Department of Electrical Engineering
College of Engineering and Applied Sciences
State University of New York at Stony Brook

Stony Brook, New York 11794-2350

A Comparative Study of Basic Backpropagation
and Backpropagation Through Time Algorithms

by

K. Wendy Tang and Hung-Jung Chen

Technical Repoé\t #700

November, 1994

A Comparative Study of Basic Backpropagation
and Backpropagation Through Time Algorithms

K. Wendy Tang and Hung-Jung Chen

Department of Electrical Engineering
SUNY at Stony Brook, Stony Brook, NY 11794-2350.

ABSTRACT

A neural network’s ability to utilize large amounts of sensory information and its parallel
processing, learning and generalization capabilities have made it an attractive computation
model for problems intractable on traditional computing. In this report, we review two neural
network schemes, the basic backpropagation, and the backpropagation through time algo-
rithms. We incorporated these schemes in a two hidden layers neural network to learn the
sine function. There are ten hidden nodes in each layer one input, and one oulput nodes. We
found that, in general, the backpropagation through time algorithm is more robust and has a
faster convergence rate. However, with a constant learning rate, the steepest decent method
is, indeed, slow. To improve the rate of convergence, we adopted the Delta-Bar-Delta rule
on the two algorithms. Our result indicates that the backpropagation through time algorithm
has a superior performance than its basic counterpart. !

1 Introduction

Neural computing or neural networks have received much attention and have become an
increasingly important computational model in recent years. Inspired by the structure of
the brain, these networks are massively parallel systems that rely on dense interconnection
of simple processing elements, or neurons. Each neuron has n inputs either from an external
source or from other neurons. The weighted sum of these n values is transmitted to a non-
linear function, ¥he transfer function, to produce the output of a neuron. A diagram of the

mathematical model of a neuron is shown in Figure 1 [1].

Neural networks offer several advantages over conventional computing architectures [2].

Calculations are carried out in parallel yielding speed advantages and programming is done

!The authors acknowledge and appreciate discussions with and contributions from Paul Werbos. This
research was supported by the National Science Foundation under Grant No. ECS-9407363.

s (z) = (1+e)1

Transfer
Function

output

Figure 1: A Mathematical Model of a Neuron.

by training through examples. These networks are characterized by their learning and gen-
eralization capabilities and can be deployed as “black boxes” that map inputs to outputs
with no explicit rules or analytic function [3]. The neural network “learns” the system model
by training through a set of desired input-output patterns. They are particularly useful for
problems intractable with traditional computational method, such as pattern recognition
and classification, prediction, diagnosis, and process control. Specific applications include
speech synthesis and recognition, image processing and analysis, sonar and seismic signal

classification, and adaptive control [3].

The most dominant form of neural networks is the multi-layer backpropagation network
(Figure 2) [4, 5, 6]. It is a hierarchical design consisting of fully interconnected layers of
neurons [7]. The weights associated with each neuron are updated by taking the gradient
of an error function with respect to the weights and performing a gradient search of the
weight space [8]. Errors are propagated backwards through the network, hence the name
back-propagation. Despite its popularity, the main drawback of the basic backpropagation
algorithm is its slow convergence rate. Various efforts are made to increase the rate of
convergence, e.g., the Delta-Bar-Delta Rule [9]. In this research, we focus on this multi-
layer backpropagation network. We discuss and compare the basic algorithm with a more
sophisticated version, the backpropagation through time algorithm proposed by Werbos [10].
We found that by combining the backpropagation through time algorithm with the Delta-

Bar-Delta rule, the neural network provides more robust and faster learning.

Hidden Layers

A Backpropagation Network

Figure 2: A Multi-Layer Backpropagation Network.

This technical report is organized as follows: in Section 2, we review the basic backprop-
agation algorithm. Section 3 is a summary of the backpropagation through time algorithm.
The Delta-Bar-Delta rule are presented in Section 4. Various results and discussions are

included in Section 5. Finally, in Section 6, we present a summary and conclusions.

