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SOLUTION OF A SYSTEN OF 

~ m m  EQUATIONS wrm A SPARSE COEFFICIE~~T MATRIX 

BY E L ~ ~ A T I O N  METHODS 

1. Introduct-ion. We consider the solut ion of the  system of s i m u l -  

.taneous l i n e a r  equat,ions of the  form 

(1.1) N I = b  

by t h e  two wel l  knot~rl msthods viz . ,  t h e  Gaussian elili~ination and the  

Gauss-Jordan elinfination [I]. I n  the  system (1.1), A i s  a square fion- 

s ingular  sparse ~ n a t r i x  of order n, X and b a r e  both n element colunn 

vectors.  It i s  evident t h a t  thc posi t ions  where t h e  pivots  a r e  chosen 

i n  A w i l l  a f f e c t  the  number of new non-zero elements created during t;he 

course of each of the elimination processes, I n  t h i s  paper, a f t e r  sho~~- .  

i n g  how t h e  methods fo r  minj.mi.zing the densiby of the  Product Forin of 

Inverse of a Sparse Matrix given i n  [ 2 , 3 ]  can be used f o r  minimizing 

t h e  number of new non--zero elements created during the course of the  

el imination method<, we s h a l l  s t a t e  and prove some new theorems which a 

- i n  turn lead t o  new methods. T h i s  paper, i n  a way, can be regarded a s  a 

sequel  t o  [3]. 

We recall.  t h a t  i n  both of the elimination processes, a t  each stage, 

a column of t he  tsansfonned coeff ic ient  matrix i s  se lected from those 

columns t h a t  r e l i ~ i n  t o  be pivoted. Then i n  t h i s  column a p i v o t i s  choscli 

and a l l  the  other non-zero elements of the  co1'11rrm are  reduced t o  zero 

by e.lementary row opera.tj.ons which are per fomsd  on t h i s  and the  other 

columns t h a t  remain t o  be pivoted. In Gz.ussian elimination t h e  row a s  
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well a s  the column corresponding to  the  chosen pivot are  dropped from 

further consideration a f t e r  being transformed a s  above. On the othcr.  

hand, i n  the case of Gauss-Jordan elimination, i n  addition t o  the trans- 

formation of the other elements of t h e  selected column t o  zero, -the 
- - -.-.- - -. . 

pivot i s  transformed t o  unity [l] and only the column (but not the row) cor- 

responding t o  the chosen pivot i s  dropped. In  view of the above fac t s  i t  
_ L . - .., - .  . . -. 

becomes important t o  s e l ec t  those columns of the transformed matrix tha t  

remain to  be pivoted in. such an order t h a t  on the elimination of each 

one of them a minimum number of new non-zero elements a r e  created i n  the 

remaining rows and columns. It i s  easy t o  see tha t  the Gcuss- Jorda meth- 

od for solving (1.1) i s  equivalent t o  computing the Product Form of In- 

verse, since i n  both t11e nunber of columns t o  bs transfor~aed decreased by 

unity a t  each stage [2]. Therefore, the methods f c r  selecting t h e  pivots, 

so as to  minimize tho, creation of new non-zero e leme~ts ,  given i n  [ 3 ]  can 

also be used i n  t.he case of Gauss-Jordan elimination. l a t h  t r i v i a l  modi- 

f icat ions  these rnetllods can also be used i n  the case of the Gaussian 

' elimination. We sha l l  associ.ate an incidence matrix B r t t h  (1.1). This 

w i l l  help us not  orily i n  giving con.cise defiifitions of the various nea- 

sures defined i n  [2,3] but  a lso i n  the  proofs o f  the new theorens given 

i n  t h i s  paper. 

2. Definitions a ~ d  notations. Let B be an incidence matrix of the  

variables q, 3 ,, *.., x, vs. the  equations 1, 2, . .., n of (1.1); 

tha t  i s  the i t h  row and j t h  columz1 element of B is  0 or 1 according as  

x. does or does i10.L occvz i n  equation j. In other words, B i s  obtained 
1 

from A by replacing each non-zero element of A by unity. L-t A ( ~ )  bc the 

matrix of the  q i v o t e d  columns o f  A a f t e r  k - i of i t s  columns hz-rre been 

pivoted, there  k - 1, 2, . . ., n. I n  the case of Gauss-Jord<m elimination 

A ( ~ )  i s  n 2. m and fo r  G n ~ ~ s s i a n  elimirmtion i t  is m xm, where rn = n - k + 1. 

2 .  



Let Bh be t he  incidence matrix corrs~:ponding t o  A('). Let D denote a k 
T 

column vector xi-th m ones and V a row vector pa th  11 ones,, thus U, = V. 

