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ABSTRACT

The system of a fluid in the presence of a spherical semipermeable vesicle (SPV)

with the freely mobile non-permeating species inside the vesicle is investigated via an

integral-equation approach. This system can be used to model certain feature of a bilog-

ical cell, permeable to simple ions, in which solute proteins inside the cell are unable to

permeate its walls. As an illustrative example of the use of our integral equations, the an-

alytical solution for denisty profiles in the Mean-Spherical-Approximation/Debye-Hiickel

approximation is obtained. Here, the notation A/B denotes the use of approximation A

to obtain the density profiles near a membrane and approximation B to obtain the bulk

pair correlation functions. A method which may apply to the system of proteins fixed

inside a cell is suggested.
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I. INTRODUCTION

In our previous papers1,2, we obtained general integral equations for a fluid in

the presence of a plane semipermeable membrane (SPM) or a spherical semipermeable

vesicle (SPV), where the non-permeating species (NPS) are restricted to one side of the

plane membrane or outside the spherical vesicle. Analytic results were obtained for the

permeating-species density ratios between the two sides of a plane SPM as well as the

density profiles of charged hard spheres near a charged SPM or Spy in the mean-spherical

approximation/Debye-Hiickel approximation (MSA/DH). Here and below, the notation

A/B denotes the use of approximation A to obtain the density profiles near a membrane

and approximation B to obtain the bulk pair correlation functions.

The purpose of this paper is to investigate a fluid in the presence of a spherical

Spy with the NPS inside the vesicle and freely mobile. We shall study two types of

distributions of NPS inside a vesicle. In one, the NPS freely mobile inside the vesicle,

while in the other the NPS fixed inside the vesicle. These two types of systems are both

relevant to the modelling of a biological cell.

Our model for a system of a solute ions near and inside a spherical Spy with

the NPS inside the vesicle is very similar to the model we used earlier for the system

with the NPS outside the vesicle. The main difference is that the Spy acts as a pore to

the NPS in the former case, while it acts as a hard-core to the NPS in the latter case.

Fluids inside a slit3, spherical3, and cylindrical4 pores have also been investigated by us

via an integral-equation approach3-4. These pore systems can be equivalently regarded

as SPMs and SPVs with the NPS inside the vesicle, with the permeating species (PS)

regarded as fully permeable continuum solvents, as we have mentioned earlier.1 The work

here and in refs 1 and 2 can be reviewed as extensions of those systems, in which some

of the solute species as well as the solvent are permeating species. The integral equation

method we have used in treating pore systems3-4 are combined here with the method we
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have already used in treating membrane systemsl-2 to apply to a system of a permeable

solute particles in the presence of a a spherical SPV with the NPS inside the vesicle.

In section II of this paper, general integral equations are given for both protein fixed

and unfixed systems. an analytical solution for ionic fluids in the MSA/DH approximation

is obtained in section III. The numerical results are discussed in section IV.

II. GENERAL FORMULATION

A. Freely Mobile Non-permeable Species inside a Vesicle

In our previous papersl,2, we obtained from an Ornstein-Zernike (OZ) approach,

for the sph~rical SPV system, the equations

him(r) = Cim(r) + I: Plhil * clm
l::j:m

= Cim(r) + I: Plhml * cli
l::j:m

(2.1a)

or

him(r) - cfm(r) = (h * CS)mi(r) - AZilm(r) (2.1b)

\72 Im(r) = -47r I:ZIPlhlm(r)
I

(2.2)

with boundary conditions

dlm(r) dlm(r) zm

d;-lr-Rm-tO+- -blr-Rm-to- = - R~ (2.3a)

dlm(r)
I

- 0r-tO -dr

dlm( r) Ir-too = 0dr

Im(O) = 47rLPIZI (00 sdshlm(S)
I 10

(2.3b)

(2.3c)

(2.3d)

where

ct = -{3uZ(r) = -AZiZj/r
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Cij = Cij - Cij (2.5)

>'Zj1i(r)= -[cb + (h * CL)ij]

>.=SL=~
- €kBT - 47r

(2.6)

(2.7)

Here, the subscript m denotes the membrane properties while subscripts i, j, and I denote

the ionic species. The hand Care the pair correlation function and direct pair correlation

function respectively, Zi and Pi are the charge number and bulk number density5 of ionic

species i respectively, eel is the electronic charge, {3= 1/kBT, kB is Boltzmann's constant,

T is temperature, € is the dielectric constant of the continuum solvent, r is Debye length,

while Zm and Rm are the charge number and radius of the vesicle respectively. 1m is the

electric potential distribution of the membrane. If Zi = 0, we recover the equations for a

non-ionic solution near a SPV.

