that (1) always holds, while (7) always holds for r~a, with q=O for

N _
d=3 and 4 but q=d-4 for d~5 for -r~ a. For a«r«A, 9. ~O for all d.)

;V

The fact that q does not appear in K,as long as q%O when r>A indicates

that the homogeneity of thermodynamic functions in M1~nd ~T is as consistent

with (5) as with (1), since one way8 of deriving such homogeneity from
/\

scaling-theory arguments is by integrating over ~(r) 'after establishing-
the scaling form of that function. This suggests that we can append the
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results that follow from thermodynamic homogeneity to the results we have

already derived, to obtain new relations involving exponents. In particular,

from (11), (13a) and the thermodynamic homogeneity rela;ionl rif 1'.3+1' -==.:l -0(..

(for I < r-l~,d...<z ) and ;S =JI/€ . .. ..J.t2.
we fJ.ndeasJ.lythat, J.£/< rr;;(,6~~, /Pt.£-;<...

# i1- ';<+0( == JIg' If we use the sensible values p( = I/e?" ,~ =- t)//G

with the values ~ =5, )/ =125/196,?{ = 1/25, our

equations yield q = 3/50 and B = 49/52. These values of J.'(and '1 are perhaps

_~on the ~ow side; )J = 9/14 and 1-= 1/18, which are probably on the high side,

yield q= 1/12 and 0 = 35/38 instead.

In summary we make the following two points:

..",
.,.

(i) For both the Ising and spherical models, as well as fluid models, we I
,

\
"

believe a second length, less thanjf , will appear in the sense discussed

in ref. [ll]for sufficiently high d, but the d appears to be model dependent.

For the spherical model, d=5, while for the Ising model, d appears to be

3; for continuum fluids d may be 3 or it may be higher. Moreover, whether

this appearance of a 1\ less than ~ 1 which is associated with the fai1u-re

of Eq. (3), also makes itself felt in the failure of (1) again depends on

the particular model being considered. In the sp~erica1 model, for example,

(1) persists, but in the Ising model, (1) appears to be violated as soon

as A differs from ~

(ii) There is no evidence that the breakdown of homogeneity of thermodynamic

quantities ~ccompanies the breakdown of homogeneity of correlation. In

particular, the non-appearance of q in ~~~ argues against the former break-

down.
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