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SOLUTION OF A SYSTEM OF SIMULTANEOUS
LINEAR EQUATIONS WITH A SPARSE COEFFICIENT MATRIX

BY ELIMINATION METHODS
R. P. Tewarson% _

1. Introduction. We consider the solution of the system of simul-

baneous linear equations of the form

(1.1) AY = b

by the two Weli known ﬁethods viz., the Gaussian elimination and the
Gaﬁss~Jordan climination [1]. In the system (1.1}, A is a square non-
singular sparse matrix of order n, X and b are both n element colurm
vectofs. It is evident that the positions whére the pivots are chosen
in A will affect the number of new non-zero elements created during the
course of each of the elimination processes. In this paper, after show-
ing how the methods for minimizing the density of the Product Form of
Inverse of a Sparse Matrix given in [2,3] can be used for minimizing
the number of new non-zero elements created during the coufse of the
elimination methods ., we shall state and prove some new theorems which
in turn lead to new methods. This paper, in a way, can be regarded as a
sequel to [3].

We recall. that in both of the elimination processes, at each stage,

a column of the transformed coefficient matrix is selected from those
columns that remain to be pivoted. Then in this column a pivolt is chosen
and all the other non-zero elements of the column are reduccd to zero
by elementary row operations which are performed on.this and the other

columns that remain to be pivoted. In Gaussian elimination the row as

*Department of Applied Analysis, State University of New York at Stony
Brook, Stony Brock, N. Y. This research was supported in part by the
National Aeronautics and Space Administration, Washington, D, C., Grant
No. NGR-33-015-013. -




well as the column corresponding to the chosen pivot are dropped from

' further consideration after being transformed as above. On the other.

hand, in the case of Gauss-Jordan elimination, in addition to the trans-

formation of the other elements of the selected colwm to zero, the

pivot is transformed to unity [1] and only the column (but not the row) cor- -

responding to the chosen pivot is dropped. In view of the above facts it

&

becomes important to select those colums of the transformed matrix that

remain to be pivoted in such an order that on the elimination of each
one of them a minimum number of new non-zero elements are created in the

remgining rows and colums. It is easy to see that the Gauss-Jordan meth-

.0d for solving (1.1) is equivaleht to computing the Product Form of In-

-

verse,since in both the number of columns to be transformed decreased by
unity at each stage [2]. Therefore, the methods for selecting the pivots,
S0 as to’minimize the creation of new non-zerc elements, given in [3] can
also be used in the case of éauss—Jordan elimination. With trivial modi-
fications these methods can also be used in the cése of the Gaussian
elimination. We shall associate an incidence matrii B with (1.1). This
wiil help us noi only in giving concise definitions of the various mea-
sures defined in [2,3] but also in the proofs of the new theorems given
in this paper.

2. Definitions and notations. Let B be an incidence matrix of the
variables % , X, e« glv&'meemm£Mnsl,2,.,u n of (1.1);
that is the 1 th row and j th column element of B is O or 1 according as
X does or does not .occur in eguation j. In other words, B is obtained
from A by replacing each non-zero element of A by unity. Let A(k) be the
matrix of the unpivoted columns of A after k - 1 of its columms have heen
pivoted, where k = 1, 2, ..., n. In the case of Gauss-Jordan elimination

k) . . - O,
A( ) is o x m and for Gaussian elimination it ismxm, vherem=n - k + 1,

N
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Let Bk be the incidence matrix corresponding to A '. Let Uk denote a
column vector with m ones and V a row vector with n ones, thus UF = V.
We are now in g position to define briefly, in the case of Gauss-Jordan
elimination, the following (see [3] for additional details):

The row count vector [r£k)], sach element of which gives the number
of non-zero elements in the corresponding row of A<k) (the vector [r?]
itself is a column vector with n elements):
(2.1) [r k)] B Uy, .