2 Basic Backpropagation Algorithm

For expository convenience, we assume there are m inputs, n outputs, H hidden nodes,
and T training samples. The training inputs are presented to the network as X;(t), ¢ =
1,...,m, t=1,...,T and the corresponding desired outputs are Y;(¢t), i=1,...,n, t=
1,...,T. The network equations are made up of the feedforward and feedback components.
The detailed of the algorithm can be found in [10]. For the reader’s convenience, they are

also summarized here.

Feedforward Eqﬁations

z;(t) = X,‘(t) 1<1<m

neti(t) = TiiWiyzi(t) m<i<m+H+n (1)
z;(t) = s(net;(t)) m<j<m+H+n

Yi(t) = Zmen+i(t) 1<i<n

The error of the network is obtained by comparing the actual and the desired outputs.
T T n .
E=3 E(t)=3_3 05¥i(t) - Y,®) (2)
t=1 t=1 t=1
where Y;(t) is the output of the neural network and Y;(t) is the desired outputs. This error
is feedback to the network. The error gradient F_W;; with respect to each weight, W;; is

calculated with the feedback equations:

Feedback Equations

FY(t) =3#5=Y Vi(t) - Yi(t) i=1,...,n

F_m,-(t) = F_Y;‘_m_}{(t)

+Z?=tﬁ+nMi*FJletj(t) t=m+H+n,....m+1 (3)
F_net,(t) = s'(net;)* Fzi(t) i=m+H+n,....m+1
F_W;; =YL Foanet(t)*xz;(t) 4,j=1,....m+H+n

where 3(z) is the sigmoidal transfer function and s'(z) is the derivative of s(z). Also,

s(2)=1/(1+ ™)
$(2) = s(2) * (1= 8(2))

Furthermore, we assume the network is multi-layer and there is no connections for nodes on

the same layer. That is, W;; = 0, if nodes ¢ and j are in the same layer.

Once F_W;; (the gradient of E with respect to W;;) is calculated, each weight is updated
according to:

New Wi; =W;; —axF.W; 1,5j=1,....m+H+n (4)

where « is a constant called the learning rate.

3 Backpropagation Through Time Algorithm

Backpropagation through time was first proposed by Werbos [10]. It is basically an extension
of the basic backpropagation algorithm but consider also memory from previous time periods.

Mathematically, this is implemented through the introduction of a second set of weights W'.

In our version of the backpropagation through time algorithm, we associated a weight W' at

each hidden and output node. A more general version that includes a W’ for each connection

can be found in [10]. In our version, the second equation of the feedforward equations (Eq 1)

is replaced by:

i-1

neti(t) =Y Wiyz;i(t) + Wizt —1), m<i<m+H+n

Jj=1 '

And the second equation of the feedback equations (Equation 3) is replaced by:
Fi(t) = FYiem-n(t) + THEE Wi+ Fonet;(t) +W/! * Fneti(t +1)
t=m+H+n,....m+1

For adaptation of the W',

F-VV,! = Eg‘:l F.net,-(t) *.’L‘.‘(t)
New W! =W!- 3« F_W/! i=m+1,....m+H+n

where (3 is the constant learning rate for W'.

4 Delta-Bar-Delta Rule

()

To improve the convergence speed of the steepest decent method, Jacob proposed the delta-

bar-delta algorithm [9]. Basically, the algorithm is a special case of the Adaptive Learning

Rate (ALR) discussed in [11]. It implements four heuristics:

1. every connection has its own individual learning rate;

2. every learning rate varies over time;

3. when the gradient possesses the same sign for several consecutive time steps, increase

the learning rate;

4. when the sign of the gradient alternates for several consecutive time steps, decrease

the learning rate.

