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Abstract—Recent studies have shown that environmental energy
harvesting technologies have the potential to provide perpetual
operation to rechargeable sensor networks. However, due to the
large variations of the ambient energy source, such networks
could only support low-rate data services and their performance
is influenced by numerous unpredictable environmental factors. In
order to bridge this gap to yield high and controllable recharge
rates, we import the novel wireless power transmission technology
to rechargeable sensor networks. We propose that by combining
traditional mobile data sink whose role is data collection with
wireless energy replenishment would suffice our needs to offer short-
time high rate data service and refill sensor’s battery energy at
the same time. In this paper, a new network architecture based
on wireless energy replenishment is presented. We establish an
analytical model to show the potential using probabilistic sensor
activation and mobile energy replenishment could improve the
system performance and elongate network lifetime. Second, we
introduce three protocols (1) static activation on sensors (2) linear
adaptation activation with prioritized recharge (3) battery-aware
activation with selective recharge. Finally, we compare these proto-
cols by extensive simulations and show that a smart design of sensor
activation with effective control of mobile energy replenishment
can provide significant performance improvement and elongate the
lifetime of the network by over ten times even in the worst case.

Index Terms—Wireless power charging, rechargeable sensor net-
works, mobile energy replenishment

I. INTRODUCTION

Recent studies of energy harvesting in wireless sensor net-
works have shown that by capturing renewable energy resources
from the environment, it is possible to extend the lifetime of
a sensor network to indefinitely long operation. A majority of
the previous research considered using solar power, a renew-
able energy source and its availability depends on a variety of
environmental factors. Clouds, fog, air pollution and building
obstructions could attenuate the power arrives at the solar panel.
Due to large intra-day variations and unavailability of sunlight
during the night, network protocols aim to support solar power
harvesting have to suppress sensor energy consumption in order
to maintain energy neutral operations [11],[12]. A great portion
of energy from the daytime surplus (if there is any) has to
be reserved for the nighttime operations [6]. For example, if
the sensor’s task is monitoring a field for certain targets or
events, we would expect very low performance once there is
a shortage of the sunlight. Therefore, environmental energy har-
vesting techniques could only provide low-rate data services and
the network performance is significantly influenced by unknown
environmental factors.

In this paper, we propose a novel approach using wireless
power transmission to recharge sensors. Our work is inspired
by the recent breakthroughs in wireless energy transfer. In [1]
and [2] it has been demonstrated that using self-resonant coils
in a strongly coupled regime, the efficiency of nonradioactive
power transmission of 60 watts over 2 meters is 40%. This
technology has been gaining tremendous attention from the
industry and in just a few years, wireless power device has gone
from lab prototype to commercial products. Haier has published

a completely wireless HDTV which has a remote power source
[9]. For low-power circuit devices such as phones, cameras and
media players, wireless power consortium [10] has just released
low power standard “Qi” that opts to provide interoperability
among products from different vendors. As nonradioactive wire-
less charging becomes more and more popular, it can also be
implemented in sensor networks. In this paper, we use a multi-
functional mobile actuator (denoted ”SenCar” for convenience),
which is equipped with high-capacity rechargeable batteries, a
resonant coil and a DC/AC converter. Once SenCar moves into
the proximity of a sensor node, it first converts power in the
battery using DC/AC converter to induce a magnetic field around
the transmitting coil on the SenCar. Then the sensor nodes
tuned its frequency to resonate with the transmitter coil and
converts the received energy to DC current through an AC/DC
converter. In addition to acting as a mobile energy transporter,
SenCar can jointly perform the task as data sink to collect
sensed data while charging sensors. A key advantage of this
approach to merging recharge and data collection together over
conventional environmental energy harvesting is the SenCar can
move very closely to sensors to provide high recharge rate as
well as short time high-rate data transmission without worrying
about sensor energy depletion. Unlike in environmental energy
harvesting the recharge rate depends on various uncontrollable
non-human factors, in our wireless recharge framework, the
availability of energy only depends on the mobile behavior of the
SenCar. Furthermore, we can implement complicated algorithms
on the SenCar which we assume having considerably larger
computation, storage and battery capacity than the sensor nodes.
Hence, in this paper, we will focus on the issue of how SenCar
should recharge sensors and how to adaptively activate sensors
to achieve high and energy-efficient system performance.