W e  are now i n  a positi .on t o  define briefly, i n  the case of Gauss-Jordan 

elimination, t.he follox-~ing (see [ 3 ]  for addi t ional  de t a i l s )  : 

The row count vector. [rik)], each element of which gives the number 

k o f  non-zero elements i n  thc corresponding row of  A(k)  (the r ~ c c t ~ r  [ri] 

itself is a columl vector wit11 n elements): 

( 2  -1) [rik)] = $uk. 
(k)] The colmml count vector [c , each elerlient of which donotes Lhe j 

number of non-zero elements i n  tho corresponding c o l ~ n n  o f  A ( ~ )  ( the  vec- 

t o r  [ c ( ~ ) ]  i t s e l f  i s  a r o w  v ~ c t o r  having rn elcmcnts): 
j 

Notice t h a t  we hzve found i t  conve~ ien t  t o  n ~ k e  a s l i g h t  change i n  tht! no- 

t a t i o n  of [j] ?or this paper l i a . ,  rlk) is used ins tead of cik' 2nd c (k) 
j 

i s  used i n  p lace  of R ( ~ )  . 
j 

In a similar mnner bhe various other q u m t i t i e e  given i n  [ 3 ]  call be 



If i n  tho  above ves i i l t s ,eherever  V o c c u r s , i t  i s  replaced by U: we g e t  

the c o ~ r e s p o n d i n g  formizl.as f o r  the Gaussian elimination; of  course,we 

r e c a l l .  t h a t  B in th is  case vill be a square matrix of ordor m, k 

3 . . C o l ~ m  S e l e c t i o n  f o r  P ivot ing .  The colunm of A(k) can be  se l ec t ed ,  

.at stage k, f o r  pirolii.ng by us ing  rnfn D 'k) m i l l  6!k), min. B ( ~ )  o r  min A (k) * 
j j ' j  J j j j 3 

h i k )  was  de f ined  i n  theorem 3 of [ 3 ]  as follours: 
J 

(3.1) A ! ~ )  = 6(k)  - .D(k) - ( ~ ( ~ ) - l ) '  , m recal l .  thet i n  this paper c (k) 
J 5 j 3 j 

i s  used i n  p l a c e  o.? R(k) of  [ 3 ] .  L e t  P.Q denote t h e  matrix obta ined  by 
j 

elementwise product  of any two ma t r i ce s  P and Q. IIence us ing  (2>3) ,  (2.5) 

and (2.6) i n  ( 3  .l) we have: 

T where - +  denotes  t h a t  eaclz elertent of t h e  rot! v e c t o r  V Bk - Uk i s  sub-., 

T t r a c t e d  frorn t ; ' t~ ,~  corre~:pomcling d iagonal  clement of  Rlc B. 

T In t h e  case  of Gaussian elimination. replacing V by Uk in (3.2) w e  

have 

So f a r  sl~e hzve discussed t h e  colunn selectt ion methods tha t  wsro given i n  

[3] . ~c sha l l .  now 6e:icribe soals nsi.7 methods f o r  s e l e c t i n g  the  col~~mns 

'a p r i o r i t  . In sxch mct,hods -t~c decide in. 1~:1.1.t n~c ie r  t.;ill p i - ~ o t  ,211 t h e  
/ \  7' 

colunma before t h e  e1.ixination process starts. Lot 2' = B".R a,nd tij denote 
n 

t h e  f th rew P J I ~  ,j t h  ~3l:ailli?. c1ern~n.t of T, then we hme the f ollo1,ring: 
f \ 

Tlieo~er;! 3,3.. If all. ths mn.-zsro e1c:nent:: i n  the s t h  column cf T 

are equ;l. Lo the diagoxal el~!n.m+; t then by the elililrir;atiw process, 
s9' 



no new non-zero elements a re  created, na which element of the s t,h 

column. of A i s  chosen as R pivot. 

T (1) Proof: Let $ .  denote the  j t h  c ~ l m n  of B. Then tss = Ps 8, = Cs 
J 

which i s  the number of non-zero elemcnts i n  column 3 of A. A l s o  tjs = : 8 J s 

i s  the number of rows i n  which both the j t h  and s t h  columns sj.n~ultancously 

have non-zero elements. I f  tss = t , then to  every non-zero element of 
j s 

column s there cor~respond.s a non-zero element i n  colunn j. Iience no matter 

which element of -tihe s th column of A i s  choser~ as  a pivot,no new non-zero 

elements are created i n  the j t h  CO~UIIILI of A. On the other hand i f  t = 0 
j s 

fo r  some j, then again no new non--zero dements are  created i n  sach a c'olumn 

j when colurm s i s  pivoted. This completes the proof of th.e theorem. 

Some additional definit ions which w i l l  be needed now follow: Let us 

T T c a l l  tss = 8, B s  a s  the !length1 of the s t h  column and t = BT f3 = Ps B j =  tSj js  J s 

as the 'length of the  intersect ion '  of the s t h  and j t h  colurm?s of B. 

