
UNIVERSITY AT STONY BROOK

CEAS Technical Report 8 15

CENTRALIZED ENERGY EFFICIENT CONTROL OF
CLUSTERS IN TWO-LAYER SENSOR NETWORKS

Z. Zhang, M. Ma, Y. Yang

September 16,2004

Centralized Energy Efficient Control in Clusters of Two-Layer Sensor
Networks

Zhenghao Zhang, Ming M a and Yuanyuan Yang
Department of Electrical & Computer Engineering

State University of New York, Stony Brook, NY 11794, USA

A~SP&-In this paper we study heterogeneous sensor net-
work with two layers. We deploy two types of nodes to the
network: the basic sensor node and cluster head node. The
powerful cluster head node organizes the much simpler sen-
sor nodes around it into a cluster, and acts as cluster head.
Such a two-layer network has better scalability, lower over- .-._...._.....-
all cost~ and longer life' We focus On energy efficient control Fig. 1. A two-layer heterogeneous sensor network. The large nodes are the
within clusters to prolong network life. The cluster head cluster heads. The small nodes are the basic sensor nodes.
use polling to get data from sensors in its cluster, in stead of
letting sensors send data randomly, such that less energies
are wasted. We will first describe the network flow formal-
ization for finding the load balanced data relaying paths.
Then we will discuss the problem of finding a contention-
free polling schedule that uses minimum time. We will show
that this problem is NP-hard, and then give a fast on-line
algorithm. We also conducted simulations on ns-2.

sor nodes to the network: the basic sensor node and the cluster
head node, as shown in Fig.1. The basic sensor node is the
majority of the sensor nodes, which is cheap and has relatively
simple functionalities, such as data sampling and simple packet
forwarding, and has a limited power supply and a small trans-
mission power. The cluster head node is much powerful than
basic nodes: it has much more computational capabilities and
more power supplies and a much larger transmission power. A

Index Terms: Sensor networks, Cluster, Polling. cluster head node organizes basic sensor nodes around it into a
cluster, and acts as the cluster head. The basic sensor node col-

I. INTRODUCTION AND BACKGROUND lects the data and sends it to its cluster head. The cluster head

The use of wireless sensors networks will enable a wide vari-
ety of applications, including environmental monitoring, medi-
cal systems, etc. In a sensor network, a large number of sensors
are deployed over an large area, with each sensor capable of
collecting data and also sending data via wireless channels. To
ensure correct data transfer, sensor have to be organized into
a robust multi hop wireless network. This poses several chal-
lenges to network design. First, the network has to be scalable,
since there can be thousands of sensors in the network. Second,
to reduce the cost, sensors should be made as simple as possi-
ble, and as a result, sensors should only have some very simple
functionalities. Third, the power supplies of sensors are limited
and cannot be replaced, therefore the network has to be energy
efficient.

In general, these challenges cannot be easily met. We can
tackle the first challenge by introducing hierarchies: the net-
work is partitioned into into clusters, and sensors need only
communicate within clusters while the inter-cluster communi-
cation is done by the cluster head. [3] [l 11 gave protocols for
cluster forming and cluster head selection. However, in these
methods, sensors become more complicated since every sensor
could be elected as cluster head and thus more transmitting and
storage capabilities are needed for each sensor.

We note that for some applications, for example ground tem-
perature monitoring, where the main job of sensors is to gather
information and send it to outside observer, we can take this
idea one step further. We can deploy two different kinds of sen-

node sends data to the outside observer or a nearby head node.
The cluster head sends messages in a much larger power and its
message can be heard by all sensors in the cluster. The trans-
mission power of basic sensor much smaller, and to reach the
cluster head, the packet has to be relayed by other sensors. The
advantage of such a heterogeneous network is that majority of
sensor nodes can be made very simple and very cheap, thus the
overall cost of the network can be greatly reduced. In the rest of
the paper we will refer to the basic sensor node as sensor, and
the cluster head node as cluster head.

We can regard this type of network has a two-layer network.
The first layer is the individual cluster. Above the first layer,
in the second layer, the cluster heads can organize themselves
into another network, in which they can exchange information
or send data to the outside observer. The second layer is essen-
tially a static wireless ad hoc network, and many works in the
literature can be applied to it. Question still remains as to how
to design the first layer, or the in-cluster control, in an energy-
efficient way, to prolong the life of the network.

Most commonly, sensors are assumed to send data packets
randomly. From the point of view of saving energy, this has
several disadvantages. First, energies could be wasted in colli-
sions: several sensors may decide to send packets at the same
time and all these packets have to be retransmitted. Second, en-
ergy can be wasted by overhearing: sensors may have to decode
packets not destined for them. Third, in the effort to avoid colli-
sion, sensors may have to use control packets to coordinate with
each other, which also consumes a significant amount of energy. --

The research work was supported in part by the U.S. National Science Faun- Lastly and also most importantly, when sensors send packets in
dation under grant numbers CCR-0073085 and CCR-0207999. a random manner, a lot of energy will be wasted in idle listen-

ing. This is because sensors have to constantly monitor the ra- send data.
dio channel for possible data packets destined for them, and the In a duty cycle, the sensors works in the following way. First,
power consumption for idle listening is at the same magnitude sensors wake up, entering the active listening mode, at the time
as sending and receiving [8]. specified by the cluster head before they went to asleep last time.