We need another equation to supplement the OZ equation in order to have a

closed system of equations. If one uses the mean spherical approximation (MSA),6 then,

denoting the ion-membrane short-range interaction potential as urm( r), we have

Crm(r) = -(3urm(r) = -(3[Uim(r) - ufrn(r)] if urm(r) < 00 (2.8a)

him(r) = -1 ifurm(r) = 00 (2.8b)

If one uses the hypernetted-chain (HNC) closure, then, one has6

him(r) - crm(r) = In(1 + him(r» + (3urm(r) (2.9)

More complicated closures are discussed in I, including an exact closure and approximate

non-local density-functional closures. We hope to investigate such approximate closures

in further work; the closures we consider here have been chosen to provide reasonable

benchmarks against which to compare future results.
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In the simplest case, if we consider an ideal spherical SPY, which is fully permeable

to some ionic species, but acts as a charged hard spherical pore for the non-permeating

ions, we have

s
) {

o r«dm-dd/2
Uim(r = 00 r > (dm - dd/2 (2.10a)

when the ion is impermeable to the membrane, and

Urm(r) = 0 (2.10b)

otherwise. Here, di is the diameter of ion species i and dm = 2Rm is the diameter of the

membrane.

We begin with a known bulk density5 Pi of particle species i and obtain the bulk

correlation functions via various approximations. Then, substituting the bulk correlation

functions into eq.(2.1), we can solve eq.(2.1a) with closures (2.8), (2.9), or some other

closure1 to obtain the density profiles,

Pi(r) = Pi[1 + him(r)] (2.11)

charge profiles,

q(r) = LZleelPlhlm(r) , (2.12a)
I

and the electric-potential profile Im(r) from eq. (2.1b). The average density inside a

vesicle can be easily obtained when Pi( r) is known:

3 rRm
Pi = Pi[l + R~ Jo r2him(r)dr]

(2.12b)

When r -+ 00, we have [cf. eq.(2.1)],

him( (0) = Cim((0) + L Plhil(O)Clm( (0)
I

(2.13a)

him( +(0) - crm( +(0) = L PICr,(O)hlm(+(0) - ;\zilm( +(0)
I

(2.13b)
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where the tilde denotes the three-dimensional Fourier transformation,

j(k) = 411"1000 r sin~_kr) f(r) . (2.14)

It turns out that eqs.(2.13) and (2.14) are exactly the same as eqs. (3.1) and (3.8) of

ref. 2 in the plane membrane problem. As we have mentioned earlier2, this is because

bulk density ratios and membrane potentials are only dependent on the electrochemical

potentials of bulk solutions, which are unaffected by the detailed properties of a SPM.

Therefore, we also have, for a simple three-component system with permeating

cation( +), anion( -) and nonpermeating protein (p), in the MSA,

-1
cpm(+oo) = - ,

1 + pphpp(O)

h . (+ ) - P~- 1 - -pphip(O)
~m 00 - - -

Pi 1 + pphpp(O)

AZilm( +00) = L PICr,(O)hlm(+00) - him( +00)
I

Cim(+00) = 0 (2.15)

(2.16)

(2.17)

where the ion species i is a cation or anion and P~= p( +00). For the HNC approximation,

we have a set of nonlinear equations [eqs. (2.13) and (2.14) with (2.9)] that can be easily

solved by standard numerical methods.2

B. NonpermeableSpecies Fixed inside a Vesicle

When the NPS are fixed inside a membrane instead of being mobile, the NPS can

be taken to be a part of membrane. As a result, the total PS-membrane pair potential

can be obtained from

Uim(r) = Uim(r) +L! uip(lr - rpl)pp(rp)drpp
(2.18)

where the subscript p is the species label of the NPS and pp(r) is the fixed density

distribution of the NPS inside a vesicle. (We have assumed that the distribution is
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orientational independent). Once Uim(r) is known, we can solve integral equations (2.1a)

and (2.8-9) which contain the PS only. Here, the density for ions Pi is the bulk density of

ions far away from the vesicle.