In other words, every weight of the network is given its own learning rate and that the

rates changes with time. According to [9], the learning rate update rule is:

K if t?,'j(t - 1)6,'j(t) >0
Aa,-j(t) = —¢Ot.'j(t - 1) if 5{j(t - 1)5;J'(t) <0 (8)
0 otherwise.

where
6ij(t) = F.W,;)
6i(t) = (1-0)8;(t)+06;(t 1)
aij(t) = aij(t —1) + Aaij(t)

In these equations, 6;;(t) is the partial derivative of the error with respect to W;; at time ¢
and §;;(t) is an exponential average of the current and past derivatives with 6 as the base and
time as the exponent[9]. If the current derivative of a weight and the exponential average
of the weight’s previous derivatives possess the same sign, the learning rate for that weight
is incremented by a constant k. If the current derivative of a weight and the exponential

average of the weight’s previous derivatives possess opposite signs, the learning rate for the

weight is decremented by a proportion ¢ of its current value [9].

As will be discussed in the next section, we found the best result comes from a combi-
nation of the backpropagation through time algorithm with the delta-bar-delta rule. In this

case, fi(t), the learning rate for W/ also changes with time. More specifically,

K if %(t —1)%(t) > 0
ABi(t) = { —¢Bi(t —1) if %(t—1)%(t) <0 (9)
0 otherwise.
where
%(t) = FW

%(t) = (1-0)%(t)+6%(t—1)
Bi(t) = Bi(t—1)+ ABi(t)

5 Comparison of Results

To compare the performance of the basic and backpropagation through time algorithms,
we use a neural network with two hidden layers and ten nodes in each layer to learn the

sine function for 100 sampling points over a period of 2r. Figure 3 shows the comparison

6

of the basic backpropagation (labeled as “Basic”) and the backpropagation through time
(labeled as “B-Time”) algorithms. In this example, the learning rate a = 0.8 for the two
algorithms and different learning rates 3 for W’ are used. In these cases, the initial weight

W is randomly distributed between +0.1 and weight W’ is fixed at zero until iteration 1000.

Although from Figure 3, we can clearly observe that the algorithms are converging, the
learning rate is very slow and the error after 10,000 iterations is still large. In an effort to
increase the learning rate and decrease the error, we have made various attempts. First,
we use some “smart” value as the initial weights. From these results, we concluded that
the learning rates for the weights need to be adjusted. We then investigate the effect of
delta-bar-delta rule. We found that if the constant, « is adjusted according to the error, the
convergence is more stable. We call the resultant algorithm, the modified delta-bar-delta rule.
Finally, we discovered that the best performance can be obtained by combining the modified
delta-bar-delta rule with some “smart” value of initial weight. The following subsections

summarize our findings. The parameters used in all the figures are included in Table 1.

5.1 Smart Initial Weights

One obvious approach is to start with an intelligent guess of the initial weight for gradient
decent. Instead of using random weights between (+0.1), we use the resultant weight of the
basic backpropagation for learning 20 samples after 10,000 iterations as the initial weight
for both the basic and backpropagation through time algorithms for learning 100 samples.
For the W’ weight in the backpropagation through time algorithm, we set W’ = 0.0 and
start learning of W’ only after a certain number of iterations, Baclter. By delaying the
learning of the W’ weight, we effectively allow the network to achieve a stable state before
the introduction of the backpropagation through time algorithm. This technique is also
discussed in [10].

Figure 4 shows the result of using the two algorithms to learn 100 samples with o = 0.8
and f = 0.2. The result is not encouraging. Both networks fluctuate over the 10,000

iterations. We attribute such fluctuation to the large learning rate. Our next attempt is

Learning the Sine Function with 100 Samples
With Constant Learning Rate a = 0.8
0055 T v v ¥ LJ LR ' L v v v v L v

05|

0.45

log(Error) 0.4
0.35 -

03 |

0.25 e
100 1000 10000

Iterations

Figure 3: Constant Learning Rate Comparison.

