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Abstract

This paper presents a hardware-software co-design methodology for resource constrained SoC fabricated in a
deep submicron process. The novelty of the methodology consists in contemplating critical hardware and layout
aspects during system level design for latency optimization. The effect of interconnect parasitic and delays is con-
sidered for characterizing bus speed and data communication times. The methodology permits coarse and medium
grained resource sharing across tasks for execution speed-up through superior usage of hardware. The hardware-
software co-design methodology executes three consecutive steps: (1) It performs combined task partitioning to
processor cores, operation binding to functional unit cores, and task and communication scheduling. It also iden-
tifies minimum speed constraints for each data communication. (2) The bus architecture is synthesized, and buses
are routed. IP cores are placed using a hierarchical cluster growth algorithm. Bus architecture synthesis identi-
fies a set of possible building blocks (using the proposed PBS bitwise generation algorithm), and then assembles
them together using simulated annealing algorithm. For early elimination of poor solutions, the paper suggests a
special table structure and select-eliminated method. Each bus architecture is routed, and after parasitic extraction,
bus speeds are characterized. (3) For the best bus architecture, the methodology re-schedules tasks, operations, and
communications to minimize system latency. At this step, bus speed accounts for layout parasitic. The paper offers
extensive experiments for the proposed co-design methodology, including a network processor and a JPEG SoC.

1 Introduction

There is a growing demand for embedded systems targeting multimedia applications [12] [20] [37]. The success of
systems like cell phones, digital cameras, and personal communicators critically depends on meeting stringent cost,
timing and energy consumption constraints. As compared to desktop computers, embedded system performance is at
least one order of magnitude higher, while their cost is significantly lower [37]. Also, hardware resources are scarce
for most embedded systems: they include general purpose processors running at low/medium frequencies (like ARM,
801C188EB, Philips 80C552 etc), have a reduced amount of memory (the memory capacity can be as low as 128k of
RAM and 256k of flash memory), and incorporate various I/O peripherals (including analog and mixed-signal circuits).
Systems-on-Chip (SoC) are single-chip implementations of embedded systems. They offer higher performance and re-
liability at cheaper costs as compared to printed circuit board designs [12]. SoC include multiple IP cores connected
through complex data, address and control buses. The variety of IP cores is large. For example, the H.263 encoder
includes digital DSPs and microprocessor cores, memories, RF and mixed-signal blocks (analog-to-digital and digital-
to-analog converters, filters, and PLL circuits) [29]. It is foreseen that the number of SoC cores will steadily increase



Length = approx. 7.0mm
Speed < 133MHz
~6.97mm ~6.97mm
~6.97mm | | IP core 1 IPcore3 || ~8.97mm
(Power PC sk (Power PC 405GP)
405GP) t
Length = approx. 14.637mm
ot | [t ]
. Speed < 33MHz
Length = approx. 7.0mm
IP core 2 ~6.97mm
Speed < 133MHz (Power PC 405GP)
~6.97mm

Figure 1: Impact of layout on data communication speed

over the next 4-7 years, while clock frequencies will range around 10-15 GHz [4]. Effectively designing SoC neces-
sitates the development of new design automation tools at various levels of abstraction, including system, logic and
layout level [9] [12] [18] [31].

SoC design must be short, require a reduced designer effort, and offer the confidence of getting correct implementa-
tions [12]. For very deep submicron designs (VDSM), physical level attributes such as interconnect parasitics, substrate
coupling, and substrate noise significantly influence system performance, e.g. bus communication speed, system la-
tency, power consumption, and signal integrity [7] [14] [44]. The usual paradigm of abstracting physical details during
system level design is of limited use for SoC implemented in VDSM technologies. Research must focus on incorporat-
ing relevant physical design attributes into system level synthesis, including hardware/software co-design. This task
is challenging, and requires new design approaches, in which the top-down co-design process is aware of lower level
aspects, like core placement and bus routing. Besides, new synthesis algorithms are needed, such as for bus architec-
ture design, as well as novel modeling methods, like describing interconnect length at the system level [41] [42] [48].
For resource constrained systems, maximizing the usage of hardware resources is important in meeting performance
requirements, and avoiding system overdesign. Hardware abstraction at a high-level, as in many traditional co-design
methods [21] [23] [26] [47], does not allow resource sharing across tasks. Each task mapped to hardware posses its ded-
icated set of modules. However, hardware sharing across tasks introduces a new optimization dimension, and offers
the potential of improving performance without using more hardware. In [37], the authors explain that customizing
the medium grained application specific cores improves performance and cost of multimedia systems by important
amounts. They indicate, however, that none of the existing CAD tools exploits this opportunity. This paper presents
a novel hardware-software co-design methodology, in which task and communication partitioning and scheduling are
performed under detailed observation of available hardware resources, and dependency between data communication
speed and physical design (like core placement and bus routing).

The first motivating example illustrates the impact of layout design on data communication speed. Figure 1 shows a
set of three Power PC 405GP cores [2], which exchange data as part of their functionality. The physical dimensions
of the cores are presented in the figure. Without considering layout information, the co-design step decides to allo-
cate a single system bus of speed 266MHz for all core communications. All timing constraints were met in this case.
However, given the physical dimensions of the cores, it is difficult to implement a bus with the requested speed. The
same latency performance can be obtained with three buses of lower speed, as shown in the figure. The bus speeds
of 133MHz, 133MHz and 33 MHz were found based on the physical locations of cores, and the RLC effects of the
routed buses [44]. This example arguments that the communication sub-system of an SoC needs to be designed while
contemplating design feasibility criteria (e.g., achievable bus speeds). Task and communication scheduling must be
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Figure 2: Importance of hardware sharing across tasks for improving latency

integrated with core placement, bus speed allocation, bus topology design, and routing to guarantee that identified bus
speeds are possible for a real SoC.

The second motivating example explains the importance of hardware sharing across tasks. This improves the overall
latency. Figure 2 presents an example, in which the detailed perspective on hardware offers a solution with shorter
latency. Figure 2(a) presents a task graph with 4 tasks. Each task has associated the execution time on a general-
purpose processor (GPP). Additionally, it is assumed that tasks 2 and 4 can be also realized as hardware ASIC. The
figure presents the operation level structure of the two tasks, and the execution time for each operation. Considering that
resource sharing is not possible between tasks in hardware, the resulting hardware/software design has a latency of 34
time units. The schedule is shown in Figure 2(b). In the second case, all possible hardware sharings are contemplated
between the operations of Task 2 and Task 4 (additions and multiplications). The resulting design has a latency of 26
units. Figure 2(b) depicts the schedule. The second case offers a design with a higher operation concurrency, thus a
shorter latency, and less GPP idle time.

This paper presents a hardware-software co-design methodology to address (a) the dependency of task communication
speed and time on layout attributes like interconnect parasitic, as well as (b) the possibility of contemplating coarse
grained (like processors and memories) and medium grained (i.e. multipliers, decoders etc) hardware resource sharing
to improve system latency without increasing cost. The methodology incorporates an original algorithm for bus archi-
tecture synthesis. All hardware resources are assumed to be given in this methodology. The co-design process performs
combined task and communication partitioning and scheduling, and finds feasible requirements for the minimum bus
speed of each data communication link. The bus architecture of an SoC is found as part of the process. The paper offers
extensive experiments, including bus architecture synthesis for a network processor using the CoreConnect bus archi-
tecture [3], and a JPEG SoC design. The co-design methodology improves the practicality of system-level design for
VDSM technologies. It is also useful for implementing resource constrained SoC needed for multimedia applications.

The co-design methodology includes three main parts: (1) the step of combined partitioning and scheduling followed
by (2) the step of bus architecture synthesis, and (3) re-scheduling of tasks, operations, and communications for the best



found bus architecture. The first step is an exploration process based on simulated annealing algorithm (SA) [35]. We

propose Performance Models (PM), a graph-based description to capture the relationships between performance (i.e.
" latency and communication speed flexibility), graph characteristics (like data and control dependencies), and design de-
cisions (such as binding and scheduling). PM are general, flexible, and can be easily extended for new design activities
without requiring cumbersome validation. Experiments showed that (in conjunction with SA) PM are more efficient
than well known synthesis metrics, like task priorities, forces, degree of concurrency, utilization rate, idle times [15]
[23]. The paper presents rules for automatically generating and managing PM. The first step ends with the creation of
a Core Graph structure (CG) that expresses the data volume and timing for each communications link. The second step
uses CG to synthesize and route bus architectures for an SoC. IP cores are placed using a hierarchical cluster growth
algorithm, which places highly communicating cores close to each other. Bus architecture synthesis first identifies a set
of possible building blocks (using the PBS bitwise generation algorithm), and then assembles them together using SA.
The cost function models bus length, bus topology complexity, communication conflicts over time, and amount of un-
necessary core connectivity (which needlessly decrease bus speed). We propose a special table structure (named bus
architecture synthesis table) and select-eliminate method to prune solutions dominated by other (for example, buses
with complex and redundant connectivity). This reduces the exponential number of possible bus architectures.