(k) - T T From (2.3), we have [I l j  1 - Uk Bk Bk , thus D:~) i s  equal to  the sum of 

the 'lengths of the intersect ions1 of column s of A(k) with a l l  the other 

columns. Also, i f  tSS = t2 then column s i s  said to k v e  a 'contained in- 
J s s 

T T T tersection'  wi t11  CO~UUUI j. Note tha t  0 6, B j  f i n  (8, Bs, R j  Bj), hence 

T T T 8, B j  = 8, 8, i f  and only i f  PS B, s $: Bj.  Tl~.us a column cc;l have a 'con- 

tained in-torsectionl only with those columns that  are greater than or equal 

to  it i n  'length1 . If tj, = 0, then the j t h  and s th colunns are said to  

be 'd i s  j o in t t  . Tnw theorern 3.1 asser t s  t ha t  those colurnns that  have. only 

a 'contained in ts rsec t ionl  with the other columns pillen pivoted create no 

new non-zero el.emeiits. KOW, we can s t a t e  the follo~qing corollary t o  theo- 

rem 3.1: 

Corollary 3.1, A l l  t h o s ~  columns of A that have only one element when 

pivoted create no riew non-zero elements. 



Proof: I f  tss = 1 and ijs $ 0, then s ince  i j s  ' tss inplying t h a t  
- tSs - tjs for  a l l  tjs # 0 and t h e  corollary f o l l c ~ m  from thearem 3 * 1  

In view of t2icorom 3.1 asld corol lary  3 "1 we can say t h a t  a l l  those 

co1urm.s of A t h a t  lhzve a containad i n t e r s ec t i on1  with the other columns 

(this includes the colurms having only ace elelnent) should be pivoted 

f i r s t  and t h i s  w i l l  give r i s e  t o  no new non-zero elements. The following 

theorem tshich i s  subsidiary  -to theolae:n 3,l is he lp fu l  i n  deciding i f  

theorem 3.1 can be uscd: 

Th.eorem 3.2. A necessary (but  not  su f f i c i en t )  condition t h a t  colwm s 

of A will hZve ordy a contalined in te r sec t ion  wit11 a l l  the  other columns 

of b i s  t h a t  a11 those elements o f  the row count w c t o r  [rjl-)] t h a t  corres- 

pond t o  non-zero elernents o f  t h e  s t h  coI.wnli be  eqzla.1 t o  cach othcr . 
Proor": Beca,use col -am s has contained in-tzl-section with 211 the  other 

columns, therefore  i t  fo l lo~us .  t h a t  tss = tjs wheiever tjs f 0 .  Which i m -  

p l i e s  t h a t  i f  c o l ~ ~ n ~ s  s and j i n t e r s e c t  then t c ~  each nom-zero element of 

column s the re  corresponds a non-zero element i n  column j ,  Hmce t.he 

theorem f 03.lo~;s by s~~n;ilring up the nuin1)er of all sucl-i non-zero ele!r*cnt,s 

i n  each row hz~il?.g a nor!-zero element i n  co1111a-I s fo r  a l l  those colwrms 

which intersect; t.sith colunm s. 

Thus unless  among t h e  elements of ~ , r ( ~ ) ]  there  ex i s t  o m  or more 
i 

subsets  such thnl; t h e  nlembers of each' subset  =e equal i n  msgnitudr-s, it 

w i l l  no t  be ~~orthti.rl.?ilu t o  loolc for  c o l ~ m o  h a d n g  contained intersoc-tioris 

by making use of % h e o r x i  3.1. 

The t e r~ns  ' l eng th '  , 'disjoint", '1-eng th of in ters i ;c t ion1 and con- 

ta ined i n - t c~sec t r i on~  given e a r l i e r  fora t he  colun~qs o f  B, can be defined 

s imi la r ly  f o r  the  rows of Y ( e .  g. by using columns of' B') . I n  order to 

describe soln,e in-h~ros-king consequences of t l ~ e  above, lie shall. necd orie 

addi t ions1 d e f i r ~ l ~ ~ i o n ,  1-iz., Iproperly c o n t a i n ~ d  in t ,ersect ionl .  The s th  

col.urm ((row) of E i s  s a id  t o  haye a 'properly contained in-ter:;octiion' 
6, 



... . 
with the  j t h  colum11 (row) if 

Therefore, i f  

then column s does no t  have a 'properly contained in te r sec t ion1  with 

. co2umn j . 1111 view of the .above discussion, we have the following theorems : 

Theorem 3 . 3 .  I f  a given column of B has only 'contained i n t e r -  

sections '  with tho otller col.umns and a t  l e a s t  one of these in te r sec t ions  

i s  a 'properly contained in tersect io l? ' ,  then no non-zero element of the 

given column can belong t o  any row t h a t  has onl-y 'contained in te r sec t ions t  

with the other rows of B. 
- -  . . 

proof: Let us denote t he  element i n  the  i t h  row &d bhe j t h  c o l m  

of B by Bij..If s i s  the  given colurm then, s ince  it has a t  l e a s t  one 'prop- 

e r l y  contained intersec.t;ionl, there  e x i s t s  a colu?m u in le r sec t ing  column 

s and a row i lsuch t h a t  B i l g =  0 and Bilu # 0 .  If we asswne t ha t  there ex- 

ists a row i2 having only a 'contained in te r sec t ion1  with the other rows and 

tha t  Pi,, # 0 ,  then Bizu # 0 since co lum s has a 'contained in te r sec t ion1  

with column 5. NOW row i2 can have only Iconi5r:ined ix te r sec t ions l  with '%he 

other rows and s ince  i t  i n t e r s ec t s  row il because f 0, therefore O i l s  # 0 .  

