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Abstract

In most applications for detecting unknown and varying number of target problems based on Joint Probabilistic Data

Association, it is difficult to avoid dimensionality curse, which makes the applications very impractical. In this paper, an Algorithm

for Detection of Multi-targets in Wireless Acoustic Sensor Networks (ADMAN) and localization algorithm based on Maximum

Likelihood Monte Carlo (MLMC) method are introduced. The advantage of ADMAN is its ability to detect any number of targets

simultaneously. Once it detects targets, we know the approximate locations of the targets depending on the resolution of the

sensor. The locations of targets are estimated by the MLMC method. Since MLMC method is not sequentially performed it is

robust after even an error detection is executed. The algorithm can be applied very practically.

I. I NTRODUCTION

We use measurement, information to estimate the state of a target of which process is called tracking. Many kinds of

physical quantities related with state of the target can be used for the measurement in localization problem such as estimate

of position, range and/or bearing , time of arrival difference, frequency of narrow band signal emitted by target, frequency

difference due to Doppler shift sensed by two sensors and signal strength which is employed as the measurement of this paper.

Among themReceived Signal Strength(RSS) can be classified in the lowest level and does not need any signal processing to

be measurement. In RSS model [1], the measured power is expressed as follows,

yn,t = 10 log10

(
K∑

k=1

Ψkdα
0

|rn − lk,t|α
)

+ vn,t, n = 1, 2, . . . , N (1)

where l is the location of a source target,n is sensor index,t is time instant,K is the number of targets,Ψk is the received

power from the source at the reference distanced0 (which are assumed known),r is the location of sensor,α is the attenuation

factor (α ≥ 1), v is background zero-mean Gaussian noise andN is the total number of sensors used in the field.

If the number of targets are time variant the problem will be very challenging due to the dimensionality curse of heavy

complexity. Many approaches such as Joint Probabilistic Data Association (JPDA) [2], Multiple Hypothesis Tracking (MHT)

[3], Finite Set Statistics (FISST) [4] and Probability Hypothesis Density (PHD) [5] detect and track targets jointly. The size

of the state space for the joint distribution over target states is quite huge. All approaches are associated with data association

applications based on so called, ‘Bar-Shalom test’ [2] framed by Bayesian filtering.

In this paper, an Algorithm for Detection of Multi-targets in Wireless Acoustic Sensor Networks (ADMAN) with an

localization method is introduced. Once the detection algorithm is accomplished we adoptMaximum Likelihood Monte Carlo

(MLMC) method to estimate the locations of detected targets. We generate particles uniformly in the region that is decided

according to the hypothesis decision testing in ADMAN. MLMC method is more robust than sequential method in the sense

that any error detection does not affect the future. Also MLMC always stays away from the dimensional curse whereas the
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sequential Monte Carlo method does not. The advantage of the ADMAN is that it can cope with any varying pattern of the

number of targets. In the most applications for multi-target tracking problems based on Joint Probabilistic Data Association

(JPDA), it is difficult to avoid dimensionality curse, which makes the applications very impractical. Consequently, changing

pattern of the number of targets in the examples of their solutions are very limited and restricted so that it is more or less

predictable for detecting changing number of targets [6], [7]. ADMAN shows superiority when the number of targets vary

dramatically.

The rest of paper is composed as follows. The ADMAN is introduced for detection of targets in section II. In section III,

Generalized Likelihood Ratio Test(GLRT) is employed for specificcomposite hypothesis testingproblem in ADMAN. MLMC

method is combined with ADMAN to complete the tracking procedure of the varying multiple number of targets in section IV.

In section V, an simulation is presented to show the example of the algorithm. We make conclusions and provide important

necessary extension of the work in section VI.

II. D ETECTION ALGORITHM

We consider multiple target detection problem asComposite Hypothesis Testing[8], where the PDFs under hypotheses are

not completely known. Thecomposite hypothesis testingproblem is solved usingGeneralized Likelihood Ratio Test(GLRT)

in this paper. There are a number of solutions to thecomposite hypothesis testingproblem, e.g., Bayesian approach, Wald test,

Rao test, locally most powerful test, and so on. GLRT is the most pertinent approach among those solutions because we have

to estimate parameters in both hypotheses in the ADMAN whereas all other approaches require one known parameter estimate

in one hypothesis. ADMAN is explained in this section. We begin with the definition of a couple of important terms that form

the bases of the algorithm.