The column count vector [c§ >], each element of which denotes the

number of non-zero elements in the corresponding column of A(k) (the vec-

tor [cgk)] itself is a row vector having m elements):

(k)7 -
(2.2) (3] = 7 B.
Notice that we have found it convenient to make a slight change in the no-
tation of [3] for this paper.viz., r( ) is used instead of C(k) and cgk)

is used in place of ng’.
In a similar mammer bthe various other quantities given in [3] can bve

redefined more concisely as follows:

(2.3)k [n{k)] =.[r§k)]TBk ul 8l B .

(2.L) (o7 - Bk[0§k>]T = B, Bl V.

(2.5) [6§k)] (o7, = v 5, B B,

(2.6) (6491 - v 8- of.

(2.7) [§§k>j =B U -V

(2.8) 09577 -0o{ -1 o} 5 5 - v m

T LT
= (Uk B, -7 Bk.



If in the above results,wherever V occurs,it is replaced by Ug we get
the corresponding formulas for the Gaussian elimination; of course,we
recgll thatb Bk in this case will be a square matrix of order m.

3..polumn Selection for Pivoting. The column of A<k) can be selected,

at stage k, for pivoting by using win D(k), min ﬁgk), min»ﬁ(k) or min Agk),
i g g Y j 4
A§k> was defined in theorem 3 of [3] as follows:
(3.1) A(k> = 6<k> --D<k> - (ogk)«ljg , we recall that in this paper c§k>
J J J J
: X :
is used in place of Ré ) of [3]. Let P.Q denote the matrix obtained by
elementwise product of any two matrices P and Q. Hence using (2.3), (2.5)

and (2.6) in (3.1) we have:

(3.2) [A§k>] -vB BB - LBl B - (vE - D (vE - D

i

T T TT A T
(V By - Uy) Bi By~ (VB - U ) (V By ~ Up)-.

i

(VB - Up) {BL B -+(V By - UD)},
where -+ denotes that each element of the row vector V By - UE is sub-
tracted from the corresponding diagonal element of Bg B.
In the case of Gsussian elimination replacing V by UE in (3.2) we
have
(3.3) (s8] = ulte, - 1) (5] B -+ (3, - 1.
So far we have discussed the column selection methods that were given in
[3]. We shall now describe some new methods for selecting the columms
Ta priori'. In such methods we decide in what order we will pivot all the
columns before the elimination process starts. Let @ = BTB and.tij denote
the 1 th row and J th colwmn element of %, then we have the following:
Theorem 3.1. If 31l the non-zeroe elements in the s th column of @

are egual to the dizgonal elemant tS"’ then by the elimination process,
o

L.



no new non-zero elements are created, na matter which element of the s th
column of A is chosen as a pivot.

Proof: Let Bj denote the j th colwmn of B. Then t . = B B (l)

. . . T
which is the number of non-zero elements in column s of A. Also t._ = Bj

js Bs

is the number of rows in which both the j th and s th columns simultaneously

have non-zero elements. If bog T tjs,then to every non-zero element of
column s there corresponds a non-zero element in coiumn j. Hence no matter
which element of the s th column of A is chosen as a pivot,nc new non-zerc
elements are created in the J th column of A. On the other hand if tjs =0
for some Jj,then again no new non-zero elements are created in such a column

j when colum s is pivoted. This completes the proof of the theorem.

Some additional definitions which will be needed now follow: Let us

call tgq = Bg By as the 'length' of the s th colum and tjs = Bg Bg = Bg Bj= t

as the 'length of the intersection‘ of the s th and j th columns of B.

(k) i

From (2.3), we have [D( )] = UT Bl B , thus Dy s equal to the sum of

the 'lengths of the intersections' of column s of A( ) with all the other
columns. Also, if tss = tjs’ then colum s is said to have a 'contained in- .
tersection' with colurm j. Note that O SIBT By < min (Bg Bgs Bg Bj), hence
BT B BT B lf and only if BT Bg BT R . Thus a coluwmn can have a 'con-
tained intersection' only with those columns that are greater than or equal
to it in 'length'. If tjs = 0, then the j th and s th columns are said to

be 'disjoint'. Thus theorem 3.1 asserts that those columns that have only

a 'contgined intergection' with the other columns when pivoted create no
new non-zero elaments. Now, we can state the following corollary to theo-
rem 3.1:

Corollary 3.l1. All those columns of A that have only one element when

pivoted create no new non-zero elements.