The paper is organized as follows. Section 2 presents related work on hardware/software co-design and bus architecture
synthesis. Section 3 discusses the proposed system representation. Section 4 introduces the co-design approach. Bus
architecture synthesis is presented next. Experimental results are given in Section 6. Finally, conclusions are offered.

2 Related Work

Over the last ten years or so, a variety of hardware/software co-design methodologies were proposed for optimizing
cost, speed, and power consumption [6] [21] [23]. A typical co-design flow includes following activities: selection of
architectures and architectural resources (processors, memories, buses, I/O modules), functionality partitioning, task
mapping to resources and scheduling, and communication synthesis. Depending on the targeted applications, co-design
approaches can be classified into three groups: for data dominated systems [6] [11] [26] [30], for control intensive sys-
tems [5], and for applications with substantial data processing and reduced amount of control [22] [40]. Balarin et
al [5] present the POLIS approach for control dominated real-time embedded applications. For data dominated sys-
tems, Prakash and Parker [34] and Bender [8] formulate the co-design problem as a mixed-integer linear programming
(MILP) problem. A linear equation solver produces the optimal implementation. The disadvantage of MILP-based
co-design is the very large time required to solve the model. Therefore, these methods are limited to small size ap-
plications. The alternative is to employ heuristic algorithms for co-design, such as greedy priority-driven clustering
[11], list scheduling methods [6] [17] [22] [30], iterative improvement heuristics, like simulated annealing and tabu
search [22], and genetic algorithms [10] [16] [40]. The principal advantage is that heuristic methods can be used for
large task graphs [22]. The disadvantage is that the optimality of the solution is difficult to characterize. For example,
greedy priority-driven algorithms offer good average results, but they might give poor solutions for situations, which
are not captured by the priority function [17]. Recent hardware-software co-synthesis work tackles minimization of
the energy consumption. This is important for mobile and wireless systems. Henkel [27] suggests a hardware-software
partitioning method for low-power systems. Partitioning is at the level of operation (instruction) clusters. After cluster
scheduling, clusters with a high utilization rate (thus, with less wasted energy) are moved to hardware. Dave, Laksh-
minarayana and Jha [11], and Dick and Jha [16] propose co-synthesis methods for the design of heterogeneous systems
under a large variety of optimization goals including cost, latency, and average, quiescent and peak power consumption.
The methods perform task level allocation, scheduling and performance estimation while contemplating interproces-
sor concurrency, preemptive and non-preemptive scheduling, task duplication on processors, and memory constraints.
An initial clustering step uses critical-path analysis to identify the tasks that will share a processor. Then, clusters are
allocated and scheduled using a priority function. Givargis and Vahid [25] describe Platune environment for tuning
parameterized uni-processor SoC architectures to optimize timing and power consumption. The emphasis is set on



high-level simulation of timing and power consumption. Architectural parameters like processor speed, cache organi-
zation, and certain periphery attributes are decided using a method based on the Paretto optimality criterion. Yang et
" al [46] present an energy aware scheduling method for multiprocessor SoC using genetic algorithms. Sgroi et al [43]
suggest a communication centric approach motivated by the increasing importance of communication attributes. Com-
munication is layered similar to the OSI Reference Model. Adapters increase reusability of components by matching
different protocols.

Bus design s critical for SoC. Early work on bus and communication synthesis [13] [24] [33] [47] focuses on multipro-
cessor embedded systems on a printed board. Research addresses interface design [13] [33], communication packeting
[22], mapping and scheduling [47]. This work does not tackle the hardware and layout aspects of SoC communication
sub-systems. Lahiri ef al [32] focus on communication protocol selection for a communication architecture template
including shared and dedicated buses. Recently, Drinic e al [19] present a method for SoC bus network design to
maximize overall processing throughput. The communication architecture includes shared buses connected through
bridges. The design flow includes two steps: one produces the communication topology, and the other finds the core
floorplanning. Seceleanu et al [38] discuss segmented bus architectures for improving speed and power consumption.
Bus segments are dynamically linked through inter-segment bridges (glue logic + tri state buffers) under the control
of a Central Arbiter (CA). Hu et al [29] introduce point-to-point (P2P) communication synthesis to optimize energy
consumption and area. Their work concentrates on bus width synthesis to meet timing constraints on the communica-
tion links, and floorplanning to minimize energy consumption and SoC area. Existing approaches use limited layout
knowledge to guide system design. In many approaches, bus topology is assumed given [24] [29] [32]. This is reason-
able for small SoC (and for which the designer manually designs the buses). However, it is not effective for SoC with
large number of cores.

This paper proposes a new hardware-software co-design approach that integrates system design with bus architecture
synthesis and routing, and contemplates hardware sharing more aggressively. Original algorithms are suggested for
partitioning and scheduling, so that relevant layout attributes are addressed at the system-level. This work presents
new bus architecture synthesis methods, which do not require the bus topology to be given, and are more sensitive to
layout parasitic.

3 System Representation for Co-Design

Anembedded system is expressed for co-design as the quadruple < H DC'G, Resources, Floorplan, PM >. HDCG
describes system functionality as a hierarchical data and control graph. Resources is the set of IP cores used in the im-

plementation. F'loorplan is the set of all possible floorplans for the IP cores in set Resources. PM is a graph-based

representation that denotes performance attributes, like latency and communication speed flexibility.

A Hierarchical Data and Control Dependency Graph (HDCG) offers a dual perspective on system functionality: a
task-level description (for co-design) and an operation-level representation (for exploring hardware sharing across
tasks). HDCG are based on well known system descriptions, like control data flow graphs [23] and conditional process
graphs [22]. Figure 3 presents an HDCG example. HDCG nodes are of three types:

o Cluster nodes (CN) represent loops, if-then-else constructs, functions, and tasks. CN are mapped to the software
domain, and are executed on coarse grained cores, like general purpose processors (GPP). Each CN is a polar
sub-graph built from operation nodes. Figure 3(a) shows the detailed operation structure of CN 3.

e Operation nodes (ON) denote an atomic data processing such as addition, multiplication, etc. These are mapped
to small/medium grained IP cores, like multipliers and arithmetic and logic units (ALU). During co-synthesis,
ONs are employed for analyzing the effect of hardware resource sharing across tasks.
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Figure 3: Hierarchical Data and Control Dependency Graph

o Communication cluster nodes (CCN): Data communications are modeled using CN with a special structure (see
Figure 3(b)). CCNs are shown as black bubbles in Figure 3(a). A CCN includes an alternating sequence of
ON nodes representing transmissions of data packets of a fixed size, and synchronization nodes. The optional
synchronization nodes allow packets from different communication links to be interleaved on the same bus. This
facilitates the suspension of an ongoing communication in favor of a higher priority data transmission. Optional
synchronization points represent the time overhead for synchronizing the cores. If successive packets pertain to
the same communication link, then the optional synchronization points have zero time length.

CN, CCN, and ON are linked through data and control dependencies. Data dependencies, shown as directed arcs,
impose a certain execution order: the target node starts its execution only after the source node was completed. Similar
to conditional process graphs [22], some arcs are annotated with condition values for expressing control dependencies.
In Figure 3(a), conditions are depicted in italics. Node 2 computes condition condl, and depending on its value, one
of its out-branches is selected. For a true value, the graph execution activates the communication between nodes 2
and 3, followed by starting the operations pertaining to node 3. Node 4 is executed for a false condition value (false
is indicated by - cond! in the figure). Nodes 5 and 8 are fictitious join nodes for outlining the control structure of
a HDCG. CN and ON are annotated with their execution times for all hardware resources that could implement the
node. Handling of CCN execution times is presented at the end of this section. The execution semantics of the HDCG
model assumes that each CN, ON, and CCN is executed at most once for each traversal of the graph.

Even though system functionality can be expressed at the lowest abstraction level using ON and CCN only, CN pre-
vent the unnecessary growth of the design solution space, and hence, a very cumbersome co-design process. There is
no hardware resource sharing between tasks executed in software, thus there is no need for a detailed, operation level
description in this case. The execution time of CN in software can be accurately estimated using data profiling and per-
formance models for CPU, cache, memory, and communication units [25]. Compiler optimizations, like loop unrolling
and tilling, can be also considered using CNs. This is more difficult for a description using ONs.