A. Range (r0)

Sensors are deployed uniformly and cover the whole area of interest according to a specific range of the sensors except for

the in-between part of sensor’s range as in figure 1. Therange (r0) of a sensor is defined as the boundary of region such that

the power received by the sensor from any target within the region is greater than a predefined threshold. We can regard the

range of the sensor as the capability to resolve two targets because ADMAN does not work if there are more than one target

exit within the boundary of the range of a sensor. According to the resolution we assume that more than one target can not

exist in a single sensor area (within the circle with the radius ofr0). Generally, using ADMAN, detecting more number of

targets does not make the problem proportionally more difficult, but the resolution decreases if all other conditions remain the

same. The key of ADMAN is attachment of each target to the most pertinent single sensor without redundancy.
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Sensor

In-between area

Range of the sensor

Fig. 1. Uniformly deployed sensors in the field of interest.

When it is assumed that there is always only one target or none in the field of interest, it is easy to attach a target to a

sensor which is the closest to the target. Regardless of the size of the range, the threshold is set to be the received power from

a target at a distancer0 from the sensor. So the sensor which has the received power signal greater than threshold will be

attached to the target at any time instant. An example of attaching in a single target problem is displayed in figure 2. At each

time instant, the target is detected and attached to the closest sensor which received the highest power. However, a complicated

TargetSensor Sensor that detected target

Fig. 2. Attaching a single target. Along with the target track, attached sensor is distinguished by brighter color.

situation will arise when trying to track more than one target at the same time.

Suppose that the maximum number of targets we want to track at the same time is 3, and we may want the range of the

sensor to ber1. If we consider the extreme situation that a sensor receives possible strongest power with no detection, in this

situation all three targets are located at the distance ofr1 from the sensor as (a) in figure 3. Intuitively, we could take this

received power as the threshold, and if a sensor receives power greater than this threshold, it decides that there is a single

target inside the range of the sensor. However, we can find out obvious errors which are shown in figure 3 if we do not modify

the range. With the ranger1 and threshold chosen previously, as shown in figure 3(b) and (c), even if the received power is

less than threshold it makes the decision that a single target exists within the circle of the range. So we need to find another
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(a) (b) (c)

Target

Sensor

r1

r0 r0

r1

(d) (e)

Fig. 3. Choosing the threshold. (a) Threshold power when maximum number of targets are 3. (b) No detection of targets within the range (error). (c) No

detection of targets within the range (error). (d) Detection of targets outside of the new range (error). (e) Detection of targets outside of the new range (error)

solution for these errors. With respect to each of the errors in figure 3, we can find the solution or adjustment as follows,

• In order to avoid errors as in figure 3(b) or (c), we adopt a new range (r0) which is shorter than ther1 and it will be

explained shortly how to find it. Nevertheless the threshold power remains the same, so in the case of figure 3(b) or (c),

the sensor does not make the decision of detection and it becomes true with the ranger0 because targets will be located

outside of the range boundary and received power is also less than the threshold power. These targets will be attached

to the neighboring sensors. We can find the ranger0 as shown in figure 4 according to (1) such that the strength of the

signal from a single target atr0 and the strength of the signal from each of the 3 targets atr1 received at a sensor must

be the same. We may callr1 reference range. According to (1), ifd0 = 1, α = 2 andN = 3, then the following condition

must be satisfied.

1
r1

2
+

1
r1

2
+

1
r1

2
=

1
r0

2
, r0 =

r1√
3

(2)

So now we do not encounter the error type as in figure 3(b) or (c).

TARGET

SENSOR

r1
r0

Fig. 4. Range of a sensor

• Once we have new range ofr0, we encounter other types of error as in figure 3(d) or (e). Figure 3(d) shows that even

though two targets are outside of the range, the sensor makes decision of detection because it receives power greater than
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the threshold, which is an error. The situation in figure 3(e) does not occur frequently in practice. In this case a sensor

falsely makes decision of the detection too because it receives power greater than threshold as in the case of figure 3(d).

If we relate it to the resolution of the sensor, we can avoid errors as in 3(d) and (e). We assume that not more than one

target can exist within the reference range,r1. After these two modifications, we do not encounter errors as in figure 3

any more, but if there are more than one target together within the ranger1 we can not resolve it and make a detection

error. That is why we may call the reference ranger1 resolution of the sensor. We can not resolve more than one target

within the ranger1. The resolution is directly related with threshold power when the maximum number of targets is set

to a constant. The resolution capability of a sensor is decreasing when the reference ranger1 is increasing. The resolution

of a sensor does not directly rely on the range of a sensor,r0. The reference ranger1 is increasing when the maximum

number of targets are increasing under the condition of the constant ranger0, which means the resolution capability of a

sensor worsens as the maximum number of targets increases. The threshold power signal is increasing when the maximum

number of targets increases for a constant resolution of a sensor.