The objective of our work is to design mobility pattern and
energy replenishment algorithms on the SenCar and correspond-
ing sensor activation schemes so that good network performance
can be achieved while maintaining perpetual operation of the
network. To provide a criteria to measure network performance,
we assume the sensing mission is to observe a target traversing
the sensor field. Sensors need to be active to accurately detect
the target. If a sensor node consumes too much energy and
mandatorily tunes into sleep mode to conserve energy, it might
miss the target thereby degrade the overall surveillance perfor-
mance. Thus, designing robust and distributed sensor activation
algorithms which takes the random behavior of the target and
the mobility pattern of SenCar into account is critical to the
detection performance. On the other hand, SenCar’s mobility and
energy supply determine the lifetime of the network which would
implicitly impact on the overall detection performance. For the
ease of analysis, we establish a completely discrete model in
which time is equally slotted and sensors are placed uniformly
on a two dimensional grid. SenCar will follow certain mobility
patterns on the grid to recharge sensors. In the meanwhile, the
target node performs a symmetric random walk on the grid and



the objective is to detect and delineate the trajectory of the target
as accurate as possible.

The rest of this paper is organized as follows. Section 2
summarizes the previous work. In Section 3, we introduce our
system architecture and establish an analytical model to untangle
the relationships between key parameters in our system. Based on
the analytical model, in Section 4, we present three protocols with
their results evaluated in Section 5. Finally, Section 6 concludes
this paper.

II. RELATED WORK

Environmental energy harvesting in sensor networks has been
intensively studied recently. A distributed framework is proposed
in [5] so that sensors could adaptively learn the energy environ-
ment and exploit energy resources efficiently to increase network
lifetime. In [11] and [7], several adaptive duty cycling algorithms
were presented which can adjust sensor duty cycle according to
the available energy and maintain energy neutral operations under
the variability of environmental energy profile. Two dynamic
active time scheduling schemes are introduced for a solar energy
harvesting network in [6]. Their protocols take the probabilistic
nature of energy income and expenditure into consideration and
show great improvement to extend network lifetime. Deploying
redundancy in a rechargeable sensor network is exploited in
[8], in which dynamic node activation schemes are proposed to
maximize the system performance. However, the aforementioned
literatures are based on the framework of environmental energy
harvesting. Due to the fact that the availability of ambient
energy resources is unpredictable and harvested energy is usu-
ally not enough compared to sensor energy consumption, node
deployment redundancy and complicated energy management
algorithms on sensor node are the two main approaches to extend
network lifetime in an environmental energy harvesting network.
In a wireless rechargeable network, energy profile becomes
completely different from an environmental energy harvesting
network that we could design algorithms on how to selectively
recharge sensors instead of increasing deployment redundancy to
improve network performance. On the other hand, we could also
alleviate some of the computational burden on sensors through
a mobile actuator. Thus, the design of such protocols is a new
challenge in a wireless rechargeable network. The possibility of
using wireless power charging in a rechargeable sensor network
is envisioned in [3]. Field experiments with equipment from
Powercast [4] are conducted and revisions of node deployment
and routing to conventional non-rechargeable sensor network are
proposed. In this paper, we present a new network architecture
with combining the role of data collection and wireless recharge
through a mobile actuator(data sink equipped with wireless
charging circuits) and subsequently propose several protocols
that coordinate sensors with SenCar to extend the lifetime of
the network.

III. SYSTEM ARCHITECTURE AND ANALYTICAL MODEL

In this section, we present the system architecture of our
wireless rechargeable sensor network and an analytical model
to estimate the detection performance under different activation
probabilities.

A. System Architecture

We now describe the system architecture of our work. Fig.
1 gives a pictorial view of our network. Sensors have three
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Target

Sensing Range

Wireless Charging

Data Transmission

Fig. 1. System architecture of the wireless rechargeable sensor network.