Performance Model (PM) representation is a graph-based description that relates system performance attributes to
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HDCG characteristics, and to the design decisions executed during co-design. Figure 4(a) shows an HDCG, and Figure

4(b) depicts the corresponding PM for latency, assuming that ON 2, ON 5, and ON 3 are executed in this order on the
shared resource. PM include following elements:

e Starting node 0 indicates that all observed performance attributes (latency in our case) are set to value 0.

e The constant part describes the semantics of performance attributes with respect to the invariant HDCG charac-
teristics (like data and control dependencies). It is represented in the figure as nodes and solid edges. max and
addition nodes are used in Figure 4(b) to express ON (CN) start and end times. Max nodes describe that an ON
(CN) can not start earlier than the moment when all its predecessors are finished (thus, the starting time has to
be larger than the maximum of the end times). Outputs of max nodes indicate the starting time of their corre-
sponding ON (CN). Addition nodes describe that the end time 7"i_e of ON op; is the sum between its start time
and its execution time 7"i_ex.

e Thevariable part presents the relationship between performance attributes and design decisions taken during co-
design, like partitioning and scheduling. For instance, the execution order ON 2, ON 5, ON 3 is represented in the
figure as dashed arcs between the addition nodes that calculate the end times for ON (CN), and max nodes char-
acterizing the starting times. Other ON scheduling orders are easily captured in the PM by accordingly changing
the orientation of the corresponding arcs.

¢ Performance attribute values (like latency in the figure) for a certain co-design solution results by numerically
evaluating its PM.

PM are the principal data representation for the exploration loop of the hardware/software co-design process. PM is a
general description, which can denote various design activities, like scheduling, partitioning, and pipelining. Design
activities can be expressed as individual tasks, or as an integrated flow. The co-design process presented in this paper
uses PM for combined scheduling and partitioning based on a simulated annealing algorithm. PM are flexible, as they
allow easy definition of new performance attributes, or description of additional relationships between performance
attributes and co-design decisions. For example, the communication speed flexibility (CSF) metric was added without
affecting the already existing PM rules for latency. Finally, rules for PM handling can be set-up to avoid exploration
of infeasible or dominated solution points. For example, the rules for CSF calculation avoid generating co-design so-
lutions, which are difficult to realize. This helps the exploration process, as it eliminates additional steps of verifying
the feasibility of a design. The remaining part of this section presents the rules for automatically building PM.

Modeling of Data and Control Dependencies

Data dependencies introduce a required sequencing of HDCG node executions. For example, in Figure 5(a) node n
can be executed only after all its predecessors 1, 2, ..., k are performed. The right part of Figure 5(a) depicts the PM
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that expresses these execution order requirements. For each operation, addition nodes indicate how node end times
Ti_e,(i = 1, k) are computed depending on node starting times 7"i_s and node execution times 7"i_ez. The max node
models the constraint that node n starts only after all its predecessors are terminated.

Control dependencies describe conditional node executions in an HDCG. In Figure 5(b), for example, if the value of
condition C' is true then nodes 2, ..., p are performed. Nodes 3, ..., ¢ are executed for a false condition C'. Join node
r is introduced in the HDCG to point the end of the conditional construct. The right part of Figure 5(b) introduces
the PM generated for the HDCG. Similar to data dependencies, control dependencies define an execution ordering
among nodes. For example, nodes 2, 3, etc can not start their executions until node 1 is completed. Analogous to data
dependencies, the built PM reflects this requirement through max nodes.

Conditional execution of nodes is presented in the PM by annotating edges with condition values. The following se-
mantics is applied when numerically evaluating this PM: edges annotated with a true condition will propagate the nu-
merical values that result from the PM evaluation (and corresponds to the sink node of the edge). Edges annotated with
a false condition will propagate the value co. The min node in a PM corresponds to node r in the HDCG. It eliminates
the infinite values propagated on the non-selected branches. This permits calculating the correct time values for nodes
that succeed node r.

Modeling of Cluster Partitioning and Operation Binding

The set Resources of available IP cores (including GPP cores, FU cores and buses) is given in the presented co-design
methodology. Thus, the number and type of hardware resources that can realize each CN, CCN, and ON in the HDCG
is known. R _op; is the subset of set Resources to which node op; can be mapped. Also, we define the function

Resource : Nodes in HDCG — Resources
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that presents the resource to which each node is bound. The goal of cluster partitioning and operation binding is finding
the definition of function Resource (thus, its values for all nodes op;). Obviously, binding has to be done such that
Resource(op;) € R_op;. A consequence of cluster partitioning and operation binding is that any attribute value (in our
case, execution time) of node op; that depends on the resource type becomes well defined. For example, lets assume
that node execution time 7"i_ez varies with the resource type. After binding, the execution time becomes known, and
its value is updated in the PM.

Modeling of Scheduling

Given a HDCG and a node binding to hardware resources, scheduling decides the execution order of nodes on the
shared resources. Depending on the scheduling decisions, different node sequences and different timing attributes (such
as starting time and end time) result for the nodes. These correlations between scheduling and performance metrics
have to be captured by a PM. If only data dependencies occur then the imposed ordering can be modeled by introducing
an arc from the PM addition node (for the end time) of the HDCG node to be executed first to the PM max node (for the
starting time) of the HDCG node to be executed second. For example, in Figure 6(a) Node 1 and Node 2 share the same
resource. The scheduler decides to execute Node 2 before Node 1. Accordingly, the PM is updated by introducing a
dashed arc that forces Node 1 to start only after Node 2 ends. This arc pertains to the variable part of the PM. Different
scheduling decisions can be captured in a PM by simply changing the orientation of arcs.

Scheduling in the presence of control dependencies is more difficult due to the uncertain character of control depen-
dencies [22]. The difficulty increases if scheduling is performed across control constructs. The main challenge is to
generate node schedules that maintain the HDCG semantics with respect to three criteria: (1) respecting the execution
order defined by data and control dependencies, (2) maintaining the conditional node execution as defined by a HDCG
(i.e. if a condition value is true then only nodes from the true branch must be executed), and (3) executing at most once
each CN in the HDCG. If the three criteria are met then tasks can be correctly scheduled across control constructs.
The first two requirements are already captured by the PM modeling of data and control dependencies. To exemplify
the third requirement, lets assume a schedule for the graph in Figure 6(b), so that Node 4 is executed before Node 1 if
condition C is true, and after Node 1 if condition C' is false. Nodes 2, 3, and 4 share the same resource. This situation
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occurs if for condition C' true the branch is long, and the branch for condition C false is short compared to the path,
which Node 4 pertains to. This schedule is incorrect because if condition C' is false then Node 4 is executed twice
(before and after Node 1).

For modeling the third scheduling correctness requirement, three different cases are possible in a PM:

e Case 1: Node 4 is executed before Node 1. Its scheduling does not depend on the value of condition C'. Thus,
there is no risk that Node 4 is executed multiple times for a single execution of the HDCG. Figure 6(b) depicts
this situation, and a dashed arc enforces that Node 1 starts only after Node 4 terminates.

o Case 2: Node 4 executes after Node r. Its scheduling time depends on the value of condition C'. However, the
value of condition C' is already known by the time Node 4 starts. Thus, there is no danger of executing Node 4
multiple times. This situation is reflected in Figure 6(c) by the dashed arc between the min node for Node r and
the max node for Node 4.

e Case 3: For a given condition value (i.e. condition C' is true), Node 4 is scheduled to execute after Node 1 but
before Node r starts. To maintain the scheduling correctness, for the opposite value of condition ), it is required
that Node 4 executes only after Node 1 ends. Figure 6(d) depicts this case. Two new dashed arcs are introduced,
so that Node 4 starts after Node 2 if condition C' is true, and after Node 1 if condition C' is false.

Modeling of Communication Speed Flexibility

The speed of communication cluster nodes (CCN) can not be accurately estimated at the system level. This is because
the bus speed depends on the bus length, thus, on the placement of IP cores and the bus architecture and routing. Defin-
ing the bus architecture includes finding the number of different buses present in a design, and the set of cores sharing
a bus. This information is not available during task partitioning and scheduling (see Figure 10). Section 5 details the
suggested bus architecture synthesis algorithm. The co-design methodology in Figure 10 identifies communication
speed requirements for each data link, while relying on a system-level modeling of bus architecture synthesis. Com-
munication speed requirements are feasible, if needed bus speeds can be achieved in the presence of delays caused by
the RLC parasitic of bus routings.

For each data link, the communication speed flexibility (CSF) indicates the amount of delay that can be tolerated on
that link without violating the required system latency. CSF values are found as part of the co-design methodology,
and become constraints for the bus architecture synthesis step discussed in Section 5. Figure 7 shows the PM modeling
for finding the CSF values. CN 1 and CN3 in Figure 7(a) are allocated to different processing cores, and connected
through CCN 2. The execution time of CCN 2 is unknown, as the bus architecture is synthesized in a subsequent
step. Figure 7(b) shows the HDCG description for finding communication speed requirements. For each CCN, two

10
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nodes are introduced: node CCN_min describes the minimum latency for data communications. Minimum latency
depends on the amount of communicated data, and the maximum speed achievable for a given fabrication process and
minimum interconnect length. This describes the lower bound for the communication time between two tasks. Node
CSF models the unknown communication speed flexibility, for which a numerical value is found during the co-design
process. Figure 7(c) presents the PM including CSF. PM was build using the rule for modeling data dependencies.