B. Threshold Power

An acoustic sensor sends the signal to the fusion center that there is a target around itself, (it does not have exact information

of the location of a target but certainly inside of the circle with the radius of the range,r0), when it makes a decision of

detection according to the decision rules. Threshold power (∆1) is defined as the received power from a single target which is

located on the boundary of the ranger0 while no noise power is considered. This will construct the first step of the ADMAN.

Once a sensor receives the power greater than the threshold, it exclusively detects a target inside the boundary circle of the

range of itself. More difficult situation forms another step of the algorithm with introduction of another threshold power (∆2).

As shown in figure 5,∆2 is defined as the received power from a single target which is located on the circle of radius
√

2r0

sensor

r0

2 r0

In-between area

Fig. 5. Neighboring four sensor ranges
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distance. When a target is located inin-betweenarea (thein-betweenarea is defined as the area that does not belong to any

circle of the range), this other threshold is necessary to resolve the location of target. No more than one sensor is supposed to

receive power greater than∆1, but more than one sensor may receive power between∆1 and∆2 according to the algorithm.

So if the strength of the received power is between∆1 and∆2, a target is most probably located in in-between area of four

neighboring sensors. In this case a target is attached to the sensor that has the maximum received power among neighboring

sensors. Finally the sensors do not pay attention to any received power that is less than∆2. The advantage of the ADMAN is

that it can cope with any variation in the number of targets. In lots of the literature, the pattern of variation of the number of

targets are limited and restricted in their applied examples so that it is somewhat predictable for detecting the varying number

of targets in time steps [6], [7]. ADMAN shows superiority when the number of targets vary dramatically. The ADMAN

without any decision rule is summarized by the following table. The GLRT approach tocomposite hypothesis testingfor the

ADMAN is explained in the following section.

Summary of ADMAN

Field of interest is full of deployed sensors as in figure 1 and each sensor is identified with number from the left bottom to right top. The measurements of

the sensors are scanned from 1 toN . Given r0, r1, ∆1, ∆2, N and X, wherer0 is the range of the sensor,r1 is the reference range of the sensor,∆1

and∆2 are the thresholds (∆1 > ∆2), N is the total number of sensors in the field of interest andX is the number of sensors in one row in the field of

interest. At any time instantt,

1) For n = 1, 2, . . . , N ,

• If yn,t > ∆1, attach a target to the sensorn which means sensorn believes there is a target within its range ofr0.

• If ∆2 ≤ yn,t ≤ ∆1, check whetheryn,t is from already attached target or not. If so, we attach a target to the sensor that has greatest power

among the neighboring sensors, otherwise we attach a target to the sensorn.

2) After scanning and target attaching is completed, find out all attachment redundantly in both inside range and in-between area. remove attachment in

in-between area.

III. G ENERALIZED L IKELIHOOD RATIO TEST (GLRT)

In this sectiongeneralized likelihood ratio test[8] related to ADMAN is explained as a solution for thecomposite hypothesis

testingproblem in the detection part. In our problem, the parameter is not known under any of the hypotheses. The primary

approaches to hypothesis testing are the classical approach based on the Neyman-Pearson theorem and the Bayesian approach

based on minimization of the Bayes risk.

There are two major approaches tocomposite hypothesis testing. One is theBayesian approachwhich considers the unknown

parameter as random variable with prior density function. The other method estimate the parameter by the maximum likelihood
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method and applies it to the likelihood ratio test, this is the well known,generalized likelihood ratio test. Usually GLRT method

is more practical and easier to apply rather than Bayesian method which requires the knowledge of prior and more assumptions

and multidimensional integrations for the closed form that usually impossible. In this paper we will focus on GLRT. We estimate

parameter first with ML method to detect multi targets to be employed in ADMAN.