to use a smaller learning rate, a. Figure 5 shows the result of learning 100 samples over
100, 000 iterations with a = 0.2. The learning rate for W’ in the backpropagation through-
time algorithm is § = 0.01,0.03,0.05. From this figure, we observe that, indeed, the error
is much smaller than those in Figure 3. Furthermore, in all cases, the backpropagation
through time algorithm learns faster and has a smaller error than the basic algorithm and
the convergence rate increases with . But when £ is large (3 = 0.05), the error fluctuates
again. This observation agrees with intuition. When the learning rate (or step size) for W’
is big, the nature of the steepest decent method implies that adjustments of the weights are

large and thus stability problem arises.

Hence from Figure 5, it is clear to us that for a given learning rate a, the backpropagation
through time a.lg},rithm converges much faster than the basic algorithm. Nevertheless, the
strength of the backpropagation through time algorithm can best be utilized if, somehow,
the learning rate is adjusted. Therefore, we adapted Jacob’s delta-bar-delta rule in weight

adjustment.

Learning the Sine Function with 100 Samples

Constant Learning Rate (=038, f=0.2)
14 T

1.2 Basic
B-Time —--—

1

=
s 0.8
o0
= 0.6

04

0.2

0 i
100 1000 10000
Iterations

Figure 4: Constant Learning Rate Comparison with Smart Initial Weights.

Learning the Sine Function with 100 Samples

Constant Learing Rate (o = 0.2)
1) L) I v L) 1)

Basic -4—
B-Time (6 = 0.01) -o—
B-Time {3 = 0.03) -e—"]
B-Time (8 = 0.05) —

log(Error) -0.7 |-

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
Iterations

Figure 5: Constant Learning Rate Comparison with Smart Initial Weights I1.

Learning the Sine Function with 100 Samples
Delta-Bar-Delta-Rule (8=0.7, $=0.45, x=0.045)

- Basic (o= 0.4)
Basic (@=02) —-— \

log(Error)
¥
’ / ’

10 100 1000 10000 100000

Iterations

Figure 6: Constant Delta-Bar-Delta Rule for Basic Backpropagation.

5.2 Delta-Bar-Delta Rule

Figures 6 and 7 show the direct implementation of the delta-bar-delta rule with constants
(0 = 0.7,¢ = 0.45,x = 0.045) to the basic backpropagation and backpropagation through
time algorithms. We observed that the basic algorithm exhibits minor fluctuation for a = 0.2
and more serious fluctuation for & = 0.4. We believe that the x value is too big. And
when the initial @ value is large (@ = 0.4), the error is less stable than that of a = 0.2.
The backpropagation through time algorithm, on the other hand, exhibits the most severe
fluctuation. We attribute this behavior to the fact that both the W and W’ learning rate are
adjusted with the delta-bar-delta rule constants. When « is large, both learning rates are
increased too much and thus instability arises. To demonstrate this point, we implemented
the delta—ba.r—deﬁ:’a rule for smaller « values, £ = 0.009,0.0009,0.00009. Figures 8 and 9
show these result?s. Indeed, for small x values (k = 9.0e —4,9.0e — 5), stability is no longer a
problem. A large x value tends to give better performance (smaller error) in the early stage
(say, < 1,000 iterations) but is more prone to stability problem in the later stage. Based on
this observation, we proposed a modified delta-bar-delta rule, in which the &« value changes

with different ranges of errors.

10

Learning the Sine Function with 100 Samples
Delta-Bar-Delta Rule (6 = 0.7, ¢ = 0.45,a¢ = 0.2,8 = 0.05)

B-Time (x = 0.045) ——

3F -
4k -
_5 I A WY | i idaaaal A bt i asal A At b A ALl
10 100 1000 10000 100000
Iterations

Figure 7: Constant Delta-Bar-Delta Rule for Backpropayation Through Time.

