STONY BROOK UNIVERSITY

CEAS Technical Report 827

Initialization Technique in Variable and Multiple Target Tracking Systems

Jaechan Lim

January 4, 2006



Abstract

We present initialization of targets in multiple and variable number of target-tracking systems (where targets maneuver
dynamically with random accelerations) in this paper where especially, received signal strength (RSS) model sensors are applied
in wireless sensor networks. RSS measurement model does not allow to form one to one mapping between states and observations
(or measurement). Based t@ast squares metho@long with modified version), any newly appeared single target is detected and
initialized by the particle filtering. We introduce “residue cancelation lateration (RCL)” method for initializing a newly appeared
target besides existing target. Initialization of the targets in variable number of target tracking system is very important because
under RSS measurement model, it is not very efficient to detect or track multiple and variable number of targets because it does
not give the one to one mapping between measurement and true states. This fast and efficient initialization technique can be

contributed to the multiple target tracking system where the number of targets varies.
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I. INTRODUCTION

Not only in signal processing area, but also in many other areas, the target tracking problems always have obtained researchers
attention persistently. The development of target tracking system solutions are also constantly achieved by researchers; from
the classical joint probabilistic data association filter (JPDAF) [1], [2] or multiple hypothesis tracker (MHT) [3], [4] to recent
probability hypothesis density (PHD) filter based on finite set statistics (FISST) [5], [6]. Regardless of algorithms , filters (e.g.,
Kalman filter [7], [8], particle filter [9], Monte Carlo Markov Chain [10], etc.), or processors (which produce the measurement
of observations) that are adopted for the solutions for target tracking systems (even if the measurement is very efficient to
be estimated for the states), once it is based on joint probabilistic data association (JPDA) [11], it is very difficult to avoid
complex joint probability density function of the states. That is because the size of target states grows up exponentially even if
the environmental scenario is not hostile (e.g., few number of targets, known number of targets tracking, the number of targets
does not vary, etc). In some problems, depending on the measurement (observation) models, which we employ for the purpose
of estimating states, JPDA is not relevant nor possible to be applied to the problem because the dimensional complexity of
state will even huger, and it is impossible to estimate the states of targets under some measurement models. In that case
measurement models do not supply one to one mapping between measurement and state that will cause much wider range ¢
probability density function of the target states, and uncertainty of the states will highly increase. For instance, in the field
of sensor network where many sensors are used to take the observations from the data and process them to the measureme
in order to estimate the states of, e.g., targets, there are many kinds of sensors that can be used depending on the problem:
Usually expensive and complicated sensors will produce more efficient information after processing the raw data collected
from the targets. Depending on the sensors, they will produce different measurement; position itself, range or/and bearing, time
of arrival difference, frequency of narrow band signal emitted by targets, frequency difference due to Doppler shift sensed by
two sensors, and signal strength emitted from the targets which we employ as the measurement in this paper. Among them,
tracking targets by either bearing only tracking or received signal strength (RSS) is very challenging problem [12], [13], [14],
[15], [16], [17]; especially if the unknown multiple number of targets varies, and targets maneuver with random accelerations.
There are two ways of interpreting the term “tracking” in the literature. One is separately used from the “detection” of targets

which means, “tracking” is performed after any detections of targets are executed. The other meaning of “tracking” does



not specifically include detections of targets in the procedure of the whole tracking systems because estimating the states of
targets with the time itself includes detection and “tracking” (in the first meaning of ‘tracking’) all together. People use it
confusingly, but sometimes, we need to separate “detection” part from the whole “tracking” systems. In JPDA based target
tracking systems, “detection” part does not have to be separated from the whole tracking system [18], [19], [20], [21], [22],
[23] because detections of targets are part of estimating joint probability density function of the states in tracking systems. On
the other hand, in RSS sensor model, we may not have to separate detection step from the whole tracking system, however
at least we have to initialize the locations of targets when we have belief of newly appeared targets, and it is very challenging
problem, especially when unknown and multiple number of targets varies with the time [24]. In most literature where RSS
sensor model is applied, the number of targets are known and fixed number [17]. In most JPDA based target tracking system
(where the number of targets varies), “birth/death” move model [25] is adopted for newly appearing or disappearing targets
after algorithm detects those moves while we generate all possible particles (birth, death and update) and compute the weight,
find the best particle in RSS model sensor networked tracking system where “least squares method (residue cancelation)” anc
“particle filter” combined tracking system is used. Since we do not have any designated step for any moves (birth, death, update,
merge, split, etc.), particle filter will smoothly take any move (Particle filter will detect a new target if the heaviest weight
particle, by the MAP rule, has a new target.) and proceed with the stream of proper particles (Particle filter considers particle
and the weight as the probability measure). Nonetheless, we need a initializing algorithm (see Section IlI-B and V) of newly
appearing targets unless we assume that it is known prior [26]. According to RSS sensor model [27], we can only estimate the
distance between the source target and the sensor that receives the power of the signal by a single measurement. However, if w
use 3 sensors or more, theoretically we are able to locate the source targetttigritpglation technique which is sometimes

used in cellular communications to pinpoint the geographic position of a user [@@&}ationuses this triangulation technique