A contradict ion,  which concludes the proof of the  tlieorcz. 

Theorem 3.4. If a given colwnn of B has only 'contained intersec- 

t ions '  with t he  ot,her colurms and i f  one of the  non-zero elements of thee 

given c o l m  belongs t o  a given r o w  which has only ' contained in tmsec-  

t i ons f  -145th t he  other roas,  then a l l  the  non-zero elements of every col- 

wrvl which i n t e r s e c t s  ~ 2 i t h  the given co l zm l i o  on]-y i n  those r o w s  t h a t  

i n t e r s ec t  the  given row. Furthermo~~e, all such in te r sec t ing  rows and col- 

umns a r e  of equal ! length1.  

Proof: Let  s i3e the  given columl and il the given ]:ow. Let tho s e t  

of a l l  c o l u ~ ~ ~ i s  which i n t e r s e c t  with column E be denoted by S,. Similarly, 



. . 

l e t  the s a t  of a l l  ro:,~s which in t e r sec t  with row i be Sr. Glearly, s E Sc 

a n d i l  E S r .  Then, f o r  a l l  j E S,, i3 il s # O  implies tha t  B i l j  { O ,  since 

column s has only 'contaiaed intersect ions '  with tho other .col?mms. NDW, 

f c r  some i, 8 . # 0 then evidently i E 3,. But row i1 has only 'contained 
1 J  

intersections '  with We other rows; therefore, i t  follows t h a t  Bis # 0. I n  

other words, all the  non-zero elsments of a l l  colwlrc~s i n  Sc l i e  oriy i n  
. . 

those rows tha t ,be lo i~g  t o  Sr. Finally, from theorm 3.2 a l l  the rows with 
. . 

non-zero elements i n  column s have the  sme length. Also from the prc- 

ceding discussion a l l  the columns i n  Sc a r e  of the sane length (since t o  

each B i j  P 0 there corresponds a Pis 0 and v ice  versa). In  view of the 

above f a c t s  it i s  easy t o  see t ha t  t he  s e t  S, f l  Sr consists of a l l  ones 

and both the s e t s  Sc fl S; and S,, fl S; consist  only of zeros (prime de- 

notes the complement of a set;). Therefore, the se t  Sc T! Sr must be square 

since matrix A. i s  non--singular. Hence a l l  the rows i n  S,, a d  a l l  the col- 

umns i n  Sc m~.s. t  be aqua1 i n  length, which completes the proof of the theo- 

rem. 

The prece cling theorelns suggest the following procedine. for  elimi- 

nation: F i r s t ,  a l l  those co1u1:ms which have only contained intersect ions  ' 
- . . 

with the other columns should,be pivoted f i r s t .  This wLl1 incI.u.de all.  

rows and columls a s s o ~ i a t ~ e d  with the  s e t s  of the type Sc n S, described 

i n  the proof of theorem 3+4. Second, i f  possible, all. the col-urm~s i n  

which pivots  can be fowrld i n  those rows which have only contained in t e r -  

sections 1 with other rows should be pivoted.. Notice t ha t  a l l  such rows 

have only lpropsrly contained Antersectionsl wi.th the other rows. Fin- 

a l ly ,  the remaining colunns c m  be pivoted by using the usual methods 

(e.g. i n  ascending order of ~ f l - 1  s or A(') s etc . )  . - . .  . , j . . 

Let us nobr nsaurile t ha t  A has no co~umns thaL have only contained in- 

tersec.tions with the  other c o l ~ ~ m s .  Tbis e n t a i l s  n:, l o s s  of genera.lity, as 

a.U such col.mns can be pivoted f i r s t ,  w5thout crczbing any new non-zero 

e1emnen.t~ a s  sho1~1 a.hosre. We sha l l  now give a. c r i t e r ion  by 1~13ich the co1'1~~1ns 



of A can bo se lected f o r  pivoting.  Let W -; B~ 3:- B, where * denotes t h a t  i n  

place of t h e  usuzl  additi.on Boolean addit ion is used (v iz , ,  1 + 1 = 1). 

Thus t he  i t h  and. j t h  colunlns i n t e r s ec t  i f  and only i f  i t h  roN and j t h  

column eleracnt a. of w i s  equal t o  unity.  Let $-I-' = W % h? f o r  l j .  

h = 1, 2 ,  . . ., where once again Boolean atfdition i s  used. .L6t us dezote 

h the  i t h  row j t!l colmin element of W by u$ij. We sh;ill make use of the 

f ollowfng theor em: 