To overcome these problems, [8] introduces MAC layer con- They will wait for the message broadcast by the cluster head,
trol that reduces collisions and overhearing, and also let sensors indicating the beginning of a duty cycle. After the cluster head
periodically wake up and sleep to reduce idle listening, for ap- broadcast this message, each sensor sends a short packet back,
plications when the data generating rate is low. However, the acknowledging the cluster head, also informing the cluster head
waste of energy is still significant. For example, for idle listen- of the number of packets it has to send. Based on this, the clus-
ing, in their experiments sensors still have to be awake for nearly ter head will find a polling schedule, and controls the sensors
24% of the time. We note that the energy is wasted because of in a time slotted manner, where time slot is the length of time
the lack of coordination among sensors: sensors do not know for one data packet transmission. At the beginning of a time
when other sensor will do and have to "be prepared" for most slot, the cluster head will broadcast a polling message, indicat-
of the time. This is inevitable in a distributed system. However, ing which sensors can start to send their packets, also which
in a heterogeneous network, with the presence of the cluster sensors should receive packets. All other sensors will be enter
head, sensors can be fully controlled by the cluster head and the idle listening mode for one time slot. Before the next time
be fully coordinated, and all possible sources of energy wast- slot starts, all sensors will listen to the radio channel, waiting
ing mentioned above can be eliminated. The cluster head can for the next polling message. After hearing the polling mes-
send out messages to tell sensors to send packets which will not sage, sensors that are polled will send their packets, and sensors
cause collision. The cluster head can also tell sensors when to that had received a packet in the previous time slot will relay
receive, thus no overhearing will occur. There will no control the packet to the next hop neighbor. And so on, until all pack-
packets fiom sensors. After enough data has been collected, the ets have been received. After this, the cluster head broadcasts
cluster head can tell all sensors to enter the sleep mode until a message, set all sensors to the sleep mode, and also telling
next wake up time. Other advantages of this centralized frame- them the next wake-up time. We can see that sensors works in a
work is that it needs less functionalities of the sensors. Such way like a pipelined system, and the polling message is like the
a centralized framework is unconventional, but is not impossi- clock. To reduce the length of a time slot, we do not use link
ble since with some slight overhead, the cluster head can gather level acknowledgment. If a packet is lost, the cluster head will
enough information about all sensors in its cluster. Of course in poll the sensor again.
this case the cluster head has to take up more responsibilities.

We will give methods for the cluster head to organize the sen- 111. OPTIMAL ROUTING
sors in a robust and energy efficient way. The goal is to maxi- F~~ this and the next section, we will assume the nehvork has
mize the battery lives of sensors in the cluster. We use polling been partitioned into clusters and focus only in the operations in
to collect data from the sensors, i.e., the cluster head sends a an individual cluster. The first problem needs to be solved is to
message to the sensor it wants to hear from, and the sensor find paths for each sensor, by which its packet is relayed to the
received this message start sending. The main problems cluster head. To do this, the cluster head will need to know with
that need to be solved are the follows. First, there should be a which sensors a sensor can reliably communicate with, or the
relaying path by which the packet from a sensor can be relayed connectivity patterns of the cluster. We will describe methods
to the cluster head. The relaying paths for sensors are good if to find the connectivity patterns in later sections, for now, we
the the transmission loads of sensors are balanced, i.e., there assume the ,-luster head has this knowledge.
is no sensor relaying too many packets while other sensors re- A, obvious solution to the problem is to build a tree, in which
laying few. We describe the to this problem, the cluster head is the tree root, and each sensor relays all the
the flow which has appeared in i41 [lo], packets coming from its dependents to its parent. However, the
and also give our implementation methods for it. Second, we tree is not the optimal structure, since examples can be found in
need to find a polling schedule. A good polling schedule should which some sensor relays too many packets while others relay
not cause any collision and should finish as soon as possible. very few. A result of this is that the sensor with too many relay-
We will show that finding such a schedule is NP-hard, and give ing burden dies soon, which may disconnect the network. rn an
a fast greedy algorithm for it. Note that the difference of the optimal structure, the load should be balanced.
greedy from polling protocols like 802.1 PCF and Define the pansmission load, or simply load of a sensor in a
Bluetooth is that the latter are for single hop networks while the duty cycle as the number of packets it has to send out, including
former is for hop networks. We then its own packets and packets from other sensors it has to relay.
implementation issues and give some possible improvements. As example, consider the cluster shown in Fig.2, in which an
We will also use ns-2 simulations to show the performance of edge connects two sensors if they can communicate with each
our method. other. Suppose each sensor has one packet to send to the cluster

head t. Due to the connection pattern, S1 has to relay for S3,
11. CLUSTER OPERATIONS

S2 has to relay for S4, and S5 has to relay for Ss to S8. S5 can
We target at applications where the data generation rate is send packet to either S1 or Sz. If we use a tree, Ss can only

low. Under the control of the cluster head, sensors will sleep send to one of them, and as a result, either S1 or Sz will have
for most part of the time, and wake up only for a short while to load 6, while the other's is only 2. If we split the traffic out of

Fig. 2. The connection pattern of a cluster, in which tree is not the optimal for
relaying data packets.

Fig. 3. Network flow formalization for F ig2

S5 into two, with 2 packets going to S1 and two packets going
to S3, the load of S1 and 5'2 will both be 4. In fact 4 is also the
maximum load among all sensors.

A. Maximum Flow Formalization

The problem of finding optimal packet relaying paths has
been studied independently by [4] [lo]. It can be formalized as
a min-max problem: find a routing strategy such that the maxi-
mum load of sensors is minimum.