and applyleast squares methd@9] to pinpoint the source target using the noise added received signal power [30], [31]. We
take advantage of lateration technique to initialize newly appeared target in target tracking system where we apply particle
filtering for the whole tracking system; particle filtering is now dominantly used in estimating parameters especially in state
space and non-linear model, and most literature tries to show the superiority of particle filtering over traditional estimating
solutions. We evolve this technique and introduce the “residue cancelation lateration (RCL)” method to initialize a newly
appeared target besides existing targets (see Section V). Sensors are uniformly deployed in our wireless sensor network model
We only use 3 sensors that receive the strongest power among all sensors when we apply lateration for initialization. Most
of the time, just a few sensors receive useful data information in RSS sensor model because as the strength of the signal

decreases, the distance between the signal source and the sensor increases relatively quickly according to the RSS model [32



The initialization method with particle filtering can be applied some other important area such as, localization of sensors in
ad-hoc sensor networks, localization of advanced moving, smart sensors, and so on. We also introduce initialization of more
than one target at the same time using iterative cancelation method (see Section VI). We present the Cramer-Rao bound for

the estimator of a single target with different number of sensors used for the measurement (see Section VII).

II. MODEL OF THE TRACKING SYSTEM
A. State space model and measurement

We have a 2 dimensional cartesian coordinate, rectangular field of interest with uniformly distributed sensors that follow
RSS sensor model. Received signal strength from the source target at the sensor is described in non-linear model as follows
according to [32]:

K

Yn.e = 101og;, (; m> +Upy, n=1,2,...,N (1)
wherel is the location of a source target,is the sensor index, is the time instantK is the number of targetsl, is the
received power from the source at the reference distagce is the sensor locationy is the attenuation factora( > 1),
v is background zero-mean Gaussian noise, Ahd the total number of sensors used in the field. Therefore, the received
signal strength depends on the distance between the source targets and the sensor. The only information we can be provide
from this type of sensor is the distance between the source target and the data receiving sensor, and we do not know where
or which direction from the source is. Sensors that are located closely to the source target receive strong signals while the
strength decreases very quickly as the distance increases according to (1). Because of that, we do not use information from
the sensors that are located relatively far from the target and does not receive very good source information because it takes
big perturbation even by the small noise. We use 3 best sensors, which means 3 strongest received power when we use regule
lateration and just 2 or 3 best measurement when we use modified lateration for initialization of newly appeared target. In
tracking system, we have to be able to estimate the location of the targets in addition to the number of targets at every time
instant using the sensors that are not very intelligent.

We can model the moving target systems by linear state space model as follows:
x¢ = fi(xi—1,w) = Goxe—1 + Gy (2

wherex, = [#1; Zo¢ 16 T2t T1t xz,t]T is a state vector which indicates the acceleration , velocity, and position of the

target respectively in a two-dimensional Cartesian coordinate sysiemand G, are known matrices defined by
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T, is sampling time (s)¢; is uniformly distributed in[—W W] (m/s?). Targets maneuver with random acceleration based on

classical dynamics (discrete time sampled version). In this paper, acceleration is modeled by Markov Chain and part of the
hidden state rather than random noise as in the most literature [1], [20]. Only the part of the state forms the measurement
in the model because the state comprises location, velocity, and acceleration while only location of target contributes to the
observation. Nonetheless, all states are related by classical mechanics, once we can estimate anyone of them, we can relat

them and find the rest of states.

B. Varying pattern of the number of targets

As in the traditional or/and modern target tracking systems (especially multiple and varying number of targets), it is very
difficult to avoid complexity of states, and problem itself which results in, so called, “dimensionality curse”. Especially, if we
consider about all situations, e.g., clutters, false alarms, detection probabilities, and etc., it is not very easy to track all states
of targets when it is multiple and varying. At this point, we can make the scenario a little bit comfortable with very realistic
assumption. We can assume that the number of targets varies between two consecutive time steps according to 3 patterns &
in [26] as follows:

1) The number of targets remains the same as previous time step with the same identities.

2) The number of targets increases by a newly appeared target.

3) The number of targets decreases by one that is in the tracked targets in the previous time step.

This assumption is realistic because if the sampling time for the discretization is fast enough, the assumption will be satisfied.
Nonetheless we will introduce the technique how to initialize two newly appeared targets at the same time (see Section VI).
This assumption may look like “birth/deatth” model which is adopted in many literature in multiple target tracking systems.

However, according to our model, any particle (see Section Ill) that has the information of the state will have the same

probability of move, e.g., “birth”, “death”, or “propagating” while birth/death rate is random variable in most literature.



Il1. PARTICLE FILTERING AS THE SOLUTION OF TRACKING SYSTEM

We applylateration (see Section V) to the part of tracking system that we perform using particle filtering [33], [34], [9].
When we apply patrticle filtering, lateration is responsible for the detection part of tracking system. Any particles that are
generated byparticle filtering produce offspring of new target [26] even if it can be removed after resampling [9] due to the

low weight. Therefore “lateration” is applied to every single particle at every time step of the algorithm.