8]




Proof: If tss = 1 and tjs # 0, then sincevtjs < tss implying that

tgg = tjs for all tjs # 0 and the corollary follows from theorem 3.L.

In view of theorem 3.1 and corollary 3.1 we can say that all those
columns of A that have a 'contained intersection' with the other columns
(this includes the columns having only one element) should be pivoted
first and this will give rise to no new non-zero elements. The following
theorem which is subsidiary to theorem 3.1 is helpful in deciding if
theorem 3.1 can be used: |

Theorem 3.2. A necessary (but not sufficient) condition that column s
of A will have only a contained intersection with all the other coluuns
of A is that zll those elements of the row count vector [rélj] that corres-
pond to non-zerc elements of the s th columm be equal to each other.

Proof: Because column s has contalned intersection with zll the other
columns, therefore 1t follows. that tss = th whenever tjs # 0. Which im-
plies that if colwms & and J intersect then to each non-zeroc element of
colum s there corresponds a non~zero element in colunm j. Hence the
theorem follows by swmiing up the number of all such non-zerc elements
in each row having a non-zero element in columm s for all those columms
which intersect with column .

Thus unless among the elements of Er§l>] there exist one or more
subsets such that the members of each subset are equal in msgnitude, it
will not be worthwhile to look for columng having contained intersections
by making use of theorcm 3.1.

The terms 'leungth', 'disjoint', 'Jength of intersection' and 'con-
tained intersection' given earlier for the columns of B, can be defined
similarly for the rows of B (e.g. by using columns of BT). In order to
describe some interesting consequences of the above, we shall need one
additional definition, viz., 'properly contained intersection’. The s th

coluwmn (row) of B is said to have a 'properly contsined intersection'




with the j th colwmn (row) if

T _ Tl T
(30)4) BS BJ - BS BS < BJ BJ.
Therefore, if
) T _al - al
(3-5) . BS BJ - BS BS - BJ BJ’

_then column s_does not have a 'properly contained intersection' with
column j. In view of the above discussion, we have the following theorems:

Theorem 3.3. If a given column of B has only 'contained inter-
sections' with the other columns and at least one of these intersections
is a 'properlyicontained intersection', then no non-zero element of the
given column can belong to any row that has only 'contained intersections'
with the other rows of B.

- Préof: Le£ ﬁéndenote the éiement iﬁ”theri th row aﬁd the j th column

of B by Bij‘~If g is the given columm then, since it has at least one 'prop-
erly contained intersection', there exists a colum u intersecting colwm

s and a fOW'ilsuch that Bils_? 0 and Bilu # 0. If we assume that there ex-

ists a row iz having only a 'contained intersectiqn‘ with the other rows and
that Bigs # 0, then Bigu # 0 since colurn s has a 'contained intersection!

with column u. Now row i, can have only 'contained intersections! with the
other rows and since it intersects row i; because Bilu # 0, therefore Bils # 0.
A contradiction, which concludes the proof of the theorem.

Theorem 3.4h. If a given column of B has only 'contained intersec-
tions' with the other colwms and if one of the non-zero elements of the
given colum belongs to a given row which has only 'contained intersec-
tions! with the other rows, then all the non-zero elements of every col-
umn which intersects with the given column lie only in those rows that
intersect the given row. Furthermore, all such intersecting rows and col-
ums are of egual ‘'length’. |

Proof: Let s ve the given colum and i; the given row. Let the set
of all columns which iﬁtersect with column ¢ be denoted by S¢+ Similarly,