Thoorem 3.5, I n  the nlatrix A, f o r  a l l  the  c o k m s  a t ha t  car1 a f f ec t  3 
or be affected by a given co lum as i n  the course of tlke process o f  elinli- 

nation, wn_l = 1. 
SJ 

Proof: With each c o l . m  of B wa associa te  a vertex o f  a graph. I f  two 

columns have a non-zero i i i tersect ion then the  correspoaclirlg ver t ices  a r e  

connected. by an edge. Since a co1.1rrna has a non-zero ir l tersection with it- 

self, we rnake the conrenti.on .thbt each vertex i s  conllected t o  i t s e l f  by 

a loop. The co1un.i in te r sec t ion  graph so constructed evidently has W a s  its 

incidence matrix.  he reader i s  re fe r red  t o  [ k ]  f o r  the  def in i t ions  of the 

terminology from graph theory,) Bearing in. ~ , l i ~ d  t h a t  a11 the diagonal ele- 

ments of W a r e  unity, it i s  easy t o  see t h a t  u e j  = 1 implies t ha t  there  

i s  a ps th  of l eng th  h o r  less bet%~esn th;: s th and j t h  v e l " t i c e ~  [S]. Since 
I 

the  path between two connected ver t i ces  can have a I E X ~ ~ ~ ~ I L T I  length of n - 1, 

therefore wn-' = 1 implies t ha t  vc r i i ces  s and j a r e  connected by a psth 
s j 

of length  n - 1 or. less. T l i i s  fact along l r i th  -Lhe obserm.tic;n t h a t  i n  the 
I 

process of e l i ~ a i n a l i o ~ ~  oxlly the coim.ected col.11~~r1.s can pos:;ibrily a f f e c t  

each other, cmap1ei;es the proof of t h e  theore~n. 

I n  pract ice ,  ve do not  nfcd t o  co~;l;into i f  f o r  sorile h < n - 1, 

2 wh, then iltj - I su f f i c e s  t o  j .solete all the coiu~ected components 

of the  colml~x~ in to rsec t ion  graph, It i s  n o t  dj.fficu1-k. t c r  see t h a t  i f  



WhC1 2 I$, then there  e x i s t s  a pen!mta.tion nlatl-ix P such t h a t  P I$ P* 

--- c o n ~ i s t s  only of squa.re sub-matsices of a l l  ones '15110~e dipgoizals --- - -  coincide 

with the diagonal oZ W, Notice t ha t  t he  proof of theorem 3 . 5  does 

not  depend on the  a8szuagtion t ha t  A has no col.wtms t h a t  have only * 

a contained i n t e r s&c t ion  with 'the othcr colams.  Hence we can say Lhac 

such colums, i i o  any, w i l l  be i n  one and o d y  one of tlle connected co1'11po- 

nents of  the  graph. 

We s h a l l  now show how theorem 3 . 5  can be used i n  a p r a c t i c a l  manner. 

To t h i s  ond we ob%.,1_7. def inc a n1atxi.x 19, such $hat i f  tach elarncr,t M . of  the 
J 

column count vec-tor of lul i s  as::ociated with the  corr8esgo!.iding colu-zm a.3 

of A, then pivoting t h e  co l~ur i~s  of A i n  ascellding values of M .  will mini- 
J 

mize t he  c rea t ion  of new no13-zero clemcnts. In  t he  process of ulirninat3.on 

those colmrns t h z t  j .ntersect directly ( there  i s  a path or" lengill olrz be- 

tween tlie corresponding vcr-t ices)  a r e  more l i k e l y  t o  a f f e c t  oach oliier than 

the other co1ur~n.r; (verti .ces ~ . !~h ich  a r e  joined b y  paths o f  l eng ths  pea t , e r  

than one) . If we meglect. tlie self-connecting loop of  each ver tex  then the 

degree. of each var tex  ie given by t h e  corrcspos~ciing e l c ~ i ~ ~ n t  of iht? row 

vector V(W - I) .  Xo:..Lc:c t h a t  the degrcn of  a given ver.cex i s  equal Lo the  

number o f  t h e  C G ~ ~ . L ~ ' ~ L L S  d i r e c t l y  i n t e r s ec t i ng  the  colulcz asucociaLed with 

the given trt\rtlz>:, Slmilarl-y, v(+? - W) i s  t11e row vzc tcr enmerat ing paths 

of leng-Lh two be-h-~cen all the ~ c r t i c e s  and s o  on. L e t  a! bc a scalar such 

tha t 0 5 a -< 1. If we define! M a s  follows: 

= (1j+alq2 + . , , m.n-2@-l) (1. ,) - 

thon 



Since the  roiq vector [M.] i s  used fo r  ordering the coluin-ns of A and addirlg 
J 

unity t o  each element of [>I.] aid the subsequeilt c?ivision by the coulnion 
J 

fac tor  I.. - @, ( s i nce , a  < I.), w i l l  not effect; t h e  ordering, we  have 

Computational experiments t o  de terrnine  hat, val.ucs of ct' are 1~e3sonable a re  

described later is sec t ion  5. 