This problem can be solved in polynomial time by formaliz-
ing into a network flow problem. At first we consider the case
when each sensor has exactly one packet to send in a duty cycle.
Suppose there are n sensors in the cluster, and first suppose in
this duty cycle each sensor has exactly one packet to send. Let
the head node be the sink t. Each sensor, say S1, corresponds to
two nodes s 1 and s i in the digraph of the network flow problem,
where sl is the "input" node and s', is the "output" node. There
is an arc from s l to s; with capacity 6, where 6 is a parameter
and actually controls the load of sensor S1. If sensor Sz is in

To find the optimal relaying paths, we can start with a small
6, then run the Ford- Fulkerson algorithm. If there is a flow of
value n, where n is the number of sensors, we are done. Other-
wise, increment 6 by one and run the Ford-Fulkerson algorithm
again. Note that the current flow must be a valid flow after 6 is
incremented, therefore when re-running the Ford-Fulkerson al-
gorithm, we do not have to start from a zero flow. Also note that
after incrementing 6, if from every sensor there is a route to the
cluster head, the flow must also be increased by one. Therefore
the algorithm will terminate in 0(n3) time, and when termi-
nated, it will either return a set of relaying paths that are opti-
mal, or reporting that the some sensors are isolated.

It is easy to extend the method to the case when the number
of packets from sensors are different. Suppose in a duty cycle,
the number of packets from sensor Si is pi. We can let the
capacity of arc s to si be pi, and use the same algorithm to find
the optimal relaying paths. The Ford-Fulkerson algorithm runs
in 0(Vn2) time in this case, where V = Cy.lppi.

However, computing the optimal routing strategy in every
duty cycle may not be practical since running the maximum
flow algorithms can be time consuming. Besides, we note that
we actually do not have to balance the load per duty cycle: all
that is required is that the load is balanced over a long time pe-
riod. ~ h u s , we can find an optimal routing strategy based on the
average trajic intensity, which is the average number of packets
generated by sensors observed in a long time period.

B. Practical Issues

B.l Source Routing

To the best of our knowledge, all previous works focus on the
theoretical aspects of the problem, that is, how to find the opti-
mal relaying paths. Practically, after find the optimal relaying
paths, we should find a way to make traffic move along it. This
problem was realized in [lo] but not solved. One solution to
this is to use source muting: Each sensor remembers the relay-
ing path from it to the cluster head, and adds it to the header of
the packet it sends. Sensor that receives this packet will then
relay it to the sensor that appears next in the relaying path. This
will ensure that traffic will flow according to the optimal relay-
ing paths. However, this will also add length to the data packets
and will thus waste energy. Equivalently, we can let each sensor
remember a one-hop routing table for all its dependents, where
a dependent of sensor S is a sensor whose relayingpath involves
S. For example, if the relaying paths of S6 and S7 in Fig.2 are
S6 - S5 - S1 - t and S7 - S6 - S5 - S2 - t , respectively, we can
let S5 remember to forward 5'6's packet to S1 and forward S7's
packet to S2. Since only one hop information is needed for each
dependent, this will not need too much of storage space. Also
note that a relaying path is simply an augmenting path of the
Ford-Fulkerson algorithm, therefore the paths for~sburce rout-
ing can be found when running the algorithm.

the transmission range of S1, there is an arc from s i to input
node s2 with infinite capacity. Similarly, if cluster head can be B.2 Multiple Paths Rotation

reached by S1, there is an arc from s i to t with infinite capacity. Note that when traffic intensities of sensors are different, a
There is an additional node, the source s. There is an arc from sensor may have several relaying paths. For example, if on av-
s to si with unit capacity for all 1 5 i 5 n. For example, the erage 3 packets are generated by sensor S1 in a duty cycle, the
network flow formalization for Fig.2 is shown in Fig.3. maximum flow algorithm may find two paths, path one carrying

s2 - S,- t I s - I I
time slot 1 time slot 2

Co)

Fig. 4. (a). A simple cluster. Sl, S2 and S3 have 0, 1, and 1 packet to send,
respectively. & -t Sl and S3 -+ t do not cause collision. (b). The polling
schedule.

2 units of flow and path 2 carrying 1 unit. To simplify control-
ling, in a duty cycle, we would like sensors send packets only
on one path. Thus, to balance the load, we can let sensors send
packets on these paths alternatively, in proportions to the units
of flows the paths carry. In the example, we can let S1 send
packets along path 1 for two duty cycles and along path 1 for
one duty cycle.

IV. POLLING IN MULTI HOP SENSOR NETWORKS

As said earlier, the cluster head uses polling to get data from
sensors. The major difference between single hop polling and
multi hop polling is that in multi hop clusters, the cluster head
can poll more than one sensors at the same time if their packet
transmissions do not cause collision. As a simple example, con-
sider the cluster shown in FigA(a). Suppose S1, S2 and S3 have
0,1, and 1 packet to send, respectively. Because the packet from
Sz has to use two hops to reach t , if we only poll one sensor at
a time, i.e., poll a sensor only after the packet from the sensor
polled previously has been received, 3 time slots are needed.
However, if transmission S2 -+ Sl and S3 -+ t do not cause
collision, we can poll Sz and S3 together at the first time slot.
At the second time slot, S1 relays the packet from Sz to t. Thus
the polling finishes in only 2 time slots, as shown in Fig.4(b).

We will show in this section that the problem of finding an
optimal collision free schedule which is the schedule by which
the polling finishes in the shortest time is NP-hard, and then
give a fast greedy algorithm for it. We will first assume the
relaying paths of sensors are fixed. At the end of this section,
we will explain that it is also hard to jointly solve routing and
scheduling problem.

A. Interference Patterns

We can see that to find a collision free schedule, it is cru-
cial to know the interferencepatterns in the cluster. That is, the
cluster head has to know whether a group of transmissions are
contention free, or compatible. A model that is widely used in
performance analysis is the geometrical model, or the protocol
model in [IS], which assumes that two sensors can cornrnuni-
cate with each other if the distance between them is less than
a constant r, and two transmissions, say Si + S1, Sh + S2
are compatible if and only if the distance between S1 and Si is
less than (1 + A)r, as well as between S2 and S;. This model
is convenient for performance analysis, but we cannot use it in
determining polling schedules for the following reasons.