WBRARY
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| let the Set sf-éll raﬁs ﬁhich intersect with row i 59 Sr' Clearly, s € S,
and i; € S.. Then, for all j € S, Bi, s # 0 implies that Bs, 3 # 0, since
column s has only 'contained intersections' with the other colunms. Now,
for some i, Bij # 0 then evidently i € S.- But row i has only "contained
intersections'with the other rows; therefore, it follows that Bis # 0. In
other words, all the non-zero elements of all columns in Se lie only in
those rows that belong to S,.. Finally, from theorem 3.2 éll the'r;ws Qith
ﬁonrzero elements in coluwmn s have the Same length. Also from the'bre~
ceding discussion all the columns in S, are of the same length (since‘to
each B # O there corresponds a Bjg # 0 and vice versa). In view of the
above facts it 1s easy to see that the set S, N S, consists of all ones
and both the sets S, N S} and S, N Sé consist only of zeros (prime de-
notes the complement of a set). Therefore, the set Se N S, must be square
since matrix A is non-singular. Hence all the rows in S, and all the col-
umns in S, must bé equal in length, which comﬁletes the proof of the theo-
rem.

The precediné theorems suggest the following procedure for elimi-
nation: Fqut, all those colurms which have only contalnod 1nterseut10ng
with uh;‘other‘columns ;hoﬁldrbé ﬁlvotcd first. Tnlg W”ll 1ncluae all
rows and columns associated with the sets of the type S, N Sr describéd
in the proof of theorem 3.L4. Second, if possible, all the columns in
which pivots can be found in those rows which have only 'contained inter-
sections' with other rows should be pivoted. Notice that all such rows
have only 'properly.contained intersections' with the other rows. Fin-
ally,vthe remaining colwms can be pivoted by using the usual methods
(e.g. in ascending §rde? of Dgl)‘sor Agl)‘§_eﬁc.).

o Let us now assume that A has noicolumﬁs that have only contained in-
tersections with the other columns. This entails no loss of generality, as
all such columns can be pivoted first, without creating any new non-zero
elements as showm above. We shall now give a criterion by which the colurns

8.



of A can be selscted for pivoting. Let W = BT #* B, where * denotes that in
place of the usual addition Boolean addition is used (viz., 1 +1 = 1).
Thus the i1 th and j th columns intersect if and only if i th row and J th

1]
column element wjs of Wis equal to unity. Let why“ =W * Wh for

J
h=1, 2, ..., where once again Boolean addition is used. Lét us denote
the 1 th row j th colunn element of Wh by w%j, We shall make use of the
following theorem:

Theorem 3.5. In the matrix A, for all the columns aj that can affect

or be affected by a given column a_ in the course of the process of elimi-

s
nation, w7l = 1
’ . L]
5J

Proof: With each column of B we associate a vertex of a graph. If two
columns have a non-zero intersection then the corresponding vertices are
connected by an edge. Since a column has a non-zero intersection with it~
self, we make the convention that each vertex is comected to itself by
a loop. The column intersection graph so constructed evidently has W as its
incidence matrix. (The reader is referred to [L] for the definitions of the
terminology from graph theory.) Bearing in mind that all the diagonal ele-
ments of Ware unity, it is easy to see that ng = 1 implies that there
is a path of length h or less between the s th and j th vertices [5]. Since
the path between two conmnected vertices can have a maxiimm length of n - 1,

: -1 . . ; . .
therefore‘ng = 1 implies that vertices s and J are connected by a path
of length n - 1 or less. This fact along with the observation that in the
process of elimination only the comnected columns can possibily affect
each other, completes the proof of the theorem.
. _ . vf1~1. .

In practice, we do not need to compute b s if for some h<n - 1,

h+1

— . s . : .
W =W, then ng = 1 sguffices to isolate all the connected components

of the colum intersection graph. It is not difficult to see that if




Wh+1 = Wh, then there exists a permutetion matrix P such that P Wh Pl
_coneists only of square sub—matrices(of alliones Wﬁpsg d@agonals coincide
with the diagonal of W. Notice that the proof of theorem 3.5 does
not depend on the assumption that A has no colums that have only ¢
a contained intersection with the other colwmns. Hence we can say that
such columns, if any, will be in one and only one of the connected compo-
nents of the column intersection graph.