4. Pivot sal-oc-t;ion. We now consicler the  probl-ern o f  ss1ect;in.g the  

pivots.  They should bc choscn so t ha t  -the creat ion of new non-zero ele- 

ments during the process of elimination i s  minii~lized. We w i l l  ;ow s t a t e  

and prove some theorems r e l a t e d  t o  t he  above probl.em, 

Theorem b -1.. 'The maxir~~wn 11v1nber of non-zkro elemcn t,s t h a t  can be  

created. i f  the  el-emnt a of f s  chosen as a pivot f o r  the  climi- i j 

nation process i s  equal t o  the  corresponding element p (k)  o f  the  ni i tr ix 
i~ 

P ( ~ )  5d1ere 

Proof: If a$) is a pivot  Wen the lnar i rn im n~mber  of new non-zero elements 

t h a t  c m  be crezted on t h e  elimination of col~mm j with a(k)  as pivot a r e  i j 

given by 

Using (2.6) a.nd (2.7) the abcvs car1 be wri t ten  a s  

which prorTes the  tllllcorem. 

IJe r e c a l l  C1la.t ifi -the case of Gaussian elix~inntiom V should be taken 

a s  U: i n  (4.1), uhic;h ia tkis case becomcs 



where Nk 5 s a square matrix of a l l '  ones of order k, 

The exact number of non-zero elements created by a given pivot can be 

enumerated as  f ollovrs : 

Theorem 4.2. ' k e  actual  number of new non-zero elements created i f  

the element a:;) of A ( ~ )  i s  chosen a s  s pivot fo r  the elimination process 

(k) -% 
i s  equal t o  t8e  corresponding element pij of the matrix P ( ~ ) "  where 

(k)* - T T 
- % i$ % With = v Uk - Bk. 

Proof : The t.ot,al nurriber of elemelits of A (both zero and non-zero) , which 

belong simultaneously to- a l l  the rows having non-zero elements i n  the j t h  

column and zlso al l .  the columns having non-zero elements i n  i t h  row, i s  

!k)c( k, . The number of zero elements amongst the  ab,ove gives equal t o  r, 
J 

the exact number o f  new non-zero elements t h a t  would be created i f  elimi- 

nation i s  performed vrith a(k) as the pivot.  Therefore i j 

ber of non-zero elements amongst the rl c k  elomonts. ~ u t  yi;) i s  e(lliti1 
j 

t o  the sun1 of the lengths of intersections of column j a l i  those 

colums that  have a non-zero element i n  row i , ~6%. , 

- 
where ~ $ 5 )  denotes t h e  i t h  row j t h  column elemknt of Bk. Therefore we 

have 

In  view of (2.1) and (2.2), the  above equation i s  eq~zi.il.al.cat t o  the ~natrlx . 



equation 

(k) ii = Bk U k Y  Bk - By B: Bk 

which compl.ei;es t h e  p ~ o o f  of theorem 4.2. 

Equa,tion (b,3) provides us with an alterna-Live way t,o f i nd  those 

columns of A t h a t  have only a 'contaiued in tc r sec t ion l  b i t h  the other 

columns as fo l l cvs :  

Theorem 4.3. I f  a l l  t h e  non-zero elements of the s t h  cobmn o f  A (1) 

T (I)+$ 
(l)" = 0, then t h e  s t h  dl-agonal element of B, P are such that pis i s  

Proof: The s t h  diagolzal elenent i s  obtained as the i n n e r  product of tl2.e 

T s t h r o w  of BL (E  t h  ColUJXi of B,) 2nd the s t h  col.umn of P 
(I- )3i . Since all 

the elements o f  both t;i?s vectors a r e  non-liegative, hence a zero proihc'c 

(1) -2 
implies t h a t  each pis corresponding t o  every noil-zero 0(;) i s  zero. 

Therefore no m t b e r  which a$) # 0 i s  chosen as a pivot  no new nun-zero 

( )  = 0 ,  wilicii. co~vpletres the  proof of the elements .;;ill be c r ~ a t e d  s ince  pis 

For a givan c o l ~ m l  s Ghicl-~ has only coniai.ned in.tersec-tionsl ( i f  any) 

(I)-;+ - 
with the other colmms, it i s  easJr t o  see t h a t  pl, (1) + 0 - 0 f o r  a l l  ais 

T ( l ) + ~ - .  and the s t h  diagona.1 clement of P IS zero.  Note t h a t  i f  -the column 

* (1)" is nccesserily s has cb') = l.,then the. s th diagonal e1cmiir.t of Bl P . 
zero a ~ d  thc rc i ' o rn  a1.l ~ 0 1 u i i u l s  ilavi.ng on ly  one eI.ei?lent s?lould be p i v o t ~ d  

f i r s t .  In passing ao give the fol-lowing thcorein tjiiich i s  anal-ngcj~r:; t o  

Tlieorerm L4 .L1.. 12' all. the non-zero elements of the s th r o x  of ~ ( l )  a r c  

( 1 ) 3:- T (I):' = 0 ,  then the  s th diagond  ele~iic?nt o:C P & i s  zc140. suck1 th..aL psJ 



Proof: Same a s  i n  theorerii 4.3. 

Cnce again not ice  t h a t  the concii t ions  of theorem 4.4 are t r i v i a l l y  

s a t i s f i ed  f o r  al.:L ro%m with r ( l )  = 1, and thdrefore, i f  feanible ,p isots  
S 

should be chosen i n  31.1 those rows of A(') t h a t  have only one non-zero 

element. 