The feasibility of a set of CSF values depends on the capability of the bus synthesis algorithm to meet the constraints
formulated by the CSF set. Section 5 explains that the quality of a bus architecture depends on (1) the speed of individ-
ual buses, (2) the amount of time overlapping between communications mapped to the same link, (3) the complexity
of the bus architecture expressed as the number of buses in the architecture, and (4) the amount of core connections
not required in a bus architecture.

At the system-level, criteria 2-4 are modeled by the likelihood of two communication channels sharing the same bus.
Two communication links are likely to share a bus, if following conditions are met: (i) same bus speed requirements
(expressed at the system level through the corresponding CSF values) are acceptable for both links, (ii) there are no
(very few) time overlapping between the communication schedulings of the links, (iii) there is little amount of addi-
tional unnecessary core connectivity, if the two links share the same bus, and (iv) the estimated bus length does not
conflict with the required CSF values. Criteria (ii)-(iv) can be estimated at the system level, when mapping two CCN
to the same bus. We present next the system-level modeling of bus speed to address criteria (1) and (i).

Floorplan Trees (FT), a tree structure, is used to model the IP core floorplanning at the system-level. Figure 8(a)
presents a set of six IP cores and the data communication between them. This representation is called Core Graph,
and Section 5 offers more details on it. Communication Load (CL) expresses the amount of data exchanged between
cores, and labels each edge in the graph. To favor tightly interacting IP cores, the placement algorithm places close to
each other those IP cores, which exchange large amount of data. The hierarchical cluster growth placement algorithm
(HCGP), described in Section 5, proceeds in a bottom-up fashion, and creates clusters of cores depending on the CL of
edges between cores. Figure 8(b) shows the FT modeling. Cores 1 and 4, cores 3 and 5, and cores 2 and 6 are heavily
communicating. Nodes 1, 2, and 3 represent their clustering. Resulting clusters are interconnected by edges describing
the amount of data communications between all cores in the cluster. The clustering process continues by considering
nodes 1, 2, and 3, and so on, until the root node is reached (node 5 in the figure).
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input: BT - Floorplan tree
output: CSF PM
for all leaf nodes i in BT do
generate a PM input node, and label it as CSFi;
end for
for all levels j in BT, starting from level 1 do
for all nodes p in BT on level j do
identify all communications (m,n), such that
node p is the first parent in BT for
cores m and n;
create max and addition nodes and variable
D_mn and label the output as CSF(m,n);
for all existing CSF(1l,k), k!=n or 1l!=m do
insert an edge from CSF(1l,k) to the max
node for CSF(m,n);
end for
end for
end for

Figure 9: Algorithm for building CSF Performance Models

Lemma: Let (i, j) and (m,n) be the CG edges for data communications between core i and core j, and core m and
core n. In the corresponding FT, let s be the level of the first common parent of cores ¢ and 7, and ¢ the level of the
first common parent of cores m and n. If s < ¢ then the speed of the bus for communication (i, j) ge the speed of the
bus for communication (m, n).

Proof: Considering the construction rules for the binary tree results in cores ¢ and j being placed closer to each other
than cores m and n. Thus, bus speed will be higher for the link (7, 7) than for the link (m, n).

The bus speed values searched during co-design must accommodate the bus speed constraints imposed by the IP core
placement. Otherwise, bus speed requirements are unreasonable (though some of them might be possible to imple-
ment). For example, it is unreasonable to request a high communication speed for cores placed far apart. Hence, CFS
values fixed for CCNs must meet the constrained expressed by the above lemma. A naive solution would assign ran-
dom values to CFS, and then check if these values meet the constraints imposed by FT. In reality, this solution does not
offer good results, as most of the analyzed CFS values would violate the constraints. Instead, PM for CFS implicitly
incorporate all speed constraints due to the floorplanning model. For example, Figure 8(c) shows the corresponding
CSF PM. CSF values for the leaf nodes (CSF(1,4), CSF(3,5), and CSF(2,6)) are input values to the PM. According
to the floorplanning, the speed for communications (1,5) and (1,3) has to be slower than the slowest of the communi-
cations (1,4) and (3,5). The max nodes and the addition nodes in the PM formulate these constraints. Values D1 and
D2 express the time amount by which the two communications are slower. Similarly, communication (5,6) must be
slower than communications (2,6) and (3,5). Finally, communication (1,2) must be slower than communications (1,5)
and (1,3). Figure 9 shows the algorithm for building CSF PM meeting the constraints fixed by FT.

4 Co-Design Methodology

Figure 10 presents the proposed hardware-software co-design methodology. Inputs are the HDCG of an application,
latency constraints, and the set of available IP cores (including number and types of GPP, FU etc). The co-design flow
partitions HDCG nodes to cores, decides the scheduling order of nodes, synthesizes the bus architecture, and maps and
schedules data communications on buses. Goal is to minimize the overall system latency.

The method includes three steps. The first step partitions CN nodes to GPP cores, binds ON nodes to FU cores, sched-
ules CN, CCN and ON, and finds minimum speed requirements for CCN. First, Performance Models (PM) are gener-
ated for an HDCG using the rules in Section 3. Next, the simulated annealing exploration loop simultaneously conducts
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Figure 10: Hardware-software co-design methodology

partitioning and scheduling. For each CN (ON), attributes R; (the hardware resource that executes the node), 7} ., (the
execution time on the resource), and 7; (the starting time of node execution) are unknowns for co-design. CN partition-
ing to GPPs and ON binding to FUs is modeled by unknowns R; and 7;_.,.. CN, CCN, and ON scheduling is described
by unknowns 7;. Possible values for unknowns R; and 7; are searched during exploration. Latency is computed by
numerically instantiating all node characteristics R;, T; and T;_.,, and then evaluating their PMs. Co-design optimiza-
tion was realized using simulated annealing algorithm (SA) [35]. The algorithm examines the quality of numerous
partitioning (binding), and scheduling solutions by numerically evaluating PMs for latency and communication speed
flexibility (CSF).

SA iteratively selects a new point from the neighborhood of the current solution. Neighborhood was defined as the
set of points that (1) differ from the current solution by the execution order of one pair of nodes that share a hardware
resource, or (2) the resource binding of one node. PM, Floorplan Tree (FT), and Core Graph (CG) are updated for each
newly selected solution, and used for numerically evaluating the resulting performance. If the resulting solution has a
better quality than the current solution then it is unconditionally accepted. A worse solution is accepted with a higher
probability at the beginning of exploration. Acceptance probability decreases as exploration progresses. The start-
ing solution is obtained by uniformly distributing nodes to resources, and then scheduling nodes using list-scheduling
[15]. Critical path [15] was the priority function for list-scheduling. An initial FT and CG are found for the starting
exploration point.

Partitioning (binding) and scheduling steps are executed with different probabilities. The reason is that multiple valid
schedules are possible for each resource partitioning (binding) decision. A small probability p; is used to select a par-
titioning step that moves a cluster from a GPP core to another GPP core or to hardware. A probability p; (p2 > p1)
binds an ON to another FU core. The reason for p, being greater than p; is that multiple hardware designs are possible
for each partitioning of clusters to FU cores. Finally, a probability 1 - (p; + p2) decides a scheduling action. This strat-
egy emulates a hierarchical exploration process because for each new partition (binding) there are 1=(p1+py) analyzed

p1+p
schedules. For example, if p; = 0.01 and p; = 0.1 then on the average, 8 schedules are examined for eZICh partition
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Figure 11: Core Graph and PBS examples

(binding). If the execution order of a node pair is modified then the algorithm also verifies that the new ordering is
feasible. This means that no cycles can occur in the updated PM. The cost function for SA is

Cost = a X Latency + B X [[cen, DL'_ + 7 X m + 6 X unnecessary conneclivity ,

The cost function models system latency, communication speed flexibility, bus complexity, and unnecessary bus con-
nectivity. Communication speed flexibility forces D; values for CCN to be maximized. Larger D; values denote more
feasible bus speed constraints. Bus complexity is described by the number of buses in an architecture. Number of buses
is estimated by the number of links having similar D; values and reduced time overlapping of their data communica-
tions. Estimating the number of buses, thus cores which share a bus, also permits finding the number of unnecessary
connectivity in an architecture.