We shall now show how theorem 3.5 can be used in a practical manner.
To this end we shall define a matrix M, such that if esch element Mj of the
column count vector of M is associated with the corresponding column a5
of A, then pivoting the columns of A in ascending values of Mj will mini-
mize the creation of new non-zero eclements. In the process of elimination
those columns that intersect directly (there is a path of lengih ome be-
tween the corresponding vertices) are more likely to affect each other than
the other colwms {(vertices which are joined by paths of lengths greater
than one). If we neglect the self-connecting loop of each vertex then the
degree of each vertex ie given by the corresponding element of the row
vector V(W - I). Notice that the degree of a given vertex is equal to the
number of the colwms directly intersecting the colwm associated with
the given verter. Similarly, V(¥ - W) is the row vector enumerating paths
of length two bebtween all the vertices and so on. Let & be a scalar such

that 0 £ o < 1. If we define M gs follows:

M= (W-I) + (W) + ... + B 2(iP-lae2),
= (ot PP+ L. BT (L) - T,
then
[M,j] = V(o P+ ... +O.’nn2’i«\f1‘l) () - V.

10.



Since the row vector [Mj] is used for ordering the columns of A and adding
unity to each element of [Mj] and the subsequent division by the common

factor 1 - @, (since.«w < 1), will not effect the ordering, we have

(3.6) [f,] = V(enP 21+ ... o™ 200,
Computational experiments to determine what values of @ are reasonable are
described later in section 5.

L. Pivot selection. We now consider the problem of selecting the
pivots. They should be chosen so that the creation of new non-zero ele-
ments during the process of elimination is minimized. We will now state
and prove some theorems related to the above problem.

Theorem li.l. The maximum number of non-zero elements that can be
created if the element a§§) of A(k) %s chosen as a pivot for the elimi-
nation process is equal to the corresponding element pég) of the matrix
P(k) where
by p() . (B U, V") (VB, - rch),i

Proof: If aﬁ?) is a pivolt then the maximum number of new non-zero elemenﬁs
that can be created on the elimination of colunn J with a§§) as pivot are

given by

o9

il

GOENHOEN
i 3

i

p (),
i 93

Using (2.6) and (2.7) the above can be written as
(%) . . T
P = (BU-VT) (VB-UL),
which proves the thsorem.
We recall that in the case of Gaussian elimination V should be taken

as UE in (L4.1), vhich in this case becomes

3.



k m
P = (a0 (0, 0])

(B-I) UL (B -1),

or

(b.2) . p (k)

(Bk—I) Nk,(Bk—I), .
where Ny 1s a square matrix of all‘’ones of order k.
The exact number of non-zero elements created by a given pivob can be
enumerated as follows:
Theorem L.3. The actual number of new NOn-zero elements created if
the element aﬁ?) of A(k> is chosen aé a pivot for the elimination process
is equal to t¥le corresponding element p§§)% of the matrix PO‘{)')‘L where
(L-3) plk)* _ B, Eg B with B, = V' vl - B
. Proof: The total number of elements of A (both zero and non-zero), which
. belong simultanecusly t¢ all the rows having non-zero elements in the j th
column and also all the columns having non-zero elements in i th row, is
equal to r§k>c§k). The number of zero elements amongst the above gives
the exact number of new non-zero elements that would be created if elimi-
nation is performed with agk) as the pivot. Therefore
p§§>* ='r§k)c§k) - Y§§>, whers Y£?> is the total num-
ber of non-zero elements amongst the rgk)cgk) elements. But Y§§) is eéual
to the sum of the lengths of intersections of column J with all those
columns that have a non-zero element in row i, viz.,
09 < 5 B o o ofp)
where B§?> denotes the 1 th row J th column elemént of By. Therefore we

have

K)x. (x) (k) & » (k) . (k) (k)
Pij RS sgl u§1 ais fjsu Buj ’

In view of (2.1) and (2.2),the above equation is equivalent to the matrix .