First, in reality, the covering area of a sensor, which is the area
in which other sensors can correctly receive message from it,
may well not be a disc. A number of factors, for example reflect-

Fig. 5. Pairwise compatibility dose not guarantee compatibility.

ing objects and multi path fading, can make the covering area
very oddly shaped and might not even be convex, especially in
urban areas [I]. The second reason is even more profound. The
geometrical model suggests that if a group of transmissions are
compatible if and only if they are pairwise compatible. How-
ever, in reality, a necessay condition for a group of transmis-
sions being compatible is that the accumulated interferences at
any receiver are not too large. For example, as in Fig.5, suppose
three transmissions, Si + S1, Sh -+ S2 and SA -+ S3 are pair-
wise compatible. Let P(S,', S j) be the the signal power from
Sa present at Sj . The three transmissions being pairwise com-
patible implies that any single P(S,', S j) is not large for i # j.
However, when the three transmissions occur at the same time,
if P(Si , S2) + P(SA, S2) is too large, transmission S; --t Sz
will still fail.

To make network robust to any environments, we do not make
any assumption about the covering areas and interference pat-
terns and treat them as arbitrary. The cluster head gets the
connectivity patterns and interference patterns by testing the
involved transmissions and sensors, and we will describe the
method in detail later. Note that testing the interference patterns
for all possible groups of transmissions needs exponential time.
Thus, we will assume that the cluster head only knows the com-
patibility of all no more than M transmissions, where M is a
small positive integer, like 2 or 3.

B. The Optimal Polling Schedule is Hard to Find

We will first consider the problem of how to find an opti-
mal polling schedule. We will assume that the cluster head has
known the number of packets each sensor plan to send. We
will first assume the sensors do not store a received packet in its
buffer: a received packet is forwarded to the next hop immedi-
ately in the next time slot.

We say a sensor is of level i along its path to the head there
are i hops. If all sensors are in level 1, the scheduling reduces
to single hop polling and is trivial. We will call the problem
when some sensors have level more than 1 the MULTI HOP
POLLING PROBLEM and refer to it as MHP problem.

To see MHP problem is NP-hard, first we consider a special
structure called "two level star with relaying only first level",
which is referred to later as TSRF. A TSRF is a tree, with the
root being the cluster head, and each branch is consisted of 2
sensors and one of these two sensors is connected to the head.
Fig.6(a) shows a TSRF with 5 branches. More specifically, let t
be the root, sensors denoted by S1, Sz, S3, . . ., are connected to
t , or are in the first level, sensors denoted by S i , S;, SA, . . . are
in the second level, with S; is only connected to S1, Si is only
connected to S2, etc. Each sensor in the second level has exactly
one packet to send, and sensors in the first level has no packet
to send. The relaying path for the packet generated in sensor S;
is S: - S1 - t. Some transmissions, say, S; -+ S1 and S3 --t t

Fig. 6. (a) A TSRF with 5 branches. @). An arbitrary graph with 5 vertices.

can occur at the same time if they do not cause collision.
The problem is: given a TSRF and interference pattern, does

there exist a schedule by which all sensors can send their pack-
ets to the head by time k? We will call it TSRF POLLING
PROBLEM and will sometimes refer to it as TSRFP.

Lemma I : The TSRF POLLING PROBLEM is NP-
complete.
Proof. It is clear that this problem belongs to NP. To see its
NP-completeness, we reduce the Hamiltonian Path problem to
it.

Given any instance of the undirected Hamiltonian Path prob-
lem, we construct an instance of TSRFP problem as follows.
Denote the graph of the Hamiltonian Path problem as G, and de-
note the vertices in G as vl, vz, us, Each node in the graph
corresponds to a branch of the TSRF. For example, the TSRF for
the graph shown in Fig.6(b) is Fig.6(a), where v 1 corresponds to
branch S; - S1 - t , vz corresponds to branch S; - Sz - t , etc. If
two vertices are adjacent, for example vl and vz, transmissions
S1 + t and S; -+ Sz are compatible, transmissions Sz -t t and
S; -+ S1 are also compatible. Otherwise, these two pairs of
transmissions are not compatible. k is set to be n + 1, where n
is the number of vertices in G.

Note that in a schedule that needs only n + 1 time slots, the
transmissions must be back to back: all sensors in the second
level must start to send in consecutive time slots with no "pause"
in between. Sensor Si and Si can start in consecutive time slots
if and only if Si --, t and S; * Sj do not cause collision. In this
case, by our construction, there is an edge from vi to vj in G.
Therefore, this schedule determines a Hamiltonian path in G. .

Since any algorithm that solves the MULTI HOP POLLING
PROBLEM can solve the TSRFP, thus we have

Theorem 1: The MULTI HOP POLLING PROBLEM is NP-
hard.

B. 1 Reality Check

Note that in the proof we constructed a TSRF with interfer-
ence patterns resembling the connection patterns of an arbitrary
graph. A natural question is whether the interference pattern in
a TSRF can indeed be arbitrary.

We verify this with the interference model, which is the phys-
ical model in [IS], as follows. We assume that in the TSRF, two
transmissions, Si + Si and S j + t , do not interfere with each
other if and only the following two inequalities hold:

determined by signal power, so this model is still a simplified
version of reality. However, we still use it because it makes
senses and also because of the lack of other good models.