Learning the Sine Function with 100 Samples
Delta-Bar-Delta-Rule (6=0.7, $=045, =02, $=0.05)

B-Time (x= 0.009) h
3 b B-Time (x = 0.0009) — .
-4 F .
_5 ' L
10 100 1000 10000
Iterations

Figure 8: Constant Delta-Bar-Delta Rule for Backpropagation Through Time.

11

Learning the Sine Function with 100 Samples
Delta-Bar-Delta-Rule (8=0.7, $=045, a=02, f=005)

2 F

log(Error)

B-Time (x = 0.00009) —-—

-3+ B-Time (x = 0.0009) — 4
4 F 4
-5 A A
10 100 1000 10000
Iterations

Figure 9: Constant Delta-Bar-Delta Rule for Backpropagation Through Time II.

5.3 Modified Delta-Bar-Delta Rule

From previous experimentation, we found that both algorithms converge faster if x in the
delta-bar-delta algorithm changes with the error. In this modified delta-bar-delta rule, we
start with an initial £ value and when the error calculated as in Equation 2 is less than ¢,

then k = k;, 1 = 1,2,3,4. In some cases, we use : = 1,2,3 only.

Figure 10 shows the result of learning 100 samples using the basic algorithm. As compared
with Figure 6, the modified delta-bar-delta rule provides a much more stable convergence.
However, for o = 0.4, convergence is still not stable when iteration > 10,000. This is due to
the fact that the & value used is still too large. From this figure, we conclude that the proper
choice of the x value is critical to the stability of the algorithm. The task of determining the
most appropria.té: x value becomes formidable when the initial error is large. We also noted
that in this case, the initial weight are randomly assigned between 1. If we can use some
smart guess of the initial weight, such as the resultant weight of 20 samples, to reduce the
initial error, we believe that the algorithm will be less sensitive to the choice of the & values.

We shall explore this direction in the next section.

12

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 = 0.7, ¢ =045, x=0.045)

0
g -1
% 2} Basic @ =04) —— '\, 3
=2 Basic (@=02) —-— \

3 Pk N -

4 E

5 . " .

10 100 1000 10000 100000
Iterations

Figure 10: Modified Delta-Bar-Delta Rule for Basic Backpropagation.

Figure 11 shows the modified delta-bar-delta rule for backpropagation through time. In
this case, we use three epsilon values: ¢; = le—3,¢€; = 5e—4, €3 = 4.75¢ —5. That is, initially
& = 0.045 and when the error is < €, £ = k;,t = 1,2,3 (k1 = 0.025, k3 = 0.009, k3 = 0.007).
Also, initially, W' = 0.0 and its adjustment starts at iteration > Baclter = 1,000. From the
figure, we observe that immediately after 1,000 iteration, the error decreases significantly
indicating that the backpropagation through time algorithm helps to reduce the error. How-
ever, the error later shots back up between iteration 1,000 and 2,000. During this period,
the error is in the order of 10~2 which is > €, = 10~2, therefore, £ = 0.045. We believe that
this relatively large x value is responsible for the increase in error. In another attempt, we
used a different set of ¢; values. In particular, ¢; = le—2,¢; = 5e—3,¢3 = le—~4,¢4 = 5e—4.
The & values remained unchanged, except with the addition of x4 = 0.005. With this new
set of € values, g‘iuring iteration 1,000 and 2,000, the error is < ¢; = le — 2, and thus the
x value is reduced to x; = 0.025. Not surprisingly, once this smaller x value is used, the
algorithm converges stablely. However, we consider such a trial and error guess of the proper
set of € values not practical. In the next section, we shall explore the idea of coupling this

modified delta-bar-delta rule scheme with some intelligent guess of the initial weight.

13

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 = 0.7, $ =045, x=0.045, a=0.2, =0.05)

2 —rer

.3
B-Time (modified £) _—-—
4 F o
_5 4 A A
10 100 1000 10000 100000
Iterations

Figure 11: Modified Delta-Bar-Delta Rule for Backpropagation Through Time.