12.




equation

(3% _ . T
P B, U, VB - B B B

B (0,-2]) B
B By B,

which completes the proof of theorem l.2,

il

i

Equation (4.3) provides us with an alternmative way to find those
columns of A that have only a 'contalned intersection! with the other
columns as follcws:

(1)

Theorem L.3. If all the non-zero elemsnts of the s th column of A

are guch that p§§)*' = 0, then the s th diagonal element of B? P(l)* is
Zero.

Proof: The s th diagonal element is obtsined as the imner product of the
s th row of Bg (s th columu of B, ) and the s th column of P(l>%. Since all
the elements of both the vectors are non-negative, hence a zero product
(1)

implies that each pyg corresponding to every non-zerc Bgé) is zero.

Therefore no matber which a§é) # 0 is chosen as a pivot no new non-zero

(1)

elements will be created since p;’ " = 0, which completes the proof of the
theorem.

For a given colwm s which has only 'contained intersections' (if any)
with the other columns, it is easy to see that p§§>* = 0 for all a§é> # 0
and the s th diagonal element of BF P(l)* is zero. Note that if fthe column
s has cél) = 1,then the s th dlagonal element of B? P(l)% is necessarily
zero and thercfore all columng having only one element should be pivoted
first. In passing we give the following theorem which is anslogous to
theorem li.3.

Theorem l.li. If all the non-zero clements of the s th row of A(l> are

(1) s 1) T .
such that p%§> = 0, then the s th diagonal elemont of P(*) BE is zero.

13.




Proof: Same as in theorem L.3.
Once again notice that the conditions of theorem L.l are trivially
satisfied for all rows with rél) = 1, and théreforeﬁif feagible,pivots

(1)

should be chosen in all those rows of A that have only one non-zero
elenment.

If at every stage k¥ (k = 1, 2, ..., n) it is possible to choose a

(k) (k)3

such that pl

pivot ay = O, then evidently no new non-zero elements
are created in the course of the entire process of elimination. For exam-
ple, if A is a band type matrix viz.,
ajy # 0, if [i-3] = ©
=0, if |i-3] > o,
(6 is the band width of A) and Gaussian elimination, with the diagonal
elements chosen as pivots in the following order aﬁg), k=1, 2, «.., n,
ié used, then no new non—zefQ.elements”éfe created. Notice that inithe
above example p§§>* =0, k=1, 2, ..., n only for Gaussian elimination
.and not for the Gauss-Jordan method. Another example where Gaussian elimi-

nation creates no non-zero elements isggiven by Parter [6]. It i

seen that for each end point say i of the tree defined in [6], p.

(k)

13 at times the use of pgg) may be preferred egpecilally’

k)

Instead of p.

since the computation of P( demands somewhat less work than that of

P(k)%. Therefore, if for each a§§>: k=1, 2, ..., 0, p<?) = 0, we have

once again no new non-zero elements since p( ) = le) = 0.

1k.



5. Some computational results. The program mentioned in [2] (written
in FORTRAN IV for the IBM 70L0O/1L01l system), which generates sparse co-
efficient matrices A, was used to construct fhree sets of 50 x 50 mstrices
{4:}, (A5} and {As). Set {A;} consists of 22 matrices of varying densities.
On the other hand in {Ag} and {Az} all the matrices within the same set
have equal densities. The numerical values of the non-zmero elements of all
the matrices were taken in the range 99.00 to 0.0l. This seemed to be a
reasonable choice in view of the fact that varicus techniques for scaling
a given coefficient matrix are available.

The Gauss-Jordan elimination was performed on esach of the matrices
in the sets {Al}, {Ag} and {Ag} using four different methods given below.
In all cases,as in [2], a pivot tolerance of 107° was used. The first .
method given below is similar to the first method described in [2].

Method Ml. .-

(1) Columns of A were chosen sequentially for the elimination be-.

ginning with the first colummn.