In wireless environments, P (S j , Si) can be arbitrary. Thus,
we can assume P(S j , t) be larger than any P(S,', t) y for all i
and j. We can let P(Si, Si) = q for all i. Then if there is an
edge between vi and vj, we can let P(S j , Si)y < q. Otherwise,
we can let P(S j , Si)7 > q. This will produce the desired inter-
ferences.

C. The Scheduling Problem Is Still NP-hard when Packets Can
Be Delayed

Note that so far we assume that once a sensor received a
packet it will forward it to the next sensor immediately. In
other words, packets will not be delayed in intermediate sensors
along the path. This makes the controlling simple, and reduces
the size of memories in sensors. Moreover, as we will show
soon, there is also no benefit to allow packets be delayed: the
scheduling problem is still NP-hard even if we allow packets be
temporarily stored in intermediate sensors.

Theorem 2: The MULTI HOP POLLING PROBLEM is NP-
hard even when packets can be delayed.
Proof. Again consider the TSRF. Suppose there is an algorithm
that answers the question: given a TSRF and interference pat-
tern, does there exist a schedule by which all sensors can send
their packets to the head by time k, when allowing the delay-
ing of the packets? Again we can let k = n + 1, where n is the
number of branches in the TSRE

The claim is that if there is a schedule that all sensors' packets
have been received by the cluster head by time n + 1, the same
schedule must also be a legitimate schedule for the case when
packets are not delayed. To see this, note that in this schedule,
in every time slot after the first, there must be a sensor in the
first level relying packets to the cluster head. Suppose at the
first slot, S,! sends a packet to Si. Then in the second time slot,
Si must send this packet to the cluster head. Suppose in the
second time slot Si is sending its packet to S j . Then in the third
time slot, Sj must be sending Si's packet to the cluster head.
The same argument can be carried on and as a result, no packet
is delayed in this schedule. Therefore, the same algorithm can
be used to answer the TSRFP problem with no packet delay. .
D. The Scheduling Problem Is Still NP-hard when Each Sensor
Has Exactly One Packet to Send

In some applications, sensors sample data periodically and
generate exactly one packet per duty cycle. Therefore, we have
to consider a special case of the MULTI HOP POLLING PROB-
LEM, in which each sensor has exactly one packet to send. We
will call it EXACT ONE PACKET MULTI HOP POLLING
PROBLEM, and abbreviate it as XIMHP. This problem, un-
fortunately, is still NP-hard.

Theorem 3: The EXACT ONE PACKET MULTI HOP
POLLING PROBLEM is NP-hard.
Proof. We prove this by reducing the TSFRP to it. Given any
instance of the TSFW, we construct an instance of the XlMHP
as follows.

where y is a constant. Note that as illustrated in [I], whether For each branch in TSFW instance, say S; - S1 - t , we add
a packet can be successfully received or not is not completely another auxiliary branch, as shown in Fig.7. The relaying path

Fig. 7. The auxiliaty branch for branch - S1 - t .

for U;" is U;" - U;' - Ui - t. The relaying path for U;' is U;' -
Ul - t. Transmission U;' -+ U; is compatible with S1 -+ t.
Other transmissions in this auxiliary branch is not compatible
with any other transmissions.

For any optimal solution to the XlMHP problem, suppose
sensor UY start to send its packet at time slot a. At time slot
a + 1,U;' will relay this packet to Ui . If sensor S1 is not send-
ing its packet to t at time slot a + 1, we can "move" it to this
time slot, since U;' -+ U; is compatible with S 1 -+ t , and the
resulting schedule should still be optimal. After pairing them
up, we move them to the beginning of the schedule, that is, we
let U;" start to send at time slot 1, and let S 1 start to send at
time slot 2. The resulting schedule should still be optimal since
U;" -+ U;' and Ui -+ t are not compatible with any other trans-
missions, and therefore are not occurring at the same time with
any other transmissions in the optimal schedule. For the same
reason, we can also move U;', U; and Ul to the front, or to let
them start to send at time slot 4,6 ,7 , respectively. Then we pair
up Sz with its auxiliary branch and move it to the beginning of
the schedule and so on.

As a result, the optimal schedule will consist of two parts,
one in the beginning for sensor S 1 , S2 , . . . and sensors in their
auxiliary branches, followed by a schedule only for sensors S i,
S i , The second part must be an optimal schedule for the
TSFRP instance.

Using similar arguments as in Theorem 2, it can be shown
that

Theorem4: The EXACT ONE PACKET MULTI HOP
POLLING PROBLEM is NP-hard even when packets can be
delayed.

D.l Reality Check

We can first let the received power for transmissions in the
auxiliary branches be very weak. Consider the first auxiliary
branch. To make a transmission U1 -+ t and Ui -+ t incompati-
ble with all other transmissions, we need only raise P (S , t) for
all sensor S not in the first level. To make U r -+ U;', U;' -+

UI no compatible with any other transmissions, we can raise
P (S , U;') and P (S , U1) for all other sensors. To make U;' -+ Ui
compatible with only with S1 -+ t , we can let P (S , U i) be rela-
tively large for all sensors other than S1 .

E. The On-line Polling Algorithm

In this section we focus on finding an algorithm that gives
sub-optimal contention-free polling schedules. Another re-
quirement of this algorithm is that is should be able to run on-
line, since it has to be able to deal with packet loss. Note that in
wireless communications, success packet delivery is not guar-
anteed. Since the cluster head knows which time slot a sensor

start to send its packet and the hop count from the sensor to it,
it knows exactly which time slot it should expect to receive that
packet. Therefore, the cluster head can find out when a packet is
lost and once this happens, it can simply poll the sensor again.
Therefore the scheduling algorithm should be on-line, since new
polling requests may come (actually the old ones come again)
when the polling is going on.