major components: processor unit, multi-channel radio, sensing
unit and an independent wireless energy charging component.
Sensor nodes are placed uniformly on a virtual grid. A target
node moves on the grid following a symmetric random walk.
It can represent any event of interest such as hostile vehicles
or monitored herd in the habitat. Time is equally slotted. We
assume the target node has constant speed. In each time slot,
sensors either choose to work or sleep following a predetermined
probability. In the sleeping mode, major power consumers such
as sensor components and radio channel are turned off. And we
assume some spatial overlaps of the sensing range. That is each
sensor covers its four neighboring nodes in the sensing range. In
other words, for a target in a specific intersection, only one of the
five sensors needs to be active to successfully detect the target.
SenCar also moves on the grid following some mobility patterns
to recharge sensors and collect data. The simplest mobility
pattern is the SenCar selects a random position to start and
follows a symmetric random walk. More complicated mobility
patterns depend on sensor’s battery energy will be presented in
the subsection. When the battery energy of a sensor falls below
a threshold, sensors mandatorily tune into sleep mode to reduce
energy consumption and wait for recharge. In this paper, we
assume sensors do not communicate with each other and they
only exchange information with the SenCar. Though we realize
that this discrete system model cannot accurately describe the real
scenario, it at least gives us some insight into this new design of
rechargeable sensor network.

1) Energy Consumption: Let Ei denote the energy consump-
tion of the network at i-th slot. Ew and Es are the energy
consumption in a slot while the sensor is working and sleeping,
respectively. N is the total number of sensors and Ai is the num-
ber of sensors working in i-th slot. Thus the energy consumption
in i-th slot is,

Ei = EwAi + Es(N −Ai) (1)

Though power consumption depends on various system param-
eters such as transmission power, sensing range, battery leakage
and certain non-linear battery effects, the utilization of SenCar
could help alleviate major fluctuations due to transmission.
Because SenCar can recharge sensors at high efficiency at very
short distance, and the instantaneous recharge rate is much higher
than the power consumption rate, we can ignore the power
consumption fluctuation due to transmission and simply consider
both Ew and Es as average values.

2) SenCar Mobility and Recharge with Priority: SenCar’s
mobility pattern is critical to the lifetime of the sensor network.
If a mobility algorithm leads to a dead loop in the field, there
is no chance for most of the sensors to be recharged on time.
Our goal is to design a totally randomized mobile scheme which
would avoid the SenCar being locked in a trail and make mobility
decisions at run-time. On the other hand, it is also important



for the SenCar to move more aggressively to the sensor nodes
having lower battery energy. Otherwise, a node failure will not
only degrade the surveillance performance but also create a
blind region and fragment the network. Thus, we propose a
probabilistic-based mobility model in which after the SenCar
finishes recharging the node at its current position, it requests
battery information from four neighboring nodes, store or update
their battery information in local memory. Once a neighboring
node is in sleep mode and does not respond, the SenCar will
use the previous stored battery information. Assume the SenCar
finishes recharging sensor at location (i, j) and it uses its four
neighboring battery energy to calculate the next slot moving
probability.

p(i,j+1) =
1

1 +
b(i,j+1)

b(i−1,j)
+

b(i,j+1)

b(i,j−1)
+

b(i,j+1)

b(i+1,j)

(2)

p(i−1,j) = p(i,j+1)

b(i,j+1)

b(i−1,j)
(3)

p(i,j−1) = p(i,j+1)

b(i,j+1)

b(i,j−1)
(4)

p(i+1,j) = p(i,j+1)

b(i,j+1)

b(i+1,j)
(5)

Equations (2) - (5) represent probabilities to move to sensor
locations at (i, j + 1), (i − 1, j), (i, j − 1) and (i + 1, j)
respectively. b(i, j) is the battery energy of sensor at location
(i, j). In this mobility model with taking consideration of sensor’s
energy, SenCar would have a higher probability to move to
the direction in which sensor has a lower battery energy. Once
the four neighboring nodes have the same battery energy, this
scheme converges to a symmetric random walk. By using this
mobility model, we correlate sensor’s energy level with the
energy transporter’s mobile behavior in hope that SenCar would
take higher priority to recharge those nodes consume more power
to avoid node failure.

3) Target Model: We introduce a target node for the purpose to
evaluate our proposed algorithms. Despite in specific application
targets exhibit certain deterministic mobile behaviors, we use
a simple 2-dimensional symmetric random walk model which
allows us to generalize various real target traces. Thus, the target
node at coordinate (i, j) has transition probability 1/4 to each
direction.

4) Sleep Threshold: To prevent sensors from depleting their
battery energy, we impose a mandatory sleep threshold on
sensors. If a sensor’s battery level falls below this value, it tunes
into sleep mode and waits for the SenCar. Obviously, the choice
of this value is critical to the performance and lifetime of the
network. That is, if the sleep threshold is too large, a large portion
of sensors are falling into unnecessary sleep. While this value is
too small, the network is vulnerable to node failure.
B. Analytical Model

The detection performance of our wireless rechargeable sensor
network basically depends on two important parameters: sensor
activation probability and SenCar recharge rate. In this subsec-
tion, we establish an analytical model to derive the relationship
between activation probability, recharge rates and detection per-
formance.