A. Hypotheses

In this sub section we describe all hypotheses we need to define. At any time step we have three hypotheses. We call them

H0, H1 andH3. We combineH0 andH1 asH2. So first hypothesis test is composed ofH2 andH3. If H2 is selected then

we go to the next hypothesis test to decide ifH1 or H0. UnderH3 we have a target within the boundary circle of the range

of the sensor, underH1 we have target inin-betweenarea and underH0 we do not have to pay attention because a target is

located out of the sensor’s range so some other sensor will be related and attached to the target at that time step. This two

stage hypothesis testing procedure can be summarized as in figure 6. Somultiple hypotheses testingproblem is modified to

32
γ

10
γH

2

H
3

H
0

H
132

γ

10
γ

(       )(       )
GL tny

,
GL tny

,

Fig. 6. Procedure of decision of detection in hypotheses testing performed with respect to every sensor.

two steps of single hypothesis testing problem. Referring to (1), we can rewrite received power of sensorn at time instantt

as follows,

yn,t = θn,t + vn,t, n = 1, 2, . . . , N (3)

,whereθn,t = 10 log10

(∑K
k=1

Ψkdα
0

|rn−lk,t|α
)

.

All hypotheses are described as follows,

H3 : θn,t = θ3
n,t > ∆1

H2 : θn,t = θ2
n,t ≤ ∆1

H1 : θn,t = θ1
n,t, ∆2 < θ1

n,t < ∆1

H0 : θn,t = θ0
n,t ≤ ∆2

, where∆1 and∆2 are threshold powers as defined previously. The decision regions and probabilities are shown in figure 7

and 8. The decisions are performed as in the following two steps. IfH2 is decided in the first test, we will go to the second
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Fig. 8. Second hypothesis testing.

hypothesis test for complete decision as in the summarized tables.

IV. ESTIMATION OF STATES FORDETECTEDTARGETS

This section is devoted to localization of targets which are already detected by ADMAN. Targets are dynamically moving

according to state space equation as follows [9],

xt = Gxxt−1 + Guut (14)

wherext = [ẍ1,t ẍ2,t ẋ1,t ẋ2,t x1,t x2,t]> is a state vector which indicates the acceleration , velocity, and position of the

target in a two-dimensional Cartesian coordinate system,Gx andGu are known matrices defined by

Gx =




1 0 0 0 0 0

0 1 0 0 0 0

Ts 0 1 0 0 0

0 Ts 0 1 0 0

T 2
s

2 0 Ts 0 1 0

0 T 2
s

2 0 Ts 0 1




and Guut = ut =
[

ω1 ω2 0 0 0 0

]>
,



10

First Hypothesis Testing

To perform GLRT we have to find the estimates of parameters by the maximum likelihood estimate (MLE) method as,

θ̂3 = yn,t, but if yn,t ≤ ∆1, take θ̂3 = ∆1. (4)

θ̂2 = yn,t, but if yn,t > ∆1, take θ̂2 = ∆1. (5)

next, GLRT decidesH3 if

LG(yn,t) =
p(yn,t; θ̂3,H3)

p(yn,t; θ̂2,H2)
> γ32 (6)

where with the variance of noise,σ ,

p(yn,t; θ̂3,H3) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂3)2

]

p(yn,t; θ̂2,H3) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂2)2

]

Then (6) also can be easily shown as,

ln LG(yn,t) =
1

2σ2
(2θ̂3yn,t − 2θ̂2yn,t − θ̂2

3 + θ̂2
2) > ln γ32 (7)

Given certain probability of false alarm,P 32
FA, it is defined and related with threshold,γ32 as follows,

P 32
FA = P (H3|H2) = Pr{yn,t > γ32;H2}

=

∫ ∞

γ32

1√
2πσ2

exp

[
1

2σ2
(t− θ̂2)dt

]

= Q

(
γ32 − θ̂2

σ

)
(8)

Ts is sampling period (second),σi is uniformly distributed in[−Wmax Wmax] (m/s2). We are interested in the location of

targets, so only location part of state will form the measurement as in (1). Our goal is to estimatex1,t,k and x2,t,k given

estimatedn̂1:K,t, identities of sensors attached byk targets, we believe to have found in previous ADMAN. We address

estimating algorithm asmaximum likelihood Monte Carlomethod. The first step is generating uniform particles within the

range of attached sensors givenn̂1:K,t. Then we select the particle according to maximum likelihood function.maximum

likelihood Monte Carlomethod is summarized in the last table.