If a t  emery s tage  k (k = 1, 2, ..., n) i t  i s  possible t o  choose a 

(k)* - 
pivot a$:) such t k ~ a t  pij - 0,  t,heli evjdcn-tly no new non-zero elemcnts 

a re  created i n  -the course of t he  en t i r e  process of e l i~ninat ion.  For exam- 

ple,  i f  A is  a band type matrix v ie . ,  

(9 i s  the band width of A) and Ga.ussian elimination, with the diagonal 

(k) elements chosen a,s p ivots  5n the following order akk , k = 1, 2, . . ., n , 
i s  used, then no mex non-zero.eler,ents are creet.ed- Notnice t ha t  i n  the  

above example p(i')" = 0, k = 1, 2, ..., n only for Gaussian elimination kk 

. and n o t  f o r  .the Gauss-Jordan mnethod, Another example rrrhere Ga,ucssian elin&- 

nation creates  no non-zero elements iGg ivcn  by Partcr [6]. It is uasi.ly 

(k) ->: 
seen t h a t  f o r  cash end point  say i of the t r e e  defined i n  [ 6 ] ;  pii = C *  

(k);: 
Instead o f  pi a t  times the  use of pj!) ~ ~ a y  bc preferred eepccial-ly' 

-1 J 

since thc  computation of demands sorni.iihat l e s s  work thail ihct of 

(k! ? 0 ,  w ha-yg P ( ~ ) % .  Tllcrcfore, i f  f o r  each dk) : k = 1, 2 ,  * a a n, pi.., 
3 

once again no new non--zwo elanento s ince  p k (k)* 
i j  Pi j  2 9" 



5 .  Sonic co? ip ta t iona l  r e s u l t s .  The progrml xentioned i n  [2] (wr:i.i;teri 

i n  FOR.TR,-AN IV f o r  the IBFf 70~0/1~01 ' sys tem) ,  which generates sparse co.- 

e f f i c i en t  matrises A, was used t o  cons.l;ruct t h e e  s e t s  ol" 50 x 50 m3,trices 

{A~], [ k 2  ] and [ . l s ] .  Se t  [ A ~ ]  consis ts  of 22 ~ n a t r i c e s  of varying densi t ies .  

On the other hand i n  [ A ~ ]  and [A~] a l l  the  mairices 1.r5.l;hln the same s e t  

have eqnal densi-Lies. The n m ~ s r i c a l  values of the  non-.se:co elemants of a l l  

the matrices were talcen i n  t he  range 99.00 t o  0.01, This seemed t o  be a 

reasonable choice j.n view of the  f a c t  t h a t  trarlous techniq.ues fo r  scaling 

a given coef f i c ien t  matrix a r e  available.  

The Gauss-Jorckm. elilnination xias performed on each of the .matrices 

i n  the s e t s  in1], { A ~ ]  and { A ~ ]  using foul- di.r^ferent meth.ods given be1.o-c.r. 

I n  a l l  cases, as i n  [2], a p ivo t  tolerance of was used. The f i r s t  . 
method., given belo-c.: i s  simil-ar t o  the  f i r s t  method described i n  [2]. 

Metlod M1. 

(I) C o l ~ ~ ~ x i s  of k  were chosen. sequential ly f o r  the  el.ixilination be-. 

ginning with the  f i r s - t  column. 

(ii) The p ivo twas  chosen a s  follows. Out. of a l l  those non-zero 

elements of the  column chosen i n  s-bep (i) above, we found the 

one t ha t  corresponded t o  an unp3vo tecl row and had tho least '  

associated row count by usin.g equation (%.1), provided t ha t  

such an element was greater  than i n  absol.ul;e v,z3..us. I f  

-thiu was not  poss ible  -her; the rnaxi~nurn  non-- z ~ . r o  el.emei1.t of 

the ehosexl colunn corresponding t o  a;n unpivot.ed. r0z.r was taken 

-5 
a s  tha piuoi;, provided -t8hat it was greater than LO i n  abso- 

l u t e  value. If no pivot  greater  than. lo-" i n  absolute value 

coal-d be d.et,enilinsd, +;hen the matr ix  ur~dcr cons:'idcrai;i on was 

declared ~rlr!.g;~lla.r. The choicd o f  for iyhc cocrplete re-,. 



j ec t ion  of the  p ivo t s  worked wel l  fo r  a l l  the problenls under 

considerat5on. Final ly ,  each elenent  of the row c o ~ m t  vsctor 

t h a t  corresponded t o  a non- zero element of tlie colurrul being 

eliminated was decreased by unity. 

Method Mc. 