5.4 Modified Delta-Bar-Delta Rule with Smart Initial Weight

In this section, we use the resultant weight of learning 20 samples after 10,000 iterations as
the initial weight W for learning 100 samples of the sine function. Again, the initial values
for W’ = 0.0 and their adjustment starts after iteration > Baclter. Figures 12-15 show
these comparisons for learning 20 samples with different ¢, 3 values. In these cases, we start
the learning of W’ after Baclter = 1,000 iterations. The backpropagation through time
algorithm performs consistently better than the basic algorithm. The resultant weight after
learning the 20 samples for 10,000 iterations is used in the learning of 100 samples over a

period of 27. Figures 16 to 23 show results for different a, 8 values.

From these ﬁgures, we confirm that the backpropagation through time algorithm is more
robust than its Basic counterpart when the modified delta-bar-delta rule is used with some
intelligent guess of the initial weights. For example, in Figure 16, the basic algorithm fluc-
tuates within the first 10,000 iterations whereas the through-time algorithm exhibits only
minor fluctuation and quickly converges to a smaller error. However, such fluctuation is
not a characteristic of either algorithms. In fact, we attribute the fluctuation to individual

weight-space. For example, in Figures 17 to 19 and Figures 21 to 23 both algorithms achieve

14

stable convergence. We believe that since previous memory are used in the prediction of
current outputs, the backpropagation through time algorithm is able to minimize any pos-
sible fluctuation and achieve a faster and more stable convergence. As another example,
in Figure 20 both algorithms display fluctuation in earlier iterations, but the through-time

algorithm is able to achieve steady convergence in less than 10,000 iterations.

6 Conclusions

In this report, we reviewed the basic backpropagation, backpropagation through time algo-
rithms, and the delta-bar-delta rule for faster convergence. For comparison purpose, we use
the two algorithms to learn the sine function over the period of 2r in a two-hidden-layer
neural network. The network consists of one input, one output, and ten hidden nodes in
each layer. We found that, in general, the backpropagation through time algorithm is faster
and more robust than its basic counterpart. To improve the rate of convergence, we explore
different options, including the use of some smart initial weight and delta-bar-delta rule. We
found that the best performance is achieved by combining a modified delta-bar-delta rule
in which the x value changes with error and the use of some intelligent guess of the weight
space. We showed that by accounting for previous memory, the backpropagation through
time algorithm is able to minimize any possible error fluctuation and provides a faster and

more robust convergence.

15

References

[1] S.Y. Kung. Digital Neural Networks. Prentice Hall, Inc, Englewood Cliffs, New Jersey,
1993.

(2] Richard L. Lippmann. “An Introduction To Computing With Neural Nets”. IEEFE
ASSP Magazine, pages 4-22, April 1987.

[3] Judith E. Dayhoff. Neural Network Architectures. Van Nostrand Reinhold, New York,
1990.

[4] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA, November 1974.

[5] D. Rumelhart and J. McClelland. Parallel Distributed Processing, volume 1. MIT Press,
Cambridge, MA, 1986.

(6] D. Parker. Learning Logic. Technical Report TR-47, Center for Computational Research
in Economics and Management Science, MIT, Cambridge, MA, 1985.

[7) Paul J. Werbos. The Roots of Backpropagation. John Wiley and Sons, Inc, New York,
1994.

(8] B. Widrow and M.A. Lehr. “30 Years of Adaptive Neural Networks: Perceptron, Mada-
line, and Backpropagation”. Proceedings of the IEEE, 78(9):1415-1442, September 1990.

[9] Robert A. Jacobs. “Increased Rates of Convergence Through Learning Rate Adapta-
tion”. Neural Networks, 1:295-307, 1988.

[10] Paul J. Werbos. “Backpropagation Through Time: What It Does and How to Do It”.
Proceedings of the IEFE, 78(10):1550-1560, October 1990.