We assume the SenCar follows a symmetric random walk to
recharge sensors and compared to active mode, energy consump-

TABLE I
NOTATIONS USED IN ANALYTICAL MODEL AND SIMULATIONS

Notations in Analytical Model
Xn A discrete-time Markov chain
S State Space of the Markov chain represents the node battery energy
N The number of sensor nodes on the grid
pi,j The transition probability p{Xn+1 = j|Xn = i}∀i, j ∈ S
pr Probability a sensor node is recharged in a time slot
p Probability a sensor node is active in a time slot
L Sleeping threshold of the system
C Battery capacity of a sensor
R Recharged energy in a time slot

Notations in Simulation
Ei Sensor’s residual energy in i-th time slot
U Upper threshold 2/3 of the total battery capacity
ai Activation probability in i-th time slot
∆d Linearly decreasing steps
∆i Linearly increasing steps
Tw Number of time slots sensor can work using the residual energy
Td Number of time slots till next arrival of SenCar
K ⌈R/Ew⌉
A[ ] An array stores K previous visited sensor node locations
L1,L2 Two battery energy benchmarks to adopt different recharge rates
R1,R2 Two recharge rates: R1 < R < R2

1 2 R+1L+1L CC-1R+2

Fig. 2. Sensor energy state transition diagram.

tion at sleeping mode is negligible. All commonly used symbols
and notations are listed in Table I.

The state of the Markov chain is the energy of a sensor node
and we assume unit energy consumption in the active mode. The
state transition diagram is shown in Fig 2. Since the SenCar
performs a symmetric random walk, the probability for each
sensor to be recharged in a time slot is equiprobable [14].

pr =
1

N
(6)

We next write the state transition probabilities, for i ∈ [1, C],

p1,1 = 1− pr, i = 1 (7)

pi,i−1 =

{
p(1− pr), i > L
1− pr, 2 ≤ i ≤ L

(8)

pi,i = (1− p)(1− pr), i > L (9)
pi,i+R = pr, i+R ≤ C (10)
pi,C = pr, i+R > C (11)

This model resembles a Geom/Geom/m/N queueing system and
we are interested in the stationary probabilities that a sensor
node is in sleeping mode, which is

∑L
i=1 πi, πi is the stationary

probability of state i. An advantage of this simple analytical
model is that we can compute πi iteratively and then normalize
equilibrium state probabilities. The complete procedure is shown
in [15]. The equilibrium sleeping probability ps and target
detection rate pd can be calculated once we obtain stationary
probabilities.

ps =

L∑
i=1

πi (12)

pd = 1− p5s (13)

We analyze a 100-node sensor network using this model. Fig. 3(a)
is the detection probability given sensor activation probability
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Fig. 3. Detection rate and sleeping probability of a 100-node sensor network.
(a) Detection rate under different sensor activation probabilities. (b) Sleeping
probability under different recharging rates and sleeping thresholds.

from [0.1,1]. Intuitively, under the same recharging rate, de-
tection performance increases with sensor activation probability
as sensors are more active, the chance of detecting the target
node is higher. However, it reaches a limit and further increase
activation probability does not increase detection rate anymore(at
low recharge rates further increasing activation probability would
degrade performance). On the other hand, in Fig. 3(b), our goal
is to minimize the sleeping probability and at the same time
ensure that few sensor has battery failure. Likewise, we can
see that sleeping probability decreases with a higher recharge
rate. Increasing the sleeping threshold from 3 to 15 would
have prevented node failure but degrade network performance.
Our analytical model suggests that unlike in an environmental
energy harvesting network which requires certain deployment
redundancy to bridge the gap between low harvesting rate and
high consumption rate, we could improve system performance by
increasing recharge power. Furthermore, it indicates that using
a static activation probability would not be energy-efficient so
that simply increasing recharge rate would not increase system
performance after the detection rate reaches a limit. In addition to
sensors which could adaptively tune their activation probability,
SenCar could also use different recharge rates according to
sensor having different battery energy to prevent sensor from
being put to mandatory sleep. Thus, we need to develop several
distributed activation algorithms combining with mobile energy
replenishment which collectively adapt to the scenario of various
recharge rates, achieve better detection performance, minimize
node failure and elongate network lifetime. In other words, at
different recharge rates, sensors should be able to smartly tune
the activation probability to maximize the use of obtained energy.