A. Sampling importance resampling (SIR) filter

There are many versions of particle filtering [34] and our choice for tracking system is “sampling importance resampling
(SIR)". SIR is relatively easier to apply and generally applicable to any models. If we denote state function, observation
function, state, observation, and the weightfpyh;, x;, y;, andw! (wheret is the time index and is the particle index)
respectively, the importance densityx;|x:_,y1..) will turn out to be the prior density)(x;|x:_,), and because resampling

is executed at every time step, the weight can be calculated as

wi o< p(yefx;). (3)

B. SIR particle filter combined with lateration

In multiple and varying number of target-tracking system, the state space equation must include the state of the number of
targets; we denote it b¥, at time stept. K; has 3 patterns to propagate as mentioned previously, K,g= K; 1 + 1,
K; =K, 1, andK; = K;_; — 1 [26]. BecauseK, is not a random variable in our model, every single particle will produce
all possible descendants. The number of descendants deperls_onlIf K; ; = 0, then offsprings will be 2 kinds; 0
and 1. IfK;_; = n > 0, then the descendants will have the number of target, 1, n, andn + 1. However, when a
particle produces a descendant which has the number -of1, it will have C"~! kinds of offsprings because all target
has equal possibility of disappearance. WH€n = 0, then the state space will be empty except for the number of targets.
The posterior function of interest will bg(K;.;,x1..|y1.t), and the distribution is approximated by the “random measure”,
p({x1 ML) = p({K7,, x My = {wi }M_, where M is the total number of the particles. We can compute the weight
when we use SIR particle filter, i.ew]” o p(y1.n|x7", K}"). If we use only 3 best sensors and assuming that sensors are
not correlated, them?™ oc TT>_, p(yn.|x7, KI™).

We need to apply lateration when we generate a particle that has newly appearing target; that is the cKié’th;’lﬁl
(wherem’ # m because we have to generate more thaparticles before resampling step, nonetheless, partities generated

from particlem). It is shown how to apply and combine with particle filtering in the Table I. In Table I, we estimate the



distance from the each sensor to the new targget {by subtracting and canceling the predicted measurement part from the
whole measurement. We may call this techniqresitue cancelation lateratioRCL)”. The reason why only the information

of the best sensor and measurement is sent to lateration method is because we use the neighboring sensors of the best sen:s
to initialize a new target. Even though we use 3 best measurement for the estimation of the states, initialization algorithm has
to use the sensors that are neighboring to each other. Sometimes 3 best sensors may not be neighbors to each other whic

may cause failure of the least squares method.

TABLE |

INITIALIZING A NEW TARGET BY LATERATION (RESIDUE CANCELATION LATERATION) ADOPTED IN PARTICLE FILTERING

At time t, from the all measurement,,, ., find 3 best measuremeny((, ., s,),;) and corresponding sensors’ identities (s2, s3). SupposeKi™ ;| =1,
and it can be easily generalized for any valuekof® ;.
e =0,
e For m=1:M (M is the number of particles.)
« KMHIH — o (particle M + 1 + 7 is generated from particlex). The elements of the other states become empty.
* K" =1 (particlem is generated from particle:). Generate a new partictg;” as follows:
x7 = {KP", x"} = {1,x]"}, xJ* ~ p(x¢—1]x}* ;) according to SIR particle filter.

«* KM¥2¥1 — 9 (particle M + 1 + 7 is generated from particle:). Suppose

KM+2+n KM
101 tz _rdg £ 101 il Yrdg )y Fnewds
Ysp,t = og Usp,t = og
° e e TS T : AN = Jsn =B | T sn = Tnewe|
Wpewds Unendd e

A new &g newtg
= 10lo '+ ———| the syt = | 7N 4
810 { Qsp t™ } Nt (10(ys,7,,t/10) F> @

K{',  Wdg

whereT'=}", ] which is predicted part of measurement by the continuing targets: = |sn — lnew,:| Which is the estimated

|5"71£‘t‘0‘
distance between the new target and each sendafew is the reference power of the new target, a@_q is the predicted locations of targets

propagating from the previous time step, which is propagated from previous particle.
* Fromgs, . ¢+, find the minimum ofgs, ;. +.
+ Send the information ofs,nin, ¢s,,,;,, .t 10 lateration (least squares method) algorithemd guess the initial location of newly appeared target using
the neighboring sensors of the best sensoy.,). Find the best two neighboring sensors that have shorter distances than the rest of the neighbors
(make sure that these 3 sensors form “right triangle”, but not straight line).
*n=mn+2
end

e Select the best particle using the measuremgnt, .., ,) by the maximum a posteriori (MAP) rule.




V. LATERATION (LEAST SQUARES METHOD
We compare the regular least squares method (also called lateration) and modified lateration regarding initializing a single
newly appeared target in this section. When we apply regular lateration under the hostile situation, under very low SNR, often,
imaginary solution is produced or estimate is far away from the real state while modified version is more robust under the

hostile environment. However, regular version shows better performance under relatively non-hostile situation.

A. Regular Lateration

Suppose there is a target in a 2-dimensional Euclidean space and we know the distances from the target to the certain
locations of sensors. Theoretically, we need exactly 3 distance information from the target to the sensors, and 3 circles that

are found from the 3 distances are supposed to cross one another as in Fig 1. The distancesofriia pointsA(ay, as),

Ta

Fig. 1. Three circles cross at one point.