[11] Paul J. Werbos. Neurocontrol and Supervised Learning: an Overview and Evaluation.
In D.A. White and D.A. Sofge, editors, Handbook of Intelligent Control, pages 65-89.
Van Nostra.ﬂd Reinhold, 1992.

16

LT

"SuapWDUD uoyvInuwig fo Aupwwng i1 a[qe],

- C—3CLV | ¥—29|¢€—231 001 Sv0'0 90 70 ¢0 001 £C 919
- G—aGLY | F—2G|€—20| 000°T S¥0°0 80 Al Al 001 2 3L | 3em
- C—aGL¥y | ¥—23C | €—2a1| 000°T Sv0°0 90 (A 70 001 12 819 jrewrg
- C—3GLV |¥—23G|e€—21 | 000°T Sv0°0 S1°0 7o ¥o 001 0z 319 qim
- C—aqL¥y | V-3¢ | €—31 001 Sv0°0 Sv'o 70 80 001 61 311 eiped
- C—aqLr ¥ —3¢ | E£—21 001 Sv0°0 SP o £0 9°0 001 81 314 Teg
- C—QLy [V —92G | £—21 001 Sv0'0 Svo ¢0 7o 001 L1 3 eiPd
- C—-9qL¥V | V-3¢ | E—21 001 Sv0°0 Sv'0 70 (4] 001 91 31y
- G-,y |vP—2G | €—21 | 0001 Sv0°0 SYo 7o 80 114 g1 8iq
- C—3GLy |¥P—2ac|€—2T | 000°T Sv0°0 S¥ o £0 90 02 ¥1 314
- C—93GLy | ¥—23G | €—21 | 000°T S¥0°0 Syo ¢0 o 0¢ £1 8iq eiPd
- C—3Ly | v—28|g—21 | 000°T Sv0°0 Syo 10 ¢0 174 o1 8y Teq
¥ —2aS €31 £€-28(Z—21| 0001 Sv0°0 Svo 00 ¢o 001 =IRd
- G—aGLy | ¥—25|€—21 | 000°T Sv0°0 S¥ o 00 ¢o0 001 11 8 | payipo
£—23G | ¢—233GLV S0 0’1 - Sv0°0 Sv'o0 - 7o 001
- C—9qLY | ¥ —3¢ | £—23T - S¥0°0 Sv'o - ¢0 001 01 81g
- - - - 0 S—936‘F—26 | S0 €00 z0 001 6 319 eipd
- - - - 0 ¥—26°C—96 | S0 c0'0 ¢0 001 8 81q Teg]
- - - - 0 S¥0°0 Sy o c0'0 ¢0 001 L 31q eed
- - - - - Sr0°0 Sv'o - 020 | 001 g 31y | jueysuo)
- - - - 000°1 - - G0'0°€0°0°10°0 (Al 001 ¢ 8iq ey
- - - - 001 - - (Al 80 001 ¥ 813 Sururear]
) 3 - - 0001 - - 8'0°C'0°‘¢0 8°0 001 ¢ 819 jue)suo;)
£} € &) I9poeq Y ¢ oy oo sojdureg | Jequny
Jo# I3ty

S00°0 = ¥¥ ‘2000 = £ ‘600°0 = *¥ ‘6200 =" ‘L0 =49

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $ =045, x=0.045,02=02,$=0.1)

-0.5 ——

-1
-1.5
2
2.5
-3
3.5

log(Error)

-4.5

-5 "
100 1000 10000
Iterations

Figure 12: Learing with Delta-Bar-Delta Rule (20 Samples, a = 0.2).

Leaming the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 = 0.7, $=0.45, x=0.045, a=04,p=0.2)

0.5 T

* log(Error)
&
a

-3
-3.5
4

4.5 L
100 1000 10000
Iterations

Figure 13: Learing with Delta-Bar-Delta Rule (20 Samples, a = 0.4).