IV. SENSOR ACTIVATION AND MOBILE ENERGY
REPLENISHMENT ALGORITHMS

In the previous section, the analytical results suggest that static
activation approach is not robust enough to generate good perfor-
mance even given ample energy resources. Another drawback is
the lack of adaptation and prediction to random target behavior.
Thus, we propose two adaptive algorithms in this section.
A. Static Probability Sensor Activation and Random Walk
Recharge(SRR)

This basic algorithm offers a benchmark to evaluate proposed
schemes. Sensors follow a static probability p = 0.5 to work and
sleep randomly and SenCar performs a symmetric random walk
in the field to recharge sensors irrespective to their battery energy.
B. Linear Adaptation and Prioritized Recharge(LAPR)

This algorithm originates from the idea that sensor nodes work
longer should have less chance to consume energy in the next

TABLE II
LINEAR ADAPTATION AND PRIORITIZED RECHARGE

Get pi and Ei from the memory
if Ei > U pi+1 = 1
elseif L ≤ Ei ≤ U

if the sensor is working pi+1 = pi - ∆d

else the sensor is sleeping pi+1 = pi + ∆i

endif
elseif Ei < L pi+1 = 0
endif

if a sensor detects the target node AND Ei ≥ L
Keep this sensor on for next time slot, store pi in the memory
endif
After sensor gets recharged by the SenCar: Reset activation probabilities to
pi = R/C.

time slot and those sleep longer should have more chance for
surveillance. It can be done by decreasing activation probability
and increasing activation probability in the next time slot re-
spectively. SenCar should also have a higher priority to recharge
nodes with lower energy. When a sensor detects a threat in its
sensing range, it checks to see if its residual battery energy is
larger than the mandatory sleep threshold. If it is true, the sensor
maintains active for the next time slot. Each time the battery
energy is refilled by the SenCar, sensor resets the activation
probability to a value proportional to the ratio of the current
recharge rate and battery capacity. We also define a threshold
to be 2/3 of the total battery capacity that if a sensor’s energy
is above this threshold, it remains active at all time whereas
energy drops below this threshold, it follows the aforementioned
linear adaptation strategy. Table II shows the pseudocode of
the algorithm. Due to the probabilistic nature of our system,
extending successive surveillance time improves the detection
performance while a threat is present. By adjusting activation
probability, it could reach an equilibrium around a probability
value. In this algorithm, SenCar follows the mobility pattern
with prioritized recharge of those sensors having lower energy.
Incorporating prioritized recharge with sensor’s adaptation, our
goal to drive the SenCar to recharge those sensors having lower
battery energy is achieved and this algorithm further renders
merits to reduce unnecessary energy consumption as mentioned
in Fig.3(a) the key is to find a probability value p that generates
good performance at lowest energy cost.

C. Battery-aware Sensor Activation and K-step Selective
Recharge(BSR)

A drawback of the previous algorithm is that it is possible the
algorithm would reduce the activation probability to a very small
value and diminish the chance of detecting the target and it is
also possible for SenCar to move to (i, j) where it has visited
in the previous k steps. Since the algorithm on sensors should
be as straightforward as possible given their limited computation
power and battery capacity, it is more desirable to implement
complicated algorithms on the SenCar. In the previous linear
adaptation scheme, sensor’s operation is not directly connected
with its residual battery energy. Thus, we further propose a
battery-aware activation scheme combined with SenCar’s k-step
selective recharge.