B(b1,bs), andC(c1, co) arery, rg, andre respectively. One way to find the poifit by the 3 distances is that after finding

the crossing straight line of two circles and plug in that line equation to the other circle equation. On the other hand, if we do
not know the exact true radii of three circles but only noise added radii as in the Fig. 2, alternate solution can be the lateration
by least squarespproach where all circles does not have to cross one another, and that is performed as follows [30], [31]:

In X andY, cartesian coordinate, three circles are expressed as,

(r—a1)’> 4+ (y—az)? —ra®> = 22 +9y* +2a2 4 200y +a1? +ax® — 742 =0

(x—b1)2 + (y—bg)2 —rg? = 22492+ 21+ 200y + b2 + b —rp2 =0

(56—01)2 + (y—02)2 —r02 = :E2+y2 +2clx+202y—|—012—|—022 —rC2 =0
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Then, according to the least squares method, we have two linear equation as,

a12 — 012 — 2(&1 — Cl)l’ —+ 1122 — 022 — 2((12 — Cg)y = A — Tc2

b12 — 612 — 2(()1 — cl)x —+ b22 — 622 — 2(b2 — Cg)y = 7‘32 — ’I"CQ

Least squares [29] solves these linear equations as follows:

Hx =d, then x=(H"H) 'H'd. (5)
where
2(a; —c1) 2(az —ca) a2 =12+ ax2 — 2 +re? —ry2
H = ,d= ,andx = [z y|.
2(b1 — Cl) 2(b2 — 62) b12 — 612 + b22 — 622 + ’I”02 — ’I”B2

When the distances (radii of the circles) are estimated from the measurement data, least squares find the point which gives
the least sum of differences between the function of data and function of estimated point.AMbBemsingular matrix, there

is not a solution or the solution will be imaginary. We may use more data measurement to solve more dimensional linear
equations. However, in our RSS measurement model, the received power at the sensors that are very far from the target are
not that good quality of measurement. Therefore we use only 3 best sensors, which means we use 3 strongest measuremer

received to estimate the location of initialized target. Table 1l summarize the steps of initializing a new target.

B. Modified Lateration

Regular lateration shows better result in the simulations which we will show later in this paper only under the relatively
non-hostile situations. As the noise power increases, while “mean error” and “variances” of estimates increase too, modified
lateration method shows less error and variance increment than the regular lateration in the simulations.

Modified lateration find two crossing points of the first best and second best circles; the smaller circle means the better
measurement it is. Third best circle find better point out of two points that are found by 2 best circles. As shown in Fig. 2,
there are 3 best estimated circles, B, and C. After comparingr¢ with rop andrgog, take the the estimated point which
has closer distance from th& to r¢; in this caseF is chosen, i.e., tak& if |rcg — rc| < |rcr — rel, take F' otherwise.
However, there is another way we can apply to choose the estimated point other than this algorithm. If we use particle filtering,
we can take two points together with different weight after generating particles. But, this way can be more expensive because

if we apply particle filtering to the first modified algorithm, we will still track back to the point closer eventually.
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TABLE Il

INITIALIZING A TARGET FROM THE EMPTY FIELD BY LATERATION ADOPTED IN PARTICLE FILTERING

At time t, from the all measurement, find 3 best measuremept, (. s,),), and corresponding sensors’ identities (s2, s3).

e For m=1:M (M is the number of particles.)

* Using the maximum ofs,,, ,....t, computegs,,, ...t as follows:

1
\Ifkdg
Ysmasit = 1010g1g [ D 0 | + Vspupt
° 10 b1 |S'maz - 1k,t|a ’

U ow dS N o 1/
£ 10log <&> , then gs,,q, .t = (%) (6)

Qsmmaz t™ Ysmaw.t/10)
wheregs,, ...t = |Smaz — lnew,¢| Which is the estimated distance between the new target and the best &ense) , Wnew is the reference
power of the new target.
* With the information ofs;q2 andgs,,,..t, send it to lateration (least squares method) algorithm and guess the initial location of newly appeared
target using two more neighboring sensors of the best sénsqyr, ). Make sure that these 3 sensors form “right triangle”, but not straight line.
end

e Select the particle according to the maximum a posteriori (MAP) rule using 3 best measurgment, s.).:-

There has to be 2 crossing points to apply modified algorithm, but if first 2 best circles do not cross to each other, we take
the middle point of two circles’ gap as shown in Fig. 3. This can happen often in hostile situation. If SNR is low, then the
third best estimated circle does not have very good information about the target’s initial point and that is why regular lateration

is not as good as modified lateration in the hostile situation.

C. Performance Comparison

In this section, we show the performance comparison between regular lateration and modified lateration regarding initializing
a single target in wireless sensor networks using uniformly deployed sensors with RSS measurement model. The initialization
problem is essential requirement to proceed any target tracking solutions, e.g., particle filtering for multiple and variable number
of target tracking problems.