The NP-hardness of the problem and the on-line requirement
left us no other choices but to adopt a very simple algorithm.
We will refer each packet as a poNing request, or simply re-
quest. At the beginning, each request is active. When a request
has been added to the schedule, it becomes idle. On the time
slot when the packet should have been received by the cluster
head, if it is not received, the request will become active again.
Otherwise, it will be deleted. The algorithm will only consider
active polling requests. Since the cluster head knows only all
possible combinations of no more than M transmissions, at any
time, the algorithm will only allow no more than M concurrent
transmissions.

Before the first time slot, the schedule is empty. The algo-
rithm scans through the requests according to an arbitrarily pre-
determined order, and adds a request to the schedule if it dose
not cause contention with the existing ones (if started at the first
time slot). After maximum number of requests have been added
to the schedule, or after M request have been added, the algo-
rithm halts. The cluster head will tell sensors appeared in the
schedule to send their packets in the first time slot. In the fol-
lowing time slots the algorithm will work in exactly the same
way, until all packets have been received.

To see whether a packet can be sent at time slot a + 1, sup-
pose the hop count is c, we need to check whether the c trans-
missions involved will collide with the transmissions in the ex-
isting schedule from time slot a + 1 to a + c. Suppose there are
m requests in the schedule. For each time slot, there are totally

xEl (1:) = Zrn - 1 possible groups of transmissions that

need to'be ciecked. Note that m 5 M - 1. Thus it would re-
quire O (C ~ ~) time. Suppose there are totally N requests and
the maximum hop count is C . The work in each time slot can
be finished in 0 (N C 2 M) time. Note that although there is an
exponential term, 2 M , in the bound, M is fixed and is really
small, thus the algorithm is still a linear time algorithm to the
input size.

R Joint Routing and Scheduling is also Hard

So far, in this section, we have considered the scheduling
problem when the relaying paths of sensors have been given.
However, we may want to find the optimal solution while not
fixing the routing paths. This will give us more flexibilities
and better solutions. However, without much difficulty, we will
soon show that this problem is also NP-hard, and that is why we
choose to break the bigger problem into two sub problems and
solve them one by one.

Note that the life of a sensor is determined by its transmission
load and the polling time of the cluster. We can assume the life
of Si is reversely proportional to the power consumption rate
aRi + PT, where Ri is the transmission load of the Si and T
is the polling time, and a and P are constants. The problem is:

TABLE 1

Input : The polling requests.
Output: Polling schedule.
while requests are not all deleted

if a packet is received
Delete the request for this packet

end if
if a packet that is expected to arrive is not received

Set the request for this packet to active.
end if
while less M requests in the schedule at this time slot

Add an active request to the schedule to
current time slot if it does not cause collision.
Mark the request as idle.

end while
wait until next time slot.

end while

Given the connection pattern and the interference pattern of a
cluster, find relaying paths and a polling schedule such that the
maximum power consumption rate is minimum. We will call
it the JOINT MULTI HOP ROUTING AND POLLING PROB-
LEM, or the JMHRP problem.

JMHRP is clearly also NP-hard since it must be no easier than
the TSFRP problem: for any TSFRP instance, we can construct
an instance of the JMHRP problem, with same interference pat-
terns, while removing all transmission links except Si - Si and
Si - t for all i. That is, only allowing data transmissions within
the branches. (Note that in the TSFRP problem, there could be
links between sensors in different branches.) Clearly, if there is
an efficient algorithm for the JMHRP problem, the same algo-
rithm can also be used to give answer to the TSFRP problem.

up a temporary data relaying path.

B. Knowing The Connectivity

The cluster head should first find out the connectivity patterns
in its cluster, i.e., We can let sensors to broadcast in turn, then
poll each sensor to see which sensor it has heard from. a sensor
can send packets to which sensors. This will need O(n) time
where n is the number of sensors, and is only needed at the ini-
tialization phase. After the connectivity pattern is known the
cluster head can find the optimal routing path using the maxi-
mum flow algorithm described earlier.

C. Knowing The Interference Pattern

After the optimal routing path is found, to determine the
polling schedule, the cluster head needs to know the interfer-
ence pattern. As said earlier, we get this by testing each group
of no more than M transmissions needed in the optimal routing
path. We can poll each pair of sensors involved in the transmis-
sions at the same time, then poll the sensors that are supposed
to receive the packets in turn. This will finish in O (n M) time.

D. Acknowledgments Collecting

V. IMPLEMENTATION ISSUES AND IMPROVEMENTS

A. Cluster Forming

Initially, the sensor network should be partitioned into clus-
ters. The cluster head should know which sensors are in its clus-
ter and sensors should also know which clusters they belong to.
This is Cluster Forming, and is a research topic of its own [5]
PI P11.

In this paper we assume that the clusters have been formed
and focus on in-cluster controls. However, one possible way of
cluster forming is to let cluster heads compute the Voronoi di-
agrams and let sensors in the same Voronoi cell belong to the
same cluster. This requires sensors know their locations, which
is a legitimate assumption since for many applications, infor-
mation will be meaningless without knowing the locations of
where they come from.