The columns o f  A were eliminated i n  t h e  following order. N1 

those colu~lns of A t h a t  were 'contaified colmu:s1, ae wall as 

those t h a t  do no t  intersect .  ~ 5 t h  any other colwml, were chosen 

p r i o r  t o  a l l  the  other colurms. Such containeci a216 ~zon--.in.ta-- 

s e c t h g  c~I~rlsd.i8 were detwmined by mzil:lng use of Yneoi3e:n 3.1. 

rn  he relnaj.ning cclu1~ms were e l l ~ i n a t e d  the order of ascend- 

ing  values of t h s  elements of [D ( l ) ]  o f  equation ( 2 . 3 ) ,  dlsrc. 
j 

i n  con..u?2.ng [I)(')]. the eontrrincd and isolat,edi colunr7s cf A 
j 

were ignored. I11 case of ' coni;ainedl colunms, the e1emeal;s of 

m a x i m ~ ~ r n  abso1ut.e ~ a , l n e  were chosen a s  p ivots .  We r e c a l l  t ha t  

e1imhat::ion o; a 'contained co lmnl  does not  c rea te  any new 

non-zero elements. During t he  l a t e r  p a r t  of tho method viz  . , 
when the  rem.aini.ng col.wor1s of A Irere eliminated i n  ascending 

~ ~ a l u e s  of t he  elements of [ D ' ~ ) ] ,  t h e  row count vect.or was up- 
j 

dated  nodif if led) as i n  Method IT giver! i n  [2]. 

Neihod Mu. 

The el imination on .the cclmns of -4 xas perforxlecl ii? Lhe orclcr 

of th9 ascencling values of the elemei~ts of [@ .] given by equa.- 
J 

t i o n  (3.6) . Tho row count vector was upd.a.ted as i n  Method M, 

above. Different  values o f  CY < 1 were trier2 2nd it was found., 



t h a t  fo r  the matrices under considera.Lion, 0.1. I ct S 0.5 gave 

the  bes t  r e s u l t s .  

Method Ma. 

The pivots were chosen on the ba s i s  of 

(k) -:c 
where p i s  defined i n  theorem L.2. Thus at  each step k i j 

t he  non--zero element a(k) of A(k) having the mininlum associated 
ij 

(k) +c 
'ij 

v~as chosen as a p ivot ,  if possible.    his method, i n  gen- 

e r a l ,  involves more l ~ o r k  than M o r  Me. 
CY 

The number of new non-zero elements created when using each of the 

methods Mc, Ma and ITa was compared with the corresponding number fo r  PIL. 

The average r e s u l t s  f o r  tho rfatrices i n  each s e t  are  given i n  tab1.e 1. 

For example, f o r  the  matrices i n  the s e t  A ,  Method Mc on the average 

l e d  t o  the creat ion of 32$ fever  non-zero elemeints than NetLod M. 

TABLE 1 
- 

method PA the 
non-zero elements 

crested by 

---. ,- 
1 

22 .027- .15 35 51 

15 35 I 

I 1 29 1 -070 1 I L7 i 45 
I I. .- --. - i .---.-.-.- - 1 .  --.-.-- --A .-----.------ - -.-.- 1 ----. --- ---- t 

We not ice  tha% Weth~d  Ma gives s ign i f i can t ly  be t t e r  r e su l t s  than e i -  

t he r  of the piethods M, or  No. This i s  not surprising because Ma i n  gc;tt:ral 

involves more work than the other two methods. Both Mc and Ma s e l ec t  



colurms "a priori l l  viz. ,  before the elimination process s t a r t s .  On the 

other hand, f o r  M, we have t o  compute P ( ~ ) - %  according t o  equation (4.3) 

a f t e r  each colwnn has been eliminated. The somewhat ~mexpectcd value of 

32% f o r  { A ~ ]  with Me, which i s  nearly as good a s  t h a t  f o r  the more com- 

pl ica ted method Ha can be explained as follows. The density of the rna- 

+,rites I n  { A ~ ]  i s  much l e s s  than th.e density of the  matrices i n  { A ~ ]  as 

wel l  a s  the average dens i ty .  of the matrices ' in  { A-J . consequently, f o r  

such matrices a l a rge  rrumber of columns tend t o  have a ,  'contained in te r -  

section'  (every c o l m  with one element i s  a 'contained1 column, sea 

corollary 3.1) o r  no in te r sec t ion  at all ~ 5 t h  the  other  columns. There- 

fore ,  Mc does much b e t t e r  than Ma, since 1% depends on the  column graph 

which i n  general  has l e s s  "a p r i o r i n  information i n  t h i s  pa r t i cu la r  case, 

6. Concluding re la rks .  I n  t h i s  paper we h.aye described several me-- 

thods f o r  millimizing the  nmb.er of new non-zero elements created during 

the elimination methods. The s t ruc tu re  of t he  coef f i c ien t  matrix A, i n  

general, a f f e c t s  the  ef f ic iency of a p a r t i c u l a ~  method, espscial ly i f  the  

non-zero elernexlts of A a r e  not  rendomly dis t r ibuted.  Since i n  many large  

sparse systems the non-zero elements of A are not  generally randomly dis- 

t r ibuted,  i t  is  not  possibl-e t o  s ingle  out one method as the bes t  possible 

one. Therefore, it seems t h a t  the method must be se lec ted  on the bas i s  

of the  type of A rratr ices one i s  most l i k e l y  t o  have f o r  the elimination 

processes. 
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