The second step is bus architecture synthesis. The co-synthesis flow continues by updating the Core Graph descrip-
tion (see Subsection 5.1) based on information on task partitioning and scheduling. Then, the detailed floorplan for
the IP cores in the design is found using the hierarchical cluster growth placement algorithm, described in Subsec-
tion 5.3. Core placement is needed to accurately estimate bus lengths, and find the correct rates at which data can be
communicated on buses. The introductory section explained that DSM effects are critical for characterizing the speed
possible for a link. Core placement is communication driven, so that two heavily communicating cores are placed close
to each other, the aspect ratio of their rectangular bounding box is close to one, and the total area of the box is min-
imized. Also from the core graph, the set of possible primary bus structures (PBS) is created using the bitwise PBS
generating algorithm (presented in Subsection 5.2). PBS are the building blocks for creating bus architectures. Then, a
bus architecture synthesis table is produced to characterize the satisfaction of connectivity requirements by individual
PBS structures. The actual bus architecture synthesis algorithm (called Select-eliminate method) is based on simulated
annealing. Using BA synthesis tables, the method builds bus architectures, which are PBS sets that meet all the con-
nectivity requirements in the core graph. Topological attributes are evaluated for each bus architecture, i.e., number
of PBSs in an architecture, bus utilization, communication conflicts, and maximum data loses. The total bus length is
estimated using the actual core placement to account for DSM effects. The best found bus architecture is characterized
for speed under RLC effects.

Using SA and PM, the third step binds CCN to buses and re-schedules CN, CCN and ON for the best found bus archi-
tecture and CN (ON) partitioning identified at Step 1.
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Figure 12: Bitwise decoder and bitwise PBS generating algorithms

5 Bus Architecture Synthesis

5.1 Modeling for Bus Architecture Synthesis

Definition: A core graph (CG) is a graph (V,E), where v; € V represents the i** core in the architecture, and ¢; i EB
is the communication link between core i and core j. The weight w;; is the Communication Load between core i and
core j. Communication Load (C' L) expresses the amount of data exchanged between the two cores. The core size h; x
wj; is described along with node v;.

This concept has been illustrated in Figure 11(a). The core graph representation of a system architecture is used for
bus architecture synthesis. For simplicity of modeling, CG do not distinguish between unidirectional and bi-directional
dataflow. Communication direction depends on whether an operation is a read or a write, and it isn’t specified directly
in a CG. However, the core graph can be modified in order to address the direction of data. Figure 11(b) presents the
core graph for bi-directional communications. In case there is more than one communication channel between two
cores, then the communication load is split across the channels. This type of CG will have multiple channels between
cores, and these channels might get synthesized as separate buses in an architecture.

Industrial bus standards can be expressed using the CG formalism. The superposition principle can be applied, if an in-
dustrial bus standard is used at the transaction level. This can be done by classifying links according to their bandwidth
(low, medium, and high), and generating core graphs for each category. This idea is well defined because most of the
industry standards for SoC, i.e., AMBA [1] and IBM CoreConnect [3], have different buses to support data commu-
nication at different bandwidths. After bus architecture synthesis, bus sub-architectures associated with its core graph
are combined together to get a finalized optimal solution.

Definition: Primary bus structure (PBS) is defined as a potential cluster of connected cores. A PBS is valid, if all its
node connectivity exist in the original CG. Otherwise, it is invalid.

PBS are the building blocks for bus architecture synthesis. Figures 11(c) and 11(d) show eight PBS for the CG in Figure
11(a). PBS on Figure 11(c) are valid. PBS are characterized by following physical and topological properties:

e PBS utilization percentage: Utilization is defined as the communication spread in a structure. For example, a
PBS corresponds to two links in the CG, i.e., 12 and /;3. This PBS can also contain /53, the connection be-
tween core 2 and core 3. There might, however, be no communication between these cores. Therefore the PBS
under-uses its structure. We consider the unused element /53 as a redundant link of the PBS. The PBS utilization
percentage, P,, was defined as P, = ;l%—fy_l’ﬁ x 100%, where N}, is the number of links in a PBS, and 7 is the num-
ber of associated cores in a PBS. The maximum PBS utilization occurs when all associated cores communicate
between each other, and the PBS corresponds to a clique in the CG.

o Communication conflict: A PBS is implemented as a shared bus in the system architecture. Performance of a bus
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Figure 13: Bus architecture synthesis tables

architecture can be evaluated by its contention. For a static time scheduling of tasks, it is important to evaluate
if there is a communication conflict in a PBS. Communication conflict of a PBS, C',, fiict, is the amount of time
overlaps between communications mapped to the same link.

o PBS bus length: PBS bus lengthis a vital attribute for evaluating the bus speed in the presence deep submicron ef-
fects. Longer buses require more silicon area and additional circuitry like bus drivers [7] [44]. Also, larger cross
coupling and parasitic capacitances of longer buses increase interconnect latency [44]. Larger power dissipation
for interconnect and drivers can be caused by longer buses. It is, however, difficult at the architecture level to
estimate PBS bus length with high accuracy without contemplating the SoC layout. As explained in Subsection
5.3, hierarchical cluster growth placement is used for placing IP cores, and estimating PBS bus lengths.

Identifying the set of valid PBS has an exponential complexity, if a brute-force algorithm is applied. The upper bound
of the total number of PBS is P,, = 2! — 1, where [ and P,, represent the number of links in a CG and the maximum
possible number of PBSs, respectively. We suggest a more efficient, bitwise algorithm to generate the set of valid
PBSs. The algorithm is presented in Figure 12. First, using the bitwise decoder algorithm, each link label is translated
into binary, and stored as a set of basis elements (a basis element is a link in the CG). Then, in a loop, the bitwise
PBS generating algorithm performs a bitwise OR operation on the basis elements to generate new PBS structures. A
produced PBS is valid, if and only if all its basis elements are connected. Otherwise, the PBS includes redundant links.
If the PBS is valid, the PBS storage is checked to avoid duplications of the same PBS.

Example: The core graph in Figure 11(a) has 4 cores. Binary numbers are used to represent links e;;,i.e., €12 is de-
scribed as ”0011”. The number of bits is equal to number of cores (the first core has the right most digit, while the
last core has the left most digit). In this case, there are 4 basis elements in the PBS set, namely, €13, €13, €14, and eg4
labeled in order. Therefore the basis set is B = {(1,700117),(2,70101"),(3,71001”),(4,”1010”)}, where the first coordi-
nate is the label of the basis element. Bitwise PBS generating algorithm starts with index 0 and empty PBS storage.
All basis elements are added as separate PBS into the PBS storage. Considering index 3, this is decoded into ”0011”.
Therefore, PBS has two basis elements, namely, (1,”0011”) and (2,”0101”"). This PBS is valid because all the basis
elements are connected. PBS is then validated with the PBS storage. The storage is updated, if there is no such PBS.

Definition: Bus architecture synthesis table describes the relationship between a set of PBS and connectivity require-
ments in a CG. Number of rows is similar to number of basis link elements in the CG. Number of columns is the
dimension of the PBS set. An entry in the table has value “X”, if the PBS corresponding to the column includes the
basis link element specific to the row.

Examples of BA synthesis tables are shown in Figure 13. The tables are for the CG in Figure 11(a). Connectivity
requirements are expressed as the complete set of basis link elements extracted from a CG. For example, the PBS B3
incorporates the basis elements /1, and /;3 (see column B123). Using the BA synthesis table, a bus architecture can be
constructed by selecting at least one valid PBS (column) for each basis link element (row). Subsection 5.2 explains the
synthesis algorithm. Selecting a PBS to satisfy connectivity requirements depends on the PBS properties (utilization
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Figure 15: Select-eliminate algorithm

percentage, communication conflict, and bus length). For example, if the total utilization percentage has the highest
priority then the largest clique must be selected first. The two tables in Figure 13 correspond to the same CG, but have
their columns ordered for different performance requirements.

5.2 Bus Architecture Synthesis Algorithm

Depending on their structure, bus architectures (BA) can be either non-redundant or redundant structures, and flat or
hierarchical. The core connectivity offered by a non-redundant bus tightly matches the nature of the communication
links in the CG of the application. Also, there is a single connection through a bus for any CG link. There are no
core connections, which do not correspond to a link. Non-redundant structures have the benefits of using minimal re-
sources for offering the needed core connectivity, and require no additional control circuitry (like for segmented buses),
because a single channel is used to communicate between any two IP cores. The structure is simple (thus simplifies
the bus routing step), but lacks the concurrency advantage. In contrast, redundant structures have superior concur-
rency, and thus decrease communication conflicts. However, expensive control logic is required to intelligently drive
the shared bus. In flat (non-hierarchical) bus architectures there are no bus-to-bus communications, as buses link only
cores. Hierarchical bus architectures include bus-to-bus communications through bridge circuits [3]. Examples of non-
redundant, non-hierarchical (NRNH) and redundant, non-hierarchical (RNH) bus architectures are given in Figure 14.
The NRNH bus architecture in Figure 14(a) uses the shared bus B4 to serve communications links /19,/14,/24, and the
point-to-point bus B3 for the link /13. Figure 14(b) shows a RNH bus architecture, in which two buses can be used to
implement the link /1. For the NRNH structure, given a destination address, bus selection is statically assigned by the
core-bus interface controller. Its routing area is less compared to the redundant structure. The NRNH structure leaves
concurrency exploration to task re-scheduling at the system level (Step 3 in the methodology in Figure 10).