V. SIMULATION

In this paper one example of jointly detection and estimation technique is introduced. All independent targets are dynamically

moving as presented in previous section. The maximum number of targets is 3 and initially two targets are moving in the filed

of interest. The other target spontaneously appears in 4 sampling time instants delay. The first target lasts 100 time sequence

and disappear, second target lasts 96 time sequence and disappear and the last one lasts 4 time sequence more since first target

disappeared, 8 time sequence more after the second target disappeared.
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Second Hypothesis Testing

After finding MLEs of θ1 andθ0 as following,

θ̂1 = yn,t, but if yn,t ≤ ∆2, take θ̂1 = ∆2 (9)

θ̂0 = yn,t, but if yn,t > ∆2, take θ̂0 = ∆2 (10)

the GLRT decidesH1 if

LG(yn,t) =
p(yn,t; θ̂1,H1)

p(yn,t; θ̂0,H0)
> γ10 (11)

where with the variance of noise,σ ,

p(yn,t; θ̂1,H1) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂1)2

]

p(yn,t; θ̂0,H0) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂0)2

]

Then (11) also can be easily shown as,

ln LG(yn,t) =
1

2σ2
(2θ̂1yn,t − 2θ̂0yn,t − θ̂2

1 + θ̂2
0) > ln γ10 (12)

Given certain probability of false alarm,P 10
FA, it is defined and related with threshold,γ10 as follows,

P 10
FA = P (H1|H0) = Pr{yn,t > γ10;H0}

=

∫ ∞

γ10

1√
2πσ2

exp

[
1

2σ2
(t− θ̂0)dt

]

= Q

(
γ10 − θ̂0

σ

)
(13)

The sensors are uniformly deployed on two dimensional rectangular area of interest. The reference range,r1 = 30, [m]

therefore the range,r0 = r1√
3

= 17.3205 [m]. The threshold powers,∆1 = 10000/r0
2 = 33.33 [J/s]=15.2288[dB] and

∆2 = 10000/(
√

2r0)2 = 16.6667 [J/s]=12.2185[dB]. Wmax is equal to 4[dB], Ψ1 = Ψ2 = Ψ3 = 4 [dB], d0 = 1 [m],

α = 2, vn,t is Gaussian noise with zero mean and variance of 0.03[J/s]. Starting points of each targets are (200,200), (0,100)

and (200,50) and the number of particles is 3000. After deploying sensors, we give identifications to all sensors with numbers

from left bottom to right top. According to ADMAN any target detected will be attached specific sensor exclusively identified

by its number. The simulation shows the result of detection of targets with time in figure 9 and estimation of tracked locations

of targets in figure 10.

VI. CONCLUSIONS ANDFUTURE WORK

The MLMC (Maximum Likelihood Monte Carlo) method is introduced for the localization of targets that are detected by

ADMAN. When applying ADMAN, GLRT (Generalized Likelihood Ratio Test) is adopted for the solution of the composite

hypothesis testing for detecting unknown and varying number of targets with highly non-linear motion in the acoustic sensor

networks. Experiments showed that the ADMAN with MLMC to be robust and accurate through the long time sequence of
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Summary of MLMC method

After detection step is accomplished we have estimated sensors attached toK targets aŝn1:K,t. At any time instantt,

1) Generate particles uniformly within the range of each attached sensor.

• li1:K,t ∼ U(·|n̂1:K,t), i = 1, 2, . . . , P , P is the number of particles and one particle has the information of the number targets detected at time

instantt.

2) Compute thelikelihood functionof each particle and choose the particle that has themaximum likelihoodfor the estimates of locations of targets.

Likelihood function is given as

Fy1:K
n̂1:K,t

(Y 1:K
n̂1:K,t

|n̂1:K,t, l
i
1:K,t) (15)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3
inside range
in−between area
estimated total number
true total number

Fig. 9. Number of Targets in Time

trajectories where unknown number of targets keep on varying. Even though we used Markov Chain dynamic state model for

hidden states, the solution is not restricted to the models. Proposed approaches can alleviate the complexity of solving the

problems of unknown and varying multi-target in sensor networks. Even if a number of targets are to be tracked, increased

complexity of the problem is not remarkable adopting proposed approaches in this paper. If we want to resolve multiple targets

when they are very close, we can increase the resolution of the sensor at the expense of the increased number of sensors

deployed in the field of interest. When we have more sensors in the field of interest, the range can be much smaller that

mainly decides the resolution of the sensors. Due to the non-sequential or memoryless property of MLMC, it is significantly

more robust thanparticle filter through the longer time duration and highly non-linear dynamic trajectory of the target. The

influences of changing parameters, for example the ranger0 and threshold power,∆1 and∆2 will be investigated. If we divide

region of interest into appropriate sectors we can save sensor resources in the future.
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Fig. 10. Localization of detected targets. Dots show the estimated locations of targets.
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