In each time slot, sensors calculate the time duration they can
work from their residual energy and estimate the duration till
next arrival of the SenCar using historical data. Sensors log the
timestamp of every visit of the SenCar and average over the
past k interarrival time of the SenCar to form an estimation of



TABLE III
BATTERY-AWARE ACTIVATION AND K-STEP SELECTIVE RECHARGE

Sensor Activation:
Get Ei from the memory, then calculate
Tw = round(Ei/Ew)

if Ei ≥ L

Td =
∑i

j=i−k+1
Td(j)/k

pi+1 = Tw/(Tw + Td)
else
pi+1 = 0
endif

if a sensor detects the target node AND Ei ≥ L
Keep this sensor on for next time slot, store pi in the memory
endif

if Ei ≤ L1 recharge at rate R1

elseif L1 < Ei ≤ L2 recharge at rate R
elseif Ei > L2 recharge at rate R2

endif
SenCar Mobility:
Get current location coordinates (i, j)
Search for four neighboring nodes (i+ 1, j), (i− 1, j), (i, j + 1),
(i, j − 1) in A[ ]

if node(s) existed in A[ ]
exclude them from next step direction calculation
elseif search returns null
use four neighbor’s battery energy to calculate next step probability
endif

Obtain next step movement decision (i′, j′) and update A[ ]:
Duplicate Ad[ ] = A[ ] before update A[ ]
A[1] = (i′, j′), A[2] = Ad[1], ...,
A[x] = Ad[x− 1], x from 2 to K.

the next arrival. SenCar follows a k-step mobility model. That
is, it remembers the k previous nodes visited(recharged) and
excludes those nodes from the destination selection in the next
time slot. In this way, SenCar will prioritize to recharge those
nodes have not been visited in the previous k steps, where k
depends on the ratio of average recharge and discharge energy.
Note that a key advantage of this algorithm over conventional
environmental energy harvesting is that energy supply becomes
controllable and we could design algorithms to satisfy sensor’s
energy demands. To make recharge adaptive to sensors having
different energy levels, we can adopt different recharge rates
which is to increase recharge rate to sensors near energy depletion
and decrease recharge rate to sensors with high energy level. The
detail of this combined approach is shown in Table III.

V. SIMULATION RESULTS

To compare the proposed schemes, we develop a simulation
environment in Matlab. Our focus is to compare detection perfor-
mance of the three approaches under different energy resources.
In addition, we also demonstrate battery-aware activation with k-
step selective recharge algorithm is able to achieve great improve-
ment to avoid sensor battery failure thereby having the potential
to extend the network lifetime towards perpetual operations.
In order to emulate the real scenario, we use linear functions
to approximate the wireless charging efficiency similar to the
efficiency curve in [13]. In this way, increasing recharge rates
would incur a higher energy cost. Table IV has listed all the
simulation parameters.

A. Target Detection

The main objective of the sensor network is to detect the
presence of the target node at a specific location in each time
slot. As we can see from the previous analysis, the detection per-
formance is greatly influenced by how many sensors are in active
mode. A sensor node could go to sleep mode either because of

TABLE IV
SIMULATION PARAMETERS

Parameters Value
Number of sensor nodes N 100
Sensing range 30m
Grid Distance 25m
Sleep threshold L 24 (units)
Battery capacity C 1500 (units)
Recharge rate R [0,750] (units/slot)
Energy Consumption rate Ew 8 (units/slot)
Energy Consumption rate while sleeping Es 0.5 (units/slot)
Simulation time 50000 time slots
SRR
Activation probability p 0.5
LAPR
Upper threshold U 1000 (units)
Step change∆d 0.01
Step change∆i 0.005
BSR
Energy benchmark L1 R
Energy benchmark L2 2R
Recharge Rate R1 2R
Recharge Rate R2 R/2
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Fig. 4. Detection rate and sleeping percentage. (a) Target node detection rate
under different recharge rates. (b) Sleeping percentage under different recharge
rates.

its battery goes below the sleep threshold or it complies with
the probabilistic decision. Fig. 4 shows the detection rate and
sleeping percentage under different recharge rates. The battery-
aware activation with SenCar’s k-step selective recharge(BSR)
outperforms the other two algorithms. For example, if 80%
of target detection is satisfied, BSR achieves this level under
a recharge rate at only 250 units/slot compared to the static
activation approach at 700 units/slot. It is also worth mentioning
that LAPR is also capable of achieving 80% detection rate at a
recharge rate 300 units/slot which also surpass the static approach
by saving 42% of energy. On the other hand, Fig. 4(b) shows the
average percentage of sensor nodes to the whole network that are
in sleeping mode. We can see as the recharge rate increases, BSR
drops sharply and reaches to a sleeping percentage closed to 0
at 400 units/slot whereas static approach stays around 5% even
given recharge rate at 700 units/slot. Notice that for low energy
income, BSR and LAPR are able to put more sensor nodes into
sleeping mode to avoid node failure. It means by incorporating
a more complicated SenCar recharge model with battery-aware
activation, sensors are able to utilize the available power more
efficiently to minimize the sleeping percentage when resources
are abundant.