We consider only non-redundant, non-hierarchical (NRNH) bus architectures. This is motivated by our goal of design-
ing resource constrained SoC with minimal architectures (thus minimal bus architecture) and software support. The
modeling for bus architecture synthesis (including CG, PBS and BA synthesis tables) supports the other three bus ar-
chitecture classes. We propose the select-eliminate (SE) algorithm to generate NRNH bus architectures based on the
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satisfaction of the core connectivity requirements. SE algorithm is represented in Figure 15. To illustrate the algorithm,
we use the simple BA synthesis table in Figure 13(a). For example, to satisfy the /1, connectivity, one of the four PBS
{ B12, B123, B124,B1234} has to be chosen. Suppose PBS B3 is chosen, the rest of the candidates must be eliminated,
so that there is no redundancy in the final structure. The horizontal dash line S; represents eliminated structures. Once
a structure is eliminated, it automatically voids the whole column. Vertical dash lines e;1,€12,€13,€14 Show the elim-
inated column. PBS B3 satisfies only the /12 and /13 connectivity. Therefore, another horizontal line S is created
with vertical lines e2; and e;2. Connectivity /14 is considered next. There is a candidate left, namely, PBS B4. Once
PBS B4 is chosen, we have only one candidate, PBS B4, left to satisfy lo4 connectivity. It is noticed that no more
horizontal lines or vertical lines are created because there is no structure existing in a table. The generated NRNH BA
is composed of PBS By24, PBS By4, and PBS By4. Circled structures in Figure 15 show the final BA.

The size of a synthesis table grows depending on the number of cores and the number of inter-core communication.
If number of cores and interconnects between them is small, the SE algorithm contemplates all possible coverings
of the CG links using the available PBS structures. However, if a system consists of more than 20 cores intensively
tied up together, the exhaustive SE algorithm becomes infeasible. To allow SE algorithm explore the PBS candidate
space efficiently, we employed a simulated annealing algorithm to search different candidate PBSs while satisfying
connectivity requirements. The algorithm randomly chooses a PBS from each requirement row, and combines it into
a bus architecture. The total cost function that guides simulated annealing is given by the formula

Total cost = wiLi + w, Ny + w.Cp + WM - 0, Cly,

where L, is the total bus length, N} is the number of buses, C'. is the communication conflict, M; is the maximum loss,
and ', is the total bus utilization. w;, wy,, W, Wy, W, are weight factors. Maximum loss reflects the maximum data
loss in a BA, if there is a conflict in a particular PBS. The algorithm objective is to minimize this cost function.

5.3 Hierarchical Cluster Growth Placement Algorithm

IP cores have to be placed for accurate estimation of bus lengths and bus speed. Goal is to place highly connected
cores closely together. We decided to use a fast constructive placement algorithm based on cluster growth, so that it
can be used in combination with the slower simulated annealing method. There are several cluster growth placement
algorithms for ASIC [39]. However, the nature of placement problem for ASIC and SoC is different. In case of ASIC,
most of the nodes are at gate/RTL level, thus are of a small and comparable size. Each connection between ASIC
nodes uses a single wire, and the connectivity degree is relatively low. In contrast, SoC are composed of IP macros
of irregular sizes. For example, the IBM PPC405 processor core has approximately 5 million gates [2]. Furthermore,
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Figure 17: Hierarchical cluster growth placement algorithms

the degree of an SoC node is defined not only by the link to other nodes but also the bus width. Traditional flat cluster
growth placement methods are thus not appropriate for SoC.

We propose a hierarchy based cluster growth placement (HCGP) for IP core placement. Because of its constructive
approach, the algorithm is fast while preserving a good placement solution for SoC. The algorithm is therefore well fit
for bus length estimation. The algorithm is illustrated in Figure 17(a). HCGP algorithm starts with sorting in descend-
ing order, by their communication load, all links in a CG. The two cores associated with the link having the maximum
communication load are first selected for placement. The same approach with traditional cluster growth is then used to
place them such that the rectangular bounding area of the two macros is minimized. If the bounding area is equal for
several positions, the Manhattan distance between the centers of the two macros is used to find the best position. The
first cluster is thus formed, and its aspect ratio is calculated. The next iteration will place two associated cores, such
that the aspect ratio is close to one, and total area is minimized. The iteration stops when all the cores are placed.

A difference between traditional cluster growth placement and HCGP is that HCGP guarantees to have the minimum
Manhattan distance between cores with highest communication loads. For example, consider the CG in Figure 16(c).
Traditional cluster growth will place Core 6 close to the cores in cluster {1, 2, 3, 4, 5 } before considering placement of
Core 7. The Manhattan distance between Core 6 and Core 7 may become larger because of blockings due to cores pre-
viously placed. In contrast, HCGP will consider placement of cores 6 and 7 before placing the cluster, thus shortening
the interconnection distance between the two cores.

Buses are routed based on the IP core placement. The layout is described as an intersection graph [39]. Depending
on the IP vendor, a number of metal layers is available to route cores. To easy the analysis of deep submicron effects,
inter-macro communication uses only routing channels along the macro borders. To calculate the bus length of a PBS,
inter-core routing path and bus wiring on a macro are taken into account. The proposed algorithm for inter-core routing
is presented in Figure 17(b). The algorithm starts by finding the shortest path of the link with the lowest communication
load. This strategy is motivated by HCGP always placing two highly communicating cores close together. This implies
that the longest path between two cores is at the link with the lowest communication load. Therefore, this link influences
the total bus length of a PBS. We thus give it the highest priority to find the shortest path.

The shortest path between two cores is defined as the shortest path between any pair of intersection nodes around the
border of two clusters. An intersection graph is illustrated in Figure 18(a). Cluster 1 contains Core 1, with the intercon-
nect set {a,b,c,d,e}, and Cluster 2 contains cores 8 and 10 with the interconnect set {f,g,h,i,j,k,],m,n,0,p}. The shortest
path between clusters 1 and 2 is the shortest path from any two nodes of the two interconnect sets. If an intersection
point of a core is chosen, all the wires which connect to every pin have to route around the core from the pin to a cho-
sen intersection point. As seen in the bus routing diagram in Figure 18(b), the bus length is approximately half of the
core perimeter. Therefore, if there is also another intersection point at point B, which is the longest distance form point
A, all the wires have to route against the original direction. That is the total bus length is approximately a perimeter.
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Figure 18: Routing example

This is considered to be the worst case, however, it is a good approximation if a macro has several intersection points
required for inter-core routing. We use this worse case approximation in our bus length calculation. Lets [ ppg; be the
bus length of the ih PBS, l;¢., be the inter-core bus length of the ith PBS, and ,,4cr05 be the length of the bus-wiring
around the cores associated with ¢;;, PBS, the PBS bus length is defined as Ipgs; = linter + lmacros-

6 Experimental Results

A set of experiments was set up to study the effectiveness of the proposed hardware/software co-design algorithms. Due
to the difficulty to relate our co-design objectives to other work, experiments addressed subsequent aspects, starting
from aspects that are more similar to existing methods, and continuing with those that are specific to this work. We
discussed three consecutive experiments:

e Experiment I studied the latency of solutions generated using Performance Models and SA exploration as com-
pared to existing heuristic algorithms. It experimented with applications having data and control dependencies.
It also analyzed the effectiveness of combined task partitioning and scheduling.

o Experiment 2 examined the usefulness of hardware resource sharing across tasks as opposed to co-design method-
ologies, which do not allow sharing. Two examples were designed using the two methodologies, and obtained
results were contrasted.

o Experiment 3 presents results for automatically synthesizing bus architectures. The paper discussed bus synthesis
results for the IBM network processor system [12] and for a JPEG SoC.

The co-synthesis method was implemented in about 3,000 lines of C code. Bus synthesis algorithm is about 1,500
lines of C code. Experiments were run on a SUN Sparc 80 workstation. SA was run with the following parameters:
initial temperature was 100,000, temperature length was set to 900, and cooling schedule was 0.7. The SA exploration
finished when 100,000 solutions were analyzed, or when no improvement was observed for the last 7,000 moves.