Simulation is executed with various different noise power or variances, from 0.001 (W) to 10 (W). 25 sensors are uniformly
distributed in the200 x 200 (m?), 2 dimensional cartesian coordinate systen= 1 (m), ¥ = 10,000 (W), and true target
initial point is (50, 120). SNR is computed only for the signals received at the sensors we used for estimation, usually 3 or

2 sensors in this paper. As the noise power increases, two methods’ SNR gap increases too because if there is strong noise
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Fig. 2. Modified lateration using 3 best circles.
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Fig. 3. Modified lateration when first 2 best circles do not cross.

modified lateration tends to use only two sensors while regular one always use 3 sensors, and 3rd sensor usually receives
very weaker signal than the first or the second sensor. In summary, even though regular lateration started to fail to initialize
a newly appeared target when the noise variance is equal to 1, it shows less “mean distance error” until the noise variance
is larger than 1 as shown in Fig. 6(a), and also regular lateration shows less “variance of estimates” with 1000 runs till the
noise variance is 1 as shown in Fig. 7(b). Note that from a certain point, modified lateration shows the pattern of straight line
formed by initialized points (see Fig. 5(a) and (b)). That is because when only two sensors are used and many initial points are
initialized just at the center of the gap of the two circles of which radii are the estimates of the distances from the target to the
sensors. Even though modified lateration shows poorer performance than the regular lateration under a moderate environmen
in initializing a single target, it shows the best performance among 3 methods (one is regular, another one is modified, and the
other is mixed lateration that is going to be explained in the Section VI-A.2) when initializing two targets simultaneously that

are not located very closely. Fig. 4 shows the typical pattern of initialized points when the noise power is not so strong that
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the straight line pattern does not start to form yet in modified lateration, and Fig. 6 and Fig. 7 show the summary of the result
regarding mean error distance between true value and initialized points, the variances of the initialized points, number of fails
out of 1000 runs, and SNR respectively. Especially, in Fig 7, we compared Cramer-Rao bound (CRB) with the variance of
the initialized points by regular lateration. We compared CRB with only regular lateration because, when we apply modified
lateration, the number of sensors used is 2 or 3 that have different CRB respectively. When the target is located on the line
between two sensors, it has very high pick CRB as shown in Fig. 27(a). Furthermore, it is compared with the noise only up to
0.1 because, if the noise is larger than that, even though the number of sensors used does not change, but identities of senso
changes. Depending on the geometrical locations of sensors, the CRB is different (see Fig. 27 (b)).

Modified lateration, noise power is 0.001, SNR=47.7 dB 1208 Regular lateration, noise power is 0.001, SNR=47.7dB
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Fig. 4. Comparison of regular and modified lateration when initializing a single target. The noise power is 0.001. True target location is (50, 120), 1000

runs.
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Fig. 5. Initialized points by lateration. True location is (50, 120), 1000 runs. Note the pattern of straight line formed by many initialized points because only

two sensors are used for many initial points in (a) and (b).
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Fig. 7. Variances of the two methods and comparison of Cramer-Rao bound and the variance of the initialized points by regular lateration with 1000 runs.

V. INITIALIZATION OF A NEW TARGET BESIDES EXISTING TARGETS

In this section, we present a new target initialization besides existing targets using the regular lateration. The particle filter
detects any newly appeared target, and estimate the states of targets according to the weights of particles. A single particle
has the information of the number of targets, identifications of targets, the locations (velocities and accelerations too) of all
identified targets. Any single particle propagates producing multiple particles following the assumption in Section 1I-B. Suppose
we haveM particles that have the same identification of one target but different details of the states (locations, velocities, and
accelerations). Each particle will produce 3 different kinds of particles; a particle which has no target (disappeared target),
a particle which has same target as before and updated, and a particle which has additional new target and updated target

If there is a newly appeared target, the particle which has additional new target will have the heaviest weight, and will be
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selected when we use MAP estimation rule. Initializing a new target besides the existing targets using lateration by particle
filtering is summarized in Table 1. According to Table |, particle filter will select the particle which has the heaviest weight
as the estimate of the state at timheand does thelown-resamplingrom 3M to M and keeps the prosperous particles. A

simulation is following.

A. Simulation

The state space and measurement model follows as in Section II-A. Initially, there is a single target at the coordinate of
(0,150), and another new target appears right next time step at the coording@0o6) . Fig. 8 shows the simulation result
of initializing a new target following the steps in Table I. Each sub-figure shows the different result under the different noise
variance. Generally the result shows similar pattern except untill the noise variance is 1 (W), but when the noise power is lager
than 1 (W), it starts to have initial points around the existing target. Nevertheless continuing updated target never estimated
around the new target because we assume that we know the state space equation and continuing target propagate according

the equation, but we have no information of the location nor velocity about newly appeared target. Fig. 9 shows the summary
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Fig. 8. Initializing a new target besides a continuing target by regular lateration, 1000 runs.

of the simulation result. The mean error distance of the new target increases more than the mean error distance of the updated
target increases as the noise increase. Especially the variance gap far more larger as the noise increases. Overall, the lateratio

works well when initializing a new target with blind information about it.
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Fig. 9. The summary of the result when initializing a new target besides existing target by regular lateration, 1000 runs.