18

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $ =045, x=0045,=0.6,$=0.3)
-0.5 T

log(Error)
)
¥ 3

-3

-3.5

-4

-4.5 4
100 1000 10000
Iterations

Figure 14: Learing with Delta-Bar-Delta Rule (20 Samples, a = 0.6).

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $=045, x=0.045,2=038,=04)
-0.5

-1
-1.5
-2
-2.5

-3

i Jog(Error)

-3.5

4 P a2 -4

4.5 +

100 1000 10000
Iterations

Figure 15: Learing with Delta-Bar-Delta Rule (20 Samples, a = 0.8).

19

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $=0.45, x=0045,2=02,f=04)
-0.5 Y Y T

log(Exror)
0
7

-3.5

4.5

-5 A A .
10 100 1000 10000 100000
Iterations

Figure 16: Learning with Delta-Bar-Delta Rule (¢ = 0.45,a = 0.2).

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, ¢ =045, x=0.045,0=04,8=0.2)
-0.5 T T

1t Basic i
- B-Time —-—

-1.5 4
2} J

B 25 | g
B h——— 4

3.5 | ~———__]

100 1000 10000 100000
Iterations

Figure 17: Learning with Delta-Bar-Delta Rule (¢ = 0.45,a = 0.4).

20

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $=0.45, x=0.045, 0 =0.6,=03)

-0.5 T v
1 b Basic]
- B-Time —-—
-1.5 R
2 bk 4
'Eg 2s b :
Nt -3 - .
S0 e
= ——
B 2 T e T, ~ =
hEN
4 F \\ b
~ 4
45 | 1
_5 ' i
100 1000 10000 100000

Iterations

Figure 18: Learning with Delta-Bar-Delta Rule (¢ = 0.45,a = 0.6).

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 = 0.7, ¢=0.45, x=0.045,0=0.8,=04)

-0.5 r r
1 b Basic i
- B-Time —-—
-15 ¢ 4
2 }F 4
T 25 | i
% 3 ..\— —— o
- 35t Bt T 1
4} 3
4.5 r :
_5 L L
100 1000 10000 100000
Iterations

Figure 19: Learning with Delta-Bar-Delta Rule (¢ = 0.45,a = 0.8).

21

-0.5

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (6= 0.7, ¢=0.15, x=0.045,x=04,p=04)

-1 F
-1.5
-2
-2.5
-3

log(Error)

3.5

4.5 |

Basic
B-Time —--—

= -

100

1000 10000

Iterations

100000

Figure 20: Learning with Delta-Bar-Delta Rule (¢ = 0.15,a = 0.4).

Learning the Sine Function with 100 Samples

Modified Delta-Bar-Delta-Rule (8 =0.7, $ =0.6, x=0.045,0.=04,=0.2)

-0.5

-1 b
-5
2}
25 F

- log(Exror)

-3

T

B-Time —-—

- <35 F

Basic

100

1000 10000

Iterations

100000

Figure 21: Learning with Delta-Bar-Delta Rule (¢ = 0.6, = 0.4).

22

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 = 0.7, $=0.8, x=0.045,0=04,p=0.2)

0.5 ’ v
1 b Basic j
- B-Time —-—
-1.5 4
2 F d
g 25 F -
g T]
35 | el 3
4t TN -
45 | -
5 . .
100 1000 10000 100000
Iterations

Figure 22: Learning with Delta-Bar-Delta Rule (¢ = 0.8, = 0.4).

Learning the Sine Function with 100 Samples
Modified Delta-Bar-Delta-Rule (8 =0.7, $=0.6, x=0.045,a=0.2,=04)
-0.5 T ~

1 Basic
h B-Time —-~—
-1.5 4

2+ 4
25 F .

‘log(Exror)

-3

-3.5 f
4
45
-5 n X ~
100 1000 10000 100000

Iterations

Figure 23: Learning with Delta-Bar-Delta Rule (¢ = 0.6,a = 0.2).

23