After cluster has formed, the cluster head should know which
sensors belong to its cluster. We can first let the cluster head
discover sensors that can directly communicate with it, then let
these sensors find sensors that are two-hop away, then use the
new sensors to find sensor three-hop away, until no new sensors
are discovered. Each sensor can remember the first sensor that
discovered it as the parent of it, who will be in charge of for-
warding its packets to the cluster head. Note this is oily to set

" " I

As said earlier, after cluster head has received all the pack-
ets, sensors enters the sleep mode. Ideally, later, sensors should
wake up at exactly the same time. However, due to possible drift
of clocks in sensors, this might not be the case. Therefore, to
make sure that all sensors have waken up before data transmis-
sion, the cluster head should broadcast a inquiry message. All
sensors received this message should then reply an acknowledg-
ment. Only after receiving acknowledgments from all sensors
will the cluster head start polling. In addition, along with this
acknowledgment message is that sensor can inform the cluster
head of the number of packets it plan to send. Note that when
collecting the acknowledgments, the length of a time slot can be
made much shorter, since the acknowledgment packet is much
shorter than data packets.

One possible way doing this is to let cluster head poll the
sensors, as in the case when each sensor has exactly one packet
to send. However, there are more efficient ways. Note that since
the network is multi hop, some sensors will have to relay the
ack packet for other sensors, and while relaying, sensors can
add in their own ack to this packet. Thus, only one ack packet
is needed for sensors along a path to the cluster head, and as a
result, only the sensor at the beginning of the path needs to be
polled.

Using similar arguments as in Section IV-F, we can see that
problem of finishing the acknowledgments collecting process
in minimum time is also NP-hard. To solve it, we can break
it into two subproblems: first, find a set of paths that covers
all sensors; then, find schedule to finish polling sensors appears
at the beginning of the paths in minimum time. The second
problem can be solved by the algorithm for multi hop polling
described before.

To solve the first subproblem, we use the relaying paths for
the data packets as "candidate" paths, and choose among them a
set of paths that covers all sensors with minimum total number
of hop counts. This problem can be solved by regarding the
sensors as elements in a whole set. and reeardine the ~ a t h s as

subsets. Each subset has a cost equal to it hop count. Then find
a group of subsets that covers the whole set with minimum total
cost. This problem is exactly the Weighted Set Cover Problem,
and is also NP-hard, but a fast greedy algorithm can be used
to give sub optimal solutions. This greedy algorithm iteratively
chooses a subset that has the minimum covering cost, where
covering cost of a subset is defined as the ratio of the cost of it
over the number of uncovered elements it contains.

E. Removing Inter-Cluster Interfewnee

In a sensor network, there are many clusters, each controlled
by its own cluster head. With the centralized polling scheme,
sensors in the same cluster do not interfere with each other.
However, at the boundaries of the clusters, sensors belonging
to different clusters may still do, if their cluster heads decide
to poll them at the same time. In this section we will describe
methods to deal with this situation.

The simplest way is to allow data transmission in only one
cluster at a time. A token can be rotated among the cluster
heads, and only the cluster head that captures the token can
start data transmission in its cluster. It works for the case when
the number of clusters are not large, and the data transmission
within a cluster can be finished in relatively short time periods
as compared to a duty cycle.

Another more efficient way is to let sensors in nearby clus-
ters operate in different radio channels, such that they can send
packets at the same time without causing collision. The prob-
lem then needs to be solved is: how many radio channels are
needed, and how to assign then to the clusters?

Regarding a radio channel as a color, this problem is equiv-
alent to giving adjacent clusters different colors. This is the
famous 4-color problem for planar graphs and we know that 4
colors, or 4 radio channels will be sufficient. To find the color-
ing, a cluster head can be elected to run a centralized algorithm
for the coloring problem.

However, algorithms for coloring planar graphs with 4 colors
or even 5 colors may be too complicated. On the other hand,
there is a simple centralized recursive algorithm that colors a
planar graph with at most 6 colors, using the property that in a
planar graph, there must be a vertex with degree no more than 5.
From a practical point of view, this algorithm is more attractive
since although using 6 colors or 6 channels will probably need
more bandwidth than using 5 or 4 colors, but is not particularly
harder or more expensive for making sensors since each sensor
will operate on exactly one channel. Another advantage of this
algorithm is that it can be easily changed into a distributed algo-
rithm, for circumstances where distributed control is preferred.
For details of the algorithm the please refer to [12].

I;: Dividing the cluster into sectors

Note that during the data transmission period, if a sensor will
not be involved in transmissions occurred later, it can enter the
sleep mode immediately to save energy. A sensor can enter the
sleep mode in this way if and only if all the packets generated
by itself and all the packets it has to relay have been correctly
received by the cluster head. Therefore, if we want to set a sen-
sor to sleep mode sooner, we can poll it and its dependents first.
Also note that by the time a sensor can enter the sleep mode,

Fig. 8. The construction of the CPAR problem for set {3,2,1,2).

all its dependents can also enter the sleep mode. These obser-
vations lead us to considering dividing a cluster into a number
of sectors, where a sector is consisted of a group of sensors and
each sensor has a routing path to the cluster head. We can let
each sector wake up and do data transmission in turn, such that
sensors need to be awake for shorter time periods. Also note
that once the sectors are determined, routing and polling mech-
anisms for clusters described in previous sections can be readily
applied to sectors.

Managing sensors by sectors has yet another advantage. The
number of sensors in a sector can be far less than the number
of sensors in the entire cluster. This makes finding and storing
the interference patterns much simpler, since far less number
of groups of transmissions need to be tested and stored. For
example, if we divide a cluster with 80 sensors into 8 sectors
with each sector having 10 sensors, if M = 3, we need to test
1320 groups, which is far less then 85320 otherwise.

Question still remains as to how to optimally partition a clus-
ter into sectors, such that the maximum power consumption rate
of sensors is minimum. However, the partition problem will
be NP-hard to find by this criterion since finding the optimal
polling schedule is NP-hard. Another criterion that makes sense
is: we say a partition is optimal if the maximumpseudopower
consumption rate is minimum, where the pseudo power con-
sumption rate of Si is defined as crRi + PILi where Li is the
number of sensors of the sector Si belongs to, since the polling
time will be roughly proportional to the number of sensors in-
volved. Unfortunately, even when reduced to this, the optimal
partitioning problem is still NP-hard.