B. Energy Consumption

In contrast to energy management of an environmental energy
harvesting network in which the goal is to maximize the utiliza-
tion of the harvested energy to maintain good detection perfor-
mance, our concern in a wireless rechargeable sensor network is
the average energy consumption spent on each detected target as
well as residual battery energy in each time slot. First, since the



100 200 300 400 500 600 700
3

4

5

6

7

8

9

10
Average energy consumption for each detected target in a time slot

recharge rates (units/slot)

en
er

gy
 p

er
 d

et
ec

tio
n 

(u
ni

ts
/s

lo
t)

 

 

SRR
LAPR
BSR

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average sensor residual energy percentage in a long run

recharge rates (units/slot)

av
er

ag
e 

re
si

du
al

 e
ne

rg
y 

pe
rc

en
ta

ge

 

 

SRR
LAPR
BSR

Fig. 5. Average node energy consumption per target detection and sensor residual
energy in a long run (a) Average energy consumption for each detected target in
a time slot (b) Average sensor residual energy percentage in a long run.

efficiency of wireless charging is around 40%-70% [1],[2],[13],
even though by increasing the recharge rate would have benefited
network performance, the energy wasted in transmission would
be proportional to the transmitting power. Second, the charging
efficiency would decrease as we increase power at the transmitter
[13]. Hence, the energy consumption should not be too large as
it is a hidden prerequisite for our system. On the other hand,
sensor’s residual energy in each time slot is critical to the lifetime
of the network. Because in the current design, a SenCar serves a
field of sensors, inadequate recharge would cause (single) node
failure and jeopardize the operation of the whole network.

Fig. 5(a) is the average energy consumption per detection of
each node in a time slot. The proposed revisions to the original
static algorithm are more energy-efficient in the sense that they
consume less energy on each successful detection of the target.
Fig. 5(b) shows the average residual energy when the energy
profile of the network reaches an equilibrium. The focal point is
at scarce energy resources(small recharge rates), which scheme is
able to provide the most average residual energy thus the chance
of node failure can be significantly lowered. Our result shows
BSR has surpassed SRR with higher energy reserves.

C. Node Failure and Network Lifetime

In addition to attain better detection performance, another ob-
jective of our proposed algorithms is to prevent sensor node from
running out of battery and extend the lifetime of the network.
In the experiment, we define the time until the appearance of
the first sensor battery failure as the lifetime of the network.
Fig. 6(a) is a comparison of the failure rate under different
recharge rates. Similar to the previously shown percentage of
sleeping node, BSR achieves less than 5% failure rate at a
recharge rate of 200 units/slot whereas it takes nearly 2 times
of energy cost for LAPR. Note that SRR still has 30% node
failure given enough energy supply. This is due to the fact that
recharging sensors with a random walk does not prioritize nodes
near energy depletion. In order to demonstrate the robustness of
the proposed algorithms, we measure the lifetime of the network
under especially low energy income to check which algorithm
could have the potential to extend the lifetime of the network
towards perpetual operations. Fig. 6(b) shows the simulation
result at very low recharge rates from 25 to 100 units/slot. Even
in the worst case, BSR and LAPR have shown great strength to
prevent node failure and they extend the lifetime around more
than 10 times compared to the original SRR approach.

VI. CONCLUSIONS

In this paper we proposed an architecture based on the novel
wireless charging techniques for rechargeable sensor networks
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different recharging rates. (b) Network lifetime comparison under low recharge
rates from 25 to 100 (units/slot).

and several possible energy management schemes in this frame-
work. We demonstrate through an analytical model that using
a static probability activation is not efficient and implementing
mobile energy replenishing algorithm on the SenCar could give
us more leverage to improve performance. Two comprehensive
algorithms that yield better detection performance as well as
lower node failure rate are proposed. A key advantage of our
system is the energy income is independent of environmental
factors which potentially indicates this architecture is able to
extend the lifetime of sensor network towards perpetual oper-
ations. As our focus in this paper is from the sensor energy
perspective, a direction for the future research is how to combine
data collection to the SenCar to achieve optimal data throughput
and at the same time keep all the sensors alive. Another direction
of future research would be to discover using multiple SenCars
and the coordination among them to provide a scalable service.
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