Table 1 presents the characteristics of the task graphs used for experiments. Examples correspond either to task graphs
with different structures, or to graphs used as benchmarks in related work. Examples Parallel, Tree, Inverted Tree,
and Fork-join describe popular graph structures, such as parallel threads, tree, inverted tree, or sequence of tree and
inverted tree. Task Laplace calculates the Laplace transform using a tree structure. Example Linear solver corresponds
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to parallel implementation of a linear equation solver. Examples Graph 1, Graph 2, Graph 3, and Graph 4 are presented
as benchmarks for partitioning and scheduling in [28]. Task Graph 5 has a mixed tree + parallel structure, and is used
in [22] as a motivational example. Tasks Graph 6 and Graph 7 are described in [17] as motivational examples for list
scheduling. Columns 2 and 3 in the table show the number of tasks in the graph, and Column 4 indicates the number
of conditional dependencies present in the task graph.

Experiment 1

The first experiment studied the latency of scheduling solutions produced by PM and SA exploration for applications
with data and reduced amount of control dependencies. Results were compared with solutions obtained by the method
suggested in [22] [17], one of the few approaches for scheduling of tasks with many data dependencies and reduced
number of control dependencies. For a fair comparison, we restricted the co-synthesis methodology to task scheduling
by setting the partitioning (binding) probability to 0. Table 2 shows the obtained results. Column 2 indicates schedule
latencies computed through list scheduling, and Column 3 presents schedule latencies found by the proposed explo-
ration technique. Column 4 shows the relative improvement of SA exploration algorithm over list scheduling.

Table 2 motivates that PM and SA offer improved results over list scheduling algorithm. Improvements can be as high
as 20% (for example Graph 7). This example was indicated as a typical situation in which list scheduling offers poor
results. Reason is that list scheduling might allocate task priorities depending on situations that never occur. This is
due to the mutual exclusiveness of condition values and their controlled tasks. Hence, “infeasible” priorities determine
poor scheduling results. SA exploration-based scheduling does not face this disadvantage. A second benefit of PM
and SA exploration is that it does not require fine-tuning of the method for a new application. In [17] [22], the authors
motivate that extensive experimenting with thousand of graphs was conducted for validating a new cost function for
list scheduling. The proposed co-design method offered for example Graph 5 an improved solution. Reason is that
the SA-based method is able to produce solutions, where a particular resource was idle, even though there were tasks
ready for execution on that resource. Then, a higher-priority task could be scheduled in the “near” future for execution
on that resource, without having to wait for the small priority task to end. This scheduling strategy can not be achieved
in list scheduling, where tasks are scheduled greedily depending on their priorities.

The next experiment analyzed the effectiveness of combined task partitioning and scheduling. A set of experiments
studied the influence of partitioning probability on the quality of results. These experiments studied both the complexity
of the search process, expressed as the number of iterations until finding the best solution, and the total execution time
of the exploration method. Partitioning probability was changed from a low value (such as 0.05) to a high partitioning
probability, such as 0.4 (in this situation, the number of scheduling and partitioning steps are very similar). Table 3
presents the obtained results. For each probability, the table shows the best obtained solutions, the iteration numbers
when best solutions were produced, and the total execution time of the search. Experiments show that the binding

Example Number of tasks | Number of edges | Number of control dependencies Graph structure
(1) (2) (3) “) (5)
Parallel 27 31 3 parallel
Tree 39 50 4 tree
Inverted tree 29 37 - inverted tree
Fork-join 32 40 2 sequence of tree + inverted tree
Laplace 31 42 1 tree
Linear solver 17 19 - parallel
Graph 1 [28] 23 26 - sequence of tree + inverted tree
Graph 2 [28] 25 32 - acyclic graph
Graph 3 [28] 25 31 - acyclic graph
Graph 4 [28] 26 33 - acyclic graph
Graph 5 [22] 34 41 3 tree + parallel
Graph 6 [17] 15 19 1 tree + inverted tree
Graph 7 [17] 23 27 2 tree + inverted tree

Table 1: Characteristics of the benchmark task graphs
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Example | List scheduling | Exploration | Relative improvement(%) | Combined partitioning and scheduling | Relative improvement (%)
(1) @ 3) “) (5) 6)
Parallel 120 120 0 70 41.6
Tree 238 238 0 226 5.0
Fork-join 42 38 9.52 36 5.2
Laplace 62 56 9.67 51 8.9
Graph 5 40 39 2.5 31 20.5
Graph 6 97 77 20.6 73 3.1
Graph 7 60 60 0 46 233

Table 2: Scheduling under data and control dependencies

Example Probability = 0.05 Probability = 0.15 Probability = 0.2 Probability = 0.4
Best | Iteration | Time | Best | Iteration | Time | Best | Iteration | Time | Best | Iteration | Time
(sec) (sec) (sec) (sec)
Parallel 90 1118 157 75 2519 188 70 4060 123 80 235 148
Tree 246 4686 285 232 1154 263 238 5130 207 226 8223 278

Inverted tree 114 4489 217 113 3766 229 115 1450 211 115 759 113
Fork-join 37 1907 274 36 6808 294 37 4871 280 37 2484 247

Laplace 55 5114 235 55 817 157 53 120 140 51 4848 189
Linear solver | 176 80 119 180 41 95 176 1169 160 176 2726 156
Graph 1 183 3420 381 183 3117 308 168 10069 423 142 4605 364

Graph 2 147 1172 450 119 8040 398 119 8040 588 119 6646 511
Graph 3 145 4115 419 137 8303 584 112 3347 294 107 5324 344
Graph 4 282 4660 522 282 7232 249 282 5324 453 282 459 254

Graph 5 32 5944 789 32 14198 895 33 6648 742 31 6891 605
Graph 6 73 328 69 73 92 129 73 126 66 73 392 91
Graph 7 46 7031 410 47 822 340 46 5690 440 46 6567 415

Table 3: Influence of partitioning probability on system latency

probability offering the best solution depends on the application kind. For example, for graph Inverted tree smaller
binding probabilities, such a 0.05 and 0.15, produced better solutions than larger binding probabilities, such as 0.2 and
0.4. However, in most of the situations a binding probability of 0.2 provides a good trade-off between the number of
partitioning steps and scheduling steps. Hence, the hardware/software co-design exploration has to be conducted for
various partitioning probabilities to find the best solution for a new application. Results also indicated a reasonably
high computational complexity, as execution time was in the range of maximum several hundreds of seconds.

The solutions obtained by combined partitioning and scheduling were compared to the results when tasks are pre-placed
to resources. Column 5 in Table 2 indicates the best latency obtained for combined partitioning and scheduling. Col-
umn 7 shows the relative improvement of the schedule lengths as compared to the results for pre-partitioned situations,
which are indicated in Column 2 of the table. Relative improvements of the schedule lengths can be as high as 40%, if
task pre-partitioningis less efficient. This illustrates the difficulty of identifying good task partitions before scheduling,
thus explaining the need for a combined partitioning-scheduling co-design approach.

Experiment 2

Two examples were used to study the effect of hardware sharing across tasks on reducing system latency. The first
example studied the aspects that influence the latency of a hardware/software solution. A simple example was used in
this case. The second experiment validated the conclusions of the first example for a bigger real-life inspired example.

Figure 19(a) presents the task structure of the first example. Tasks 2 and 4 are also presented at the operation level, as
shown in the figure. Table 4 presents the time characteristics of each task for the five experiments that were designed.
Time (T-S) of the software implementation for each task remained unchanged in each experiment. The five experiments
differ by the time (T-H) characteristics of the adder and multiplier blocks used for the hardware implementation. Rows
5 and 6 contain this information. Each hardware implementation used 2 adder and 2 multiplier blocks. The execution
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Figure 19: Task graph examples for co-synthesis with hardware sharing across tasks

Task Expmnt. | Expmnt. 2 Expmnt. 3 Expmnt. 4 Expmnt. 5
T- T- Sep/ Tmp T- T- Sep/ Tmp T- T Sep/ Tmp T- T- Sep/ Tmp T- T- Sep/ Tmp
SW HW Int (%) SW HW Int (%) SW HW Int (%) SW HW Int (%) SW HW Int (%)
1 1 - -/- - 1 - /- - 1 - -/- - 1 - -/~ - 1 - -I- -
2 130 -/- 130 10 -/- - 130 24 -/ 130 136 -/~ 130 192 -/~
3 130 - -/- 10 - -/- - 24 - -/- - 136 - -/- 192 - -/~
4 130 66 -/~ 130 10 -/- - 130 24 -/- - 130 136 -/~ 130 192 -I-
+ - 1 -/~ - 1 -/- - 8 -/- - 64 -/- - - 164 -/-
4 64 -/- - - 8 -/- - - 8 -/- - - 8 -/- - - 164 -/- -
134/132 1.5 - - 22/20 9.0 - - 50/34 32 - - 268/258 3.7 - - 324/258 204

Table 4: Example 1: Task graph characteristics and experimental results

time (T-H) of a task realized as hardware was determined after operation binding and scheduling for the five distinct
experiments. The resulting values are shown in the table. The last row indicates the latency for the traditional co-
synthesis approach (no hardware sharing across tasks), for the proposed method (if sharing across tasks is allowed), and
the percentage improvement. If hardware sharing was contemplated, latency improved between 1.9% (for Experiment
1) up to 32% (for Experiment 3). The highest improvement corresponds to Experiment 3, in which the resource sharing
between operations of tasks 2 and 4 is maximized. For this case, both tasks are realized in hardware. The addition
operation of task 4 is performed concurrently with the two multiplications of task 2. Similar operation concurrencies
exists for the other 4 experiments. Speed-ups, however, are smaller because the relative execution time of an addition
as compared to a multiplication operation are smaller than for Experiment 3. This suggests that hardware sharing of
medium grained IP cores (like multipliers) can significantly improve latency. Hardware sharing of low grained cores
does not offer relevant improvements.