VI. INITIALIZATION OF TWO NEW TARGET

In this section, we introduce the technique how to initialize two targets at the same time. This is not the case under the
assumption in Section II-B. So, suppose we have to initialize two newly appeared targets at the same time step. We compare the
performances of three different methods even though they are similar. Regular, modified, and mixed lateration are applied for
initializing two newly appeared target at the same time. We have explained about first two methods in the previous sections,
but not about the thrid onemixed lateration Mixed lateration is the combination of regular and modified lateration. The
purpose of the mixed lateration is to take the advantages of each method. When we apply modified one, if two first best circles
do not cross each other, then we take the middle point of the gap of the two circles. However, that can cause very ristricted
initialization of the new targets, especially when limited number of sensors or hostile noise environment. Therefore, we apply
regular lateration when we use only two best circles in applying modified lateration. Except for that, the rest is the same as
modified lateration.

In the previous sections, we used 3 best measurement or sensors for the estimation of the states, but we have to use on
best sensor and measurement with its neighboring two more sensors for the least squares method. The “3 best measurement
could be the same as “ one best measurement and two neighboring sensed measurement” or not. If there is an single target
usually 3 best sensors means also 3 neighboring sensors which may be used for the lateration (see Fig. 10). However, if there
are multiple-targets to be tracked, most of the time the best 3 sensors does not mean that they are neighboring to each othel
as explained in detail in Fig. 11. Nonetheless, when we estimate the states of the targets, we still have to use the best 3
measurement of the sensors after initializing the new targets. According to the RSS sensor model (see (1)), the strength of the
received signal drops quickly with respect to increasing distance between the sensor and the target. If we take the advantage
of this property, we can initialize the first target of the two simultaneous target initializations. The best sensor is supposed to
be very close to the one of two newly appeared targets; the further the second target is from the first target , the closer the

first target is to the best sensor. We initialize a target as if there is only one newly appeared target at the first step, and then
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using residue cancelationwe initialize another target besides previously initialized target. These two steps can be repeated
turn by turn to reduce the error, and all this procedure takes place at one time step. These steps can be summarized in the
Table Ill. We present the simulation result comparing the performances of the three methods regarding different noise, and the
number of iterations. Iterative method always works well with modified lateration up to certain number of iteration. Especially,
from the simulation result, modified lateration performs better than the other two methods when two targets are not located
very closely to each other (see Section VI-A.2) while modified lateration works poorer than the other two methods when two
targets are located very close to each other (see Section VI-A.1). Iterative method is very effective especially for the firstly

initialized target. Just one iteration makes the error of the first initialized target fall down dramatically(see Fig. 23).

O O O O

O O ‘3/“1 best 21 pest
o o o o o
O O ¢ @ O o o o
« Neighborhood of
the best sensor
o o
O O O O ©o o o o o o o o
Sensors used for
@ Target O Sensors 0 3 best sensors « Target @ Sensors ° the 1% initialization
Fig. 10. 3 best neighboring sensors for initialization by Fig. 11. |Initialization of two targets by lateration.
lateration.

A. Simulation

1) Two Close Targetsin this section, we show the simulation result of initializing two close targets simultaneously under

the diverse conditions. We compare the performances of three kinds of laterations: regular, modified, and mixed lateration.
We can make brief conclusion in advance here that regular and modified lateration performs almost the same,but modified
one performs poorer when two targets are not very close. Fig. 12, 15, and 16 show the result of initializing two close targets
regarding different noise and the number of iterations. As we can observe from the result, iterative method gives better result
for modified lateration, especially for the firstly initialized target. Iteration makes almost no difference to regular and mixed
lateration, and even worsen the performances as the number of iteration increases (see Fig. 17 and 18 ). If the number of
iteration increases greater than 1, initial points start to diverge and finally overlap with the other initialized points as in Fig.
12, 15, and 16. This diverging pattern occurs for all methods as the number of iterations increases. It occurs, because as the

iteration number increases, once initialized point becomes distant from the true point, the other initialized point reciprocally
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TABLE Il

INITIALIZATION OF TWO NEWLY APPEARED TARGETS AT THE SAME TIME

1) Attimet, fromys,. ¢, find the 3 largest ofj(

Sty sSmy Sm )t

2) Usingys,,, ,t, the best measurement, and corresponding, computegs,,, , ¢, the estimated distance between the best sensor and the first target to

be initialized, as follows:

2
\I/kdg A \I’newldg
Ys,, + = 10log ——— | +vs,,,,+ = 10log T 1 o then ™
s 0| X o g ) Y Usmy = Tnewn o
A \I’newldg e
Qsmyt = ‘Sml - lnewl,t| =\ 73 ®
10<y5'm.1,f/10>

where W1 is the reference power of the first initialized target.
+ Send the information o{sml,qsml,t}to lateration (least squares method) algorithend guess the initial locatior(w1,:) of newly appeared
target using the neighboring sensors of the best seBsgr). Find the neighboring sensors and best two neighboring sensors that have stronger signal
than the rest of the neighbors (make sure that these 3 sensors form “right triangle”, but not straight line).
3) Apply residue cancelatiostep as in Table | as follows:

\I’newl dg \I/neWQdSL \PHEWQ dg

Ysp,t = 10log [ } +vs, .+ 210logy, | B+ , then 9)
° 10 Isn - lnewl,tla |Sn - lnew2,t‘a s 10 Isn - lner,tla
N, 2(1“ 1/
’ A . _ new2d
9s,, .t = |Sn 1new2,t ( 1O(ysn,t/10) 3 ) (10)

4) Fromg; ., find the minimum ofg; ..
* Send the information ofs.in, gs,,;,,.¢ 10 lateration (least squares method) algorithand guess the initial locatior¢w2,¢) of second target
using the neighboring sensors of the best sefisgy;,, ). Find the neighboring sensors and best two neighboring sensors that have shorter distances
than the rest of the neighbors (make sure that these 3 sensors form “right triangle”, but not straight line).

5) lteratively repeat from 2) to 4) to have reduced error (depending on the iteration number).

becomes distant too as shown in Fig. 13 and 14. Finally, when error reaches the limit point, these two initialized points overlap
to each other because initialized points with large error must have limit with certain best sensors that already chosen (Compare
Fig. 15(i) and Fig. 15())).

2) Two Far Targets:When two targets are located far to each other, all three methods perform very well and better than
when two targets are very close to each other. Also, iterative methods performs well for all three methods, especially for the
first initialized target. Iterative methods does not make difference for the initialization of second target, and after one iteration,

the mean error distance for the first target is better than the second target while it was vise versa before the iteration as shown
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Fig. 12. Comparison of 3 methods with different number of iterations on initializing two close targets when noise variance is 0.001. Each caption under the
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figures shows the lateration method and the number of iterations, 1000 runs.
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in Fig. 23(a). So, basically all three methods show the similar pattern of initialized points as shown in Fig. 20. When the
noise variance if equal to 1 or greater than that, due to the large variance of the initialized points, it starts to have overlapping
between two targets in the same area as shown in Fig. 21(c). That phenomenon occurs to all 3 methods. We can see the
outstanding difference between “before the iteration” and “after the iteration” when applying modified lateration shown as in
21. Modified lateration uses only two best sensors sometimes which makes specific pattern of the initialized points as in Fig.

22(b). After iteration that specific pattern disappears as shown in Fig. 22(b) and gives far better performance for the initializing

the first target.
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Fig. 15. Comparison of 3 methods with different number of iterations when noise variance is 0.1 on initializing two close targets. Each caption under the

figures shows the lateration method and the number of iterations, 1000 runs.

VII. CRAMER-RAO LOWERBOUND (CRLB)

We show the CRLB of the estimator of the parameter, the location of a “single target” when we use only 3 sensors which

forms right triangle in this section. The parameter is denoted byl = [z y] . From (1), the likelihood function is

p:0) = () el 51 ; - 1,(0)

where

F2(6) = 1010820 |

and

gn(0) = gn(z,y) = |sn = 1" = (sn,

The log-likelihood function is,

3
Inp(y;0) =1n (\/2;7> + l—%iz Z(yn - fn)]

from which the derivative oft coordinate follows as

n=1

- I)Z + (Sny - y)2'

Oln 9] & - 9
5 = Bx [_2; (on ‘f")Q] g L { g s |

(11)

(12)

(13)

(14)



21

s
LT
-

(a) Regular, 0. (b) Regular, 1.

(c) Regular, 2. (d) Regular, 5. (f) Regular, 100.

(i) Modified, 2. (i) Modified, 5.

(k) Modified, 10.

(I) Modified, 100.

(m) Mixed, 0.

(n) Mixed, 1. (o) Mixed, 2.

(p) Mixed, 5.

(q) Mixed, 10.

(r) Mixed, 100.
Fig. 16. Comparison of 3 methods with different number of iterations when noise variance is 1 on initializing two close targets. Each caption under the

figures shows the lateration method and the number of iterations, 1000 runs.
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Fig. 20. Initialized points by 3 different lateration methods on initializing two distant targets, captions under the figure show the lateration method, noise,

and the number of iteration respectively, 1000 runs.
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Fig. 21. Modified lateration of two targets that are not very close, 1000 runs.

Similarly, we can derive derivative gf coordinate as

alnp - 20 [yn - fn(e)}(sny B y)
dy  02In10 Z gn(2,9) ’ (24)

The second derivative af coordinate follows as

#mp 0 20 Z[(ynfn)(snmx) (25)

Ox? 0z | 02In10 gn(2,y)
P el &
If we define
Po(2,y) £ (sn, =) (Yn — fn) (27)
we have

8% Inp 20 o (P,
0z :O'QIH].OZ a9z \gn ) |- (28)
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Fig. 23. Mean error distances of 3 methods with different number of iterations, distant targets, and 1000 runs.

Fromg,
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Fig. 24. Variances of the estimates of 3 methods with different number of iterations, distant targets, and 1000 runs.
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Fig. 25. The number of fails of 3 methods with different number of iterations, distant targets, and 1000 runs.