Problem: Given a cluster and its connection patterns, does
there exist a partition such that rnax {a Ri + PILi) I 8? We
will call it CLUSTER PARTITION PROBLEM and will refer
to it as CPAR problem.

Theorem 5: The CLUSTER PARTITION PROBLEM is NP-
complete.
Proof. We can reduce it to the PARTITION PROBLEM, in
which a set of positive integers {Bl, Bz, ...) are given, and asks
for partitioning the integers into two subsets and the sum of the
numbers in two subsets should be equal.

Given any instance of the PARTITION PROBLEM, we con-
struct an instance of the CPAR problem as follows. We draw
two sensor nodes, SI and S2, which is connected to the clus-
ter head t. For the number, written as Bi, we draw Bi
sensors, denoted as Si to Si, where 6 = Bi. These d sen-
sors are a branch, with Sj is connected only to Sj-, for 1 <
j 5 6. Sf is connected to both S1 and Sz. O is set to be

(n / 2 + l) (a + D'), where n = x Bi. For example, the con- IEEE Conference on Personal, Indoor and Mobile Radio Communication

struction for set {3 ,2 ,1 ,2} is shown in Fig.8. (PIMRC 2004), Barcelona, Spain, Dec 2004.
[I51 P. Gupta and P. R. Kumar, "The capacity of wireless networks," IEEE

Note that the cluster can at most be divided into two sectors. Transactions on Information Theory, vol. 46, no. 2, pp. 388-404, March
Also note that S1 and Sz will collectively cany the load of n, 2000.
thus if there is apartition satisfying Q, the cluHter must be di- [16] C. Florens, M. Franceschetti and R. J. McEliece, "Lower bounds on data

vided into 2 since otherwise one of the pseudo power collection time in sensory networks:' IEEE Journal on Selected Areas in
Communications, vol. 22, no. 6, pp. 11 10-1 120, Aug. 2004.

consumption rate of S1 and Sz will exceed Q. The claim fol-
lows since aside S1 or S2, there must be exactly n / 2 sensors in
each sector, which is a solution to the PARTITION PROBLEM.
w

VI. SIMULATIONS

VII. CONCLUSIONS

In this paper we studied heterogeneous sensor network with
two layers, where the network is partitioned into clusters, and
a powerfid cluster head controls all sensors in its cluster. We
focused on energy efficient designed of clusters to prolong net-
work life. We used polling to get data from sensors in stead of
letting sensors send data randomly, such that less energies are
wasted. We first described the network flow formalization for
finding the load balanced data relaying paths. Then we will dis-
cuss the problem of finding a contention-free polling schedule
that uses minimum time. We will showed that the problem of
finding a contention-free polling schedule that uses minimum
time is NP-hard, and then gave a fast on-line algorithm. We
also conducted simulations on ns-2.

REFERENCES
D. Aguayo, et. al, "Link-level measurements from an 802.1 lb mesh net-
work:' in Proceedings of ACMSIGCOMM 2004, Portland, Aug. 2004.
A. Woo and D. E. Culler, "A transmission control scheme for media ac-
cess in sensor networks," in Proceedings ofACWIEEE MOBICOM2001,
Rome, Italy, June 2001.
W. Rabiner, et. al, "Energy efficient communication protocols for wire-
less microsensor networks," in Proceedings of the Hawaii International
Confeence on System Sciences, Jan. 2000.
J.H. Chang and L. Tassiulas, "Energy conserving routing in wireless ad-
hoc networks:' in Proceedings of IEEE/ACMINFOCOM 2000, Tel-Aviv,
Israel, March 2000.
Alan Amis, et. al, "Max-min D-cluster formation in wireless ad hoc net-
works," in Proceedings of IEEEIACMINFOCOM 2000, Tel-Aviv, Israel,
March 2000.
Y.-D. Lin and Y.-C. Hsu, "Multihop cellular: a new architecture for wire-
less communications:' in Proceedings of IEEEIACM INFOCOM 2000,
Tel-Aviv, Israel, March 2000.
S. Banejee and S. KhullerA "Clustering scheme for hierarchical control
in multi-hop wireless networks:' in Proceedings of IEEE/ACM INFO-
COM2OO1, Anchorage, April 2001.
W. Ye, J. Heidemann and D. Estrin, "An energy-efficient MAC protocol
for wireless sensor networks:' in Proceedings of IEEE/ACMINFOCOM
2002, New York, June 2002.
V. Kawadia and P. Kumar, "Power control and clustering in ad hoc net-
works," in Proceedings of IEEEIACM INFOCOM 2003, San Francisco,
April 2003.
A. Bogdanov, et. a1 , "Power-aware base station positioning for sensor
networks," in Proceedings of IEEE/ACMINFOCOM 2004, Hong Kong,
China, March 2004.
0. Younis and S. Fahmy, "Distributed clustering in ad-hoc sensor net-
works: a hybrid, energy-efficient approach:' in Proceedings ofIEEE/ACM
INFOCOM2004, Hong Kong, China, March 2004.
D. B. West, "Introduction to graph theory:' Prentice-Hall, 1996.
X. Hong, M. Gerla, H. Wang and L. Clare, "Load balanced, energy-
Aware communications for Mars sensor networks:' In Proceedings of
IEEEAerospace 2002, Bigsky, Mar. 2002.
W. Hu, N. Bulusu and S. Jha, "A Communication paradigm for hybrid
sensorlactuator networks:' To appear in Proceedings of the 15th Annual