Example Time Optimization
Without HW sharing | With HW sharing | Improvement (%)

(1) (2) (3) “
2GPP + 1A + IM 184640 182720 1.03
2GPP + 2A + 2M 157120 125120 20.3
2GPP + 3A + 3M 137920 125120 9.28
3GPP + 1A + IM 182720 182720 0
3GPP + 2A + 2M 157120 125120 20.3
3GPP + 3A + 3M 137920 99520 27.84

Table 5: Example 2: experimental results
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Figure 20: Core graph for the network processor

Figure 19(b) presents a second example inspired from the JPEG algorithm. The task graph included 17 tasks. The
RTL structure of tasks 3, 8, and 13 is shown in the right part of the figure. Six experiments were conducted. Each
experiment employs a different number of general purpose processors (GPPs) for the software part, and a different
number of modules (adders (A) and multipliers (M)) for the hardware part. Column 1 in Table 5 shows the number of
hardware resources for each example. Columns 2, 3, and 4 present the latencies offered by co-design without and with
hardware sharing across tasks, and the corresponding latency improvements. Note that latency improvement can be as
high as 27% (Line 6 in the table), if a high task and operation concurrency can be secured for the system. For this case,
concurrency of operations of different hardware tasks results in significant latency improvements. In one case (Line
4 in the table) latency improvement was 0%. Reason is that only 1 adder and 1 multiplier were used for the hardware
part. The ability of co-design to perform resource sharing across hardware tasks could not be used in this case.

Experiment 3

The first experiment presents the bus architecture synthesis results for a network processor [12]. The processors re-
ceives Internet packets, re-routes them, and sends them out. A packet arrives through an Ethernet media access con-
troller interface core (EMAC), and is sent to the multi-channel memory access layer core (MCMAL), a specialized
DMA controller. MCMAL stores the packet in a buffer, and then transmits the buffer descriptor to the processor. The
processors calculates the new destination address for the packet. MCMAL and one of the EMAC will send the packet
out. Figure 20 shows the core graph for the network processor. Node 1 corresponds to core for the Power PC, on-chip
SRAM, and SRAM controller. Node 2 is the DDR-SRAM controller. Node 3 is the PCI-X core, node 4 is the MCMAL
core, and node 5 describes the direct memory access (DMA) core. Nodes 6-9 represent EMAC cores. Nodes 10 and
11 are the high-level data link controller (HDLC) core. Node 12 is the inter-IC (/ 2, node 13 describes the universal
asynchronous receiver/transmitter (UART) core, node 14 the general purpose input/output (GPIO) core, and node 15
is the external bus controller (EBC) core. Edges express the connectivity requirements for cores. Each edge is labeled
with the corresponding communication load. Depending on bandwidth requirements, nodes are grouped into the high
bandwidth partition, low bandwidth partition, and nodes with mixed bandwidth requirements.

Table 6 summarizes the bus architecture synthesis results. Columns 2-5 present the weight factors for bus length, num-
ber of buses in the architecture, communication conflicts, and bus redundancies. Different design goals were modeled
using the four weight factors. Column 6 shows the resulting bus length. Number of buses in an architecture is indi-
cated in Column 7. Column 8 presents the resulting redundancy. The amount of communication conflicts for a bus
architecture is given in Column 9. Finally, the maximum data loss is shown in Column 10.

First twelve rows in Table 6 correspond to the design scenario in which the bus complexity is minimized, while timing
is less important. The weight factor for number of segments has high values. Weights for communication conflicts and
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Figure 21: Synthesized bus architecture for the network processor

Figure 22: Core Graph for JPEG

cores (a distinct core for each parallel sequence), an ASIC for the FDCT tasks, and memory modules for data com-
munication. Each processor has its own local memory. Processors and ASIC communicate through shared memory.
To decrease memory access times, the first architecture considered interleaved memory blocks M4-M9. The top part
of Figure 23 shows the resulting Core Graph. To further improve processor-ASIC communication speed, additional
interleaved memory blocks were used. This resulted in the Core Graph shown at the bottom of Figure 22. The con-
sidered processing technology was 0.18 TSMC. Microprocessor cores were of about 5 x 5 mm?, memory cores of
about 25% of the area of processor cores, and ASIC were about 30% of processor core area.

Figure 23 shows bus architecture synthesis results for the top CG in Figure 22. The hierarchical cluster growth algo-
rithm generated the core placement shown at the top, and the bus architecture is presented at the bottom of Figure 23.
The synthesis goal was to generate a fast architecture. Bus architecture complexity was not a major concern, because
the number of IP cores is reasonably high. Thus, the goal of BA synthesis was to minimize communication conflicts
(w, = 1.0), minimize the total bus length (w; = 1.0), while disregarding the number of buses and redundant structures
ina BA (w, = w, = 0.1). After bus architecture generation, each of the buses was routed, and the resulting delays are
indicated in the figure. Note that the best BA is not perfectly regular, even though the CG is regular. Processor P1, and
memory modules M4 and M5 are linked through a shared bus, similar to processor P2 and memory blocks M6 and M7.
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Figure 23: Bus architecture for JPEG SoC
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Figure 24: Bus architecture for JPEG SoC

This happens because the placements of these blocks is similar. However, processor P3 and memories M8 and M9 are
linked through a different structure, which improves the speed of the bus for the specific placement of these blocks.
This explains that optimized BA do not depend only on architectural level elements (like the amount of exchanged
data between cores), but on layout aspects, also. Same design constraint were used for the CG at the bottom of Figure
22. Experiments used the core placement in Figure 24, and the synthesized BA (including bus delays) is shown at the
bottom of Figure 24. BA synthesis took less than 5 minutes on a SUN Blade 100 workstation. This motivates that the
pruning method of the BA synthesis algorithm allowed to quickly explore the very large solution spaces resulting for
SoC with many cores.
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7 Conclusion

This paper presents a new hardware-software co-design methodology for resource constrained SoC realized in a deep
submicron process (DSM). The methodology is useful for multimedia applications optimized for latency. The approach
addresses layout and hardware aspects relevant to system design: it considers the dependency of task communication
speed on interconnect parasitic, as well as the possibility of sharing coarse and medium grained IP cores across tasks.
The methodology includes an original algorithm for bus architecture synthesis. The co-design process performs three
successive steps: Using simulated annealing, co-design explores for combined task and communication partitioning
and scheduling, and finding feasible requirements for the minimum speed of communication links. Exploration em-
ploys Performance Models (PM) to express relationships between system performance (latency and communication
speed flexibility), specification attributes, and design decisions. The second step synthesizes and routes the bus archi-
tecture. IP cores are placed using a hierarchical cluster growth algorithm. Next, bus architecture synthesis finds a set of
possible building blocks (using the PBS bitwise generation algorithm), and assembles them together using simulated
annealing. The paper presents a special table structure, named bus architecture synthesis table, and select-eliminate
method to prune low quality bus architectures. The third step re-schedules tasks and communications using precise
information on bus speed for the best found bus architecture.

The co-design methodology improves the practicality of system-level design for DSM technologies. The bus synthe-
sis algorithm creates customized bus architectures in a short time depending on the data communication needs of the
application, and the required performance. Layout information is important in deciding the bus architecture topology.
Experiments showed that it is impractical to postulate a unique bus architecture as the best, as there is little re-using
among bus architectures optimized for different constraints. Experiments also indicated that PM are more effective
than well known synthesis metrics, like task priorities. For SA-based exploration using PM, system latency was up to
20% shorter than for list scheduling. Reason was that PM avoid the modeling limitations of priority functions. PM are
general, flexible, and can be easily extended for new design activities without requiring cumbersome validation. The
combined partitioning and scheduling technique offers latency improvements of up to 40% as compared to a method,
which separates partitioning and scheduling. For highly parallel applications, sharing of medium and coarse grained
resources improves latency by up to 30% as compared to sharing of coarse grained cores only.
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