Plugging P, into G,

G = _(yn - fn) “Gn — 15(1)0 : (snz _;)z + 2(5n - $)(yn - fn)(sn, - :L’) (35)
_ 2(8n - l‘)z(yn - fn) - (yng_2fn) *Gn — % : (Snm - l‘)2 . (36)

Pluggingg into (28),

9?lnp 20 3 2(sn = )2 (n — fn) = Wn = fn) * 9n — on5 * (Sn, — 2)? (37)

922 o2Inl0 gn?

Similarly, we can drive

9%Inp 20 3 2080 = ¥)*Wn — fn) = (Un — fn) “ 9n — o5 * (Sn, — ¥)? (38)

oy?  02In10 gn?



To completely find the elements of the Fisher information matrix, we have to find
Pmp 9 20 > (Yn = fn)(8n, — @)
oydx Oy o2lnl0 In

_ 20 0 [(Yn — fn)(8n, — )

N UﬂnlOZ{@y{ In

20 0 (P,
- [ ()]
~————

Q’”
0Qn _ Pz/gn - P,g,’ _ 2(3nm - x)(sny —Y)(Yn — fn)
8y gn2 gn2
gn?
where % = —2(s,, —y), Y = 20, =m0 Therefore

0? Inp _ 20 Z 2(sn, — x)(sny —Y)(Yn — fn) — %(Snm - I)(Sny -y)
Oydr  02In10 gn? '

Similarly,

52 Inp _ 20 Z Q(Snw - x)(sny - y)(yn - fn) - %(SmC - .Z‘)(Sm/ - y)
Oxdy  0%2Inl0 Gn® .

To find the Fisher information matrix,

9% 1In 9% 1In 9% In
o | EE) 2 | _[-eEE) o
8% 1n 8% 1n 8% 1n ’
-2 (z) -2 (%) o —B(%)
note [expectation of,,] = y,, and from (37) and (43), we can compute
p(Plp) _ 20 3 — 1295 - (sn, — 2)(5n, — )
Oyox 021n10 In>

- () S5

Similarly,
B & 1np _ 20 22 [(8n, —2)(8n, — V) .
Oyox oln10 I 9n?
E 6211'1]) _ 20 Z -*%'(Snm*‘r)z- _ 20 22 -(Snm—.’f)Q-
Ox2 021n10 i gn? | oln10 Lo
Similarly,
5 (Pop) _ 20 5 [—mto (5n, =)’ _ (20 QZ (50, —¥)?]
oy? o?1In10 L gn’ J oln10 L gn’ i .
Therefore,

P e I
Z{(Snm—zl(;ny—y)} Z[(sngn—zy)? 0 b
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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then
I(0) = % o : (51)
0 a

Since

var (6:) = 17 (0)],, (52)
aln10)2 (ony=)*
2 G > T 2 3
a > [(sn;w;m) ] > {(STLgn;y) ] _ {Z {(snz 72/(;7@*?/)] }

var(g) > % = (%010)2 g [(sn;"_;) ] O (54)

(Sny—2)2 (sny—1)2] (5np=2)(sny —9)] |
z [ T[] - {2 [T

Fig. 26 shows the Cramer-Rao (CRB) bound as the number of sensors increases. The sensors are added up from the clos
to distant one when the number of sensors increases. When there is only one single sensor, the Fishier information matrix
becomes singular (see (50)). In that case we have to approach by other method to find CRB [35], [36]. We have to use more
than 1 sensors to apply lateration in this paper, therefore, we do not discuss about that problem since it is beyond the scope
of this paper.

Fig. 27 shows the surface CRB when 2, 3, and 4 sensors are used respectively. Fig. 28 shows the surface CRB of whole
plane when 16 grid sensors are used. Note that when we use two sensors, according to (50), Fisher information matrix, CRB
of the center point of the two sensors is infinity because denominator is 0. But, it is not shown in the figure because the surface

plot is with respect to the grid point which does not include that center point in Fig. 27(a).

Cramer—Rao Bound with different number of sensors used
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Fig. 26. Cramer-Rao bound as the number of sensors increases from 1 to 16.
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VIIl. CONCLUSIONS

Initializations of the targets in variable, multiple target tracking system is a very important problem especially in non-one
to one mapping model between “the target states” and “the measurement”, such as RSS sensor model (see (1)), in wireles:
sensor network system. We need cooperative combinational complex measurement to estimate a single state of the target. T
overcome this difficulty, we adopted the principle of the “least squares” method and developed it to more methods which are
more useful in certain situations depending upon the problems (those three methods is regular, modified, and mixed lateration),
which are combined with “particle filtering”, the most recent statistical parameter estimation solution for non-linear and non
Gaussian model. The regular lateration shows better performances than the modified lateration when initializing a single
target and two very close targets at the same time while modified lateration shows better performances than regular or mixed
lateration in initializing two distant targets simultaneously. We also applied iterative method for initializing more than one
target simultaneously taking advantage of the residue cancelation lateration (RCL, see Section. 1lI-B and Table. 1). Iterative

method takes very essential and critical role in adjusting and reducing the error of the firstly initialized target in initializing two
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targets simultaneously, especially with modified lateration. RCL is the key for the initialization of the multiple target tracking
solution. The approach we present in the paper can be also applied to the localization of the sensors in ad-hoc wireless senso

network system.
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