(i) The pivot was chosen as follows. Out of all those non-zeroc
elements of the column chosen in step (i) above, we found the
one that corregponded to an unpivoted row and had the least
associated row count by using equation (2.1), provided that
such an element was greater than 10™° in absolute value. IT
this was not possible, then the maximum non-zero element of
the chogsen colunm corresponding to an uwnpivoted row was taken
ag the pivol, provided that it was greater than 10™° in abso-~
lute value. If no pivot greater than 10™° in absolute value
could be determined, then the matrix under coansideration was

A3 ) N - -5 = I
declared glugular. The choice of 107 for the compleste re-

15.




Method Mc'

Method_M&.

jection of the pivots worked well for all the problems under
consideration. Finally, each element of the row count vector
that corresponded to a non-zero element of the column being

eliminated was decreased by unity.

The columne of A were eliminated in the following order. All
those colums of A thalt were 'contained columns!', as well as
those that do not intersect with any other colum, were chosen
prior to all the other columns. Such contained and non-inter-
secting colwmis were determined by making use of theorem 3.1.

The remaining columns were climinzted in the order of ascend-

9]

ing values of the elements of [D§l>] of equation (2.3), wher
in computing [Iél)].the 'contained and isclated! columng of A
were ignored. In case of 'contained! co}umns, the elements of
maximam absolute value were chogen as pivots. We recall that
elimination of a 'contained column' does not create any new
non-zero elements. During the later part of the method viz.,
when the remdining columns of A were eliminated in asgcending
(1)4
J' J

values of the elements of [D the row count vector was up-

dated (modified) as in Method IV given in [2].

The elimination on the columns of A was performed in the order
of the ascending values of the elements of [ﬁj] given by equa-
tion (3.6). The row count vector was updated as in Method M,

above. Different values of o < 1 were tried and it was found,
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that for the matrices under consideration; 0.1 <o = 0.5 gave

the best results.
A
Me thod M a2
The pivots were chosen on the basis of

. k)
{nlnp.(.) s k=1,2, .c.yn

(k) )

where pij " is defined in theorem _h.?. Thus at each step k

the non-zero element a:,Elj{) of A(k> having the minimum associated
pi(g)* was chosen as a pivot, if poséible. This method; in gen-
eral, involves more work than Moz or M. |
The number of new non-zero elements created when using each of the
methods Mc’ Moz and M, was compared with the corresponding number for M.
The average results for thé matrices in éach set are given in téble l.‘

For example, for the matrices in the set {Ap}, Method M, on the average

led to the creation of 32% féwer non-zero elements than Method ML.

TABLE 1
Number of | Original In comparison wiTh method WML the
matrices |density percentages of fewer non-zero elements
Set in the set|of matrices created by
M, My My
{a,} 22 .027-.15 36 35 51
{Az) 28 .0L1 32 15 35
{as} 29 .070 L7 L5 66
SRR N R ' %

We notice that Method Ma. gives significantly better results than ei-
ther of the Methods M, or M.. This is not surprising because M, in genoral

involves more work than the other two methods. Both Mc and Moz select
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columns "g priori" vﬁz.,'before the elimination process starts. On the
other hand, for M, we have to compute p (k) according to equation (l.3)
afte; each column has been eliminated. The somewhat unexpected value of
32% for {Ap} with M., which is nearly as good as that for the more com-
plicated method M, can be explained as follows. The density of the ma-
trices in {A,} is much less than the density of the matrices in {As} as
well as the average density of the matrices in {A4}. Conséquently, for
such matrices a large number of columns tend to ﬁave a_‘contained inter-
section' (every column with one element is a 'contained' column, see
corollary 3.1) or no intersection at all with the other columns. There-
fore, Mc does much better than Md, since M, depends on the column graph
which in generai has less "a priori" informatioﬁ_in this particular casc.
6. Concluding remarks. In this paper we have described several me-
thods for minimizing the number of new non-zero elements created during
the elimination methods. The structure of the coefficient matrix A, in
general, affects the efficiency of a particular methdd, especially if the
non-zerc elements of A are not randomly distributed. Since in many large
sparse systems the non-zero elements of A are not generally randomly dis-
tributed, it is not possible to single out one method as the best possible
one. Therefore, it seems that the method must be selected on the basis
of the type of A matrices one is most likely to have for the elimination

processes.
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