For example, when there is one NPS (the only one) situated on the shell r = L

inside the vesicle and con centres to its walls, we have,

pp(r) = 8(r - L)47rL2 (2.19)

Substituting eq. (2.12) into (2.11) and taking the L -t 0 limit, we obtain

Uim(r) = Uim(r) + uip(r), L-tO (2.20)

If the vesicle is ideal (Uim(r) = 0), we have system of one fixed ion immersed in the

solution, which consists of the permeable species only. This is what we expected.

III. THE ANALYTICAL SOLUTION IN THE MSA/DH APPROXIMATION

For simplicity, we only consider a three-component system: cation (+), anion (-),

and a NPS - protein or polymer ion - (p) which is freely mobile inside a vesicle. If we

use the DH approximation for the bulk correlations, we have6

cD(r) = 0 (3.1)

which leads to [ef. (2.1b), (2.8), (2.10), (2.2)]

! d2(rlm) -
{

47rA(Z~p++ z~P- + z~pp)Im(r) r < (dm - dp)/2
r dr2 - 4:7rA(Z~P++ z~p_)Im(r) + 47rzppp r > (dm - dp)/2

(3.2)

Solving with the boundary condition (2.3), we have,

{

A}eltr /r - Ale-Itr /r 0 < r < smp
Im(r) = Blecrr/r + B2e-crr/r + Im(+oo) smp < r < Rm

A2e-crr/r + Im(+00) Rm < r < 00

7
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with

K = /4'11")..L PIZ;
1

a = J4'11")..(p+z~+ p_z~)

(3.4)

(3.5)

)"Im( +00) = ;Zppp
P+z+ + p_z-

B Zm -aD
1 = e"'-Tn

. 2Rma

Al = zmexp[-adp/2] + (1 + aSmp)Rmlm(+oo)
[(K+ a)exp(KSmp)+ (K- a)exp( -Ksmp)]Rm

(3.6)

(3.7)

(3.8)

B2 = AIe(~+a)Smp - AIe(a-~)Smp + smplm(+oo)eaSmp - BIe2asmp (3.9)

Zm aD
A2 = B2 + e "'-Tn

2aRm

Then we hav~ the density profiles from eqs.(2.1b ),(2.11)

(3.10)

h:i:m(r) = -)..z:i:lm(r)

hpm(r) = ->.zplm(r) r > smp

(3.11a)

(3.11b)
= -1 r < smp

The average density inside the vesicle can be obtained from eq.(2.12).

Fig.1. shows that the average densities of ions inside a vesicle as a function of the

average density of protein in the cases of both charged and uncharged membrane when

bulk density P+(+00 ) is fixed. The density profiles, electric potential profile, and charged

profiles are also shown in Figs.2-5.
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FIGURE CAPTIONS

Fig.1. The average densities of cations and anions, P=t.,inside a Spy [reduced by the

P=t.(+00)] as a function of average density of the NPS PP (M). Here P=t.(+00) =

0.1M, z=t.= ::1:1,zp = -10, dp = 20A, dm = 60A, T = 298.16K, e = 78.54. The

upper pair of lines are the results for cations and lower pair of lines are for the

anions. Zm = 0 (-), Zm = -1 (- - -).

Fig.2. The density distributions for cation (-), anion (- - -), and protein-like ions (- -

-) as a function ofthe distance from the center ofthe Spy, r (A), in the MSA/DH

approximation. P+ = 0.1M, PP= 0.001M,Zm = O. Other parameters as in Fig.1.

Fig.3. The charge profile, q(r)/eel (M), (-) and potential profiles, Alm(r), (- - -) as a

function of the distance, r (A). Parameters as in Fig.2.

Fig.4. The density distributions for cation (-), anion (- - -), and protein-like ions (- -

-) as a function ofthe distance from the center ofthe Spy, r (A), in the MSA/DH

approximation. Parameters as in Fig.2 except Zm = -1.

Fig.5. The charge profile, q(r)/eel (M), (-) and potential profiles, Alm(r), (- - -) as a

function of the distance, r (A). Parameters as in Fig.4.
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