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Abstract

The time-dependent diffusion equation is solved for
an infinite layer of fluid in which there are tidal or
surface waves. The hydrodynamical disturbances 4 found
to produce perturbations in the otherwise time-independent
temperature distribution. The perturbations are found to
propagate, while retaining their form or else getting
dispersed, and in general be similar to the hydrodynamic
waves. Propagation of the heat associated with the per-
turbation in the temperature distribution is then shown

to give rise to convection.




Introduction

The concept of forced convection is normally associated
with streaming through a duct or past an obstacle. 1In such
mechanisms the cold (or solute absorbing) fluid at the vicin-
ity of the heat (or mass) sources is being continually re-
plenished. Less attention has been paid to convection mech-
anisms in which the mean velocity of the fluid is small and
convection results from a wave travelling through the essen-
tially stagnant fluid. It is shown here that according to
the accepted incompressible fluid dynamics and diffusion laws
this form of transfer can exist. The hydrodynamical wave
gives rise to a perturbation in the otherwise time independ-
ent temperature (or concentration) distribution. The per-
turbation propagates as fast as the travelling mechanical
waves. It is also similar to these in various other senses.
This phenomenon will be therefore referred to as '"heat wave'.
Furthermore, it is treated here by extending the well known
perturbation type of analysis of hydrodynamic waves.

Attention is focused on heat waves in an infinite layer of
fluid. When undisturbed its depth h is uniform. The tempera-
ture of the solid bottom and the possibly distorted free surface,

T and T, are also taken to be uniform. The temperafure (or

4

concentration) distribution is no longer linear with the
height when surface or tidal waves are present. This devia-
tion is partly due to the geometrical distortion of the
otherwise uniform layer and partly due to convection. In the

case of surface waves it is possible to make a clear distinction



between the two effects. Convection, in such case is thus
shown to be produced by horizontal drift of isothermal filuid
particles. Again drif{. is shown to be closely linked
with convection which is produced by tidal waves. It is
significant that, in theory, so long as the above mentioned
conditions hold no convection takes place when the motion of
the fluid is uniform and parallel. This subject could

be of practical interest, because tidal waves are normally
faster than ocean currents. Furthermore, the two of ten do
not appear at the same time and place. Hence heat waves may

be relevant to weather studies.




General Perturbation Analysis

In the problems under consideration the governing
diffusion equation
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is solved together with the boundary conditions

T= T, at 4 :?(x,i) ) (2)

T= T- uf 4 = -h . 3

‘Here 'TYag%,f> is the temperature (or the concentration
of the solute) and K is the diffusivity of the fluid. Con-
ventional cartesian co-ordinates (xtﬂ) are used here and
V? is the Laplacian operator in these. The velocity com-
ponents are ugif)l “? denotes the elevation of the free
surface above its undisturbed position g::a , and t is

the time.

As mentioned, the variables W, (* and 7 are of ()@) .
Though different physical significance is attached to the
parameter ¢ in the cases of surface and tidal waves, in both
cases ¢«< | ., The dependent variable can therefore be
expanded thus:

(wo) = c}:{um"y{\g”” ) " =LZ F e ;(4)
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where ¢ is the velocity of wave propagation and ). is a
characteristic length. Since T does not vanish when g
is zero, or when there are no waves, this variable is

assumed to be expandable in the following form:
00
P n
T35 @”(x,fj,f) £ . (5)
M= D

When the expansions (4) and (5) are inserted into equations

(1) and (3) and like powers of £ are equated, the following

relationships are obtained
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where é is the Kronecker delta, The boundary con-
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dition for the exposed surface is derived by expanding

T (x vz,f) in Taylor series, as shown
=\ 2'T (o b '
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and substituting into equation (2 ) from (4) and (5). The

resulting boundary conditions imposed on § are therefore

B (x, ot) = T, (2)
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and so on. Dvery term in the expansicn (5) is therefore

grverned by a determinate second order differential system.

Theze can be solved comnsecutively for m=o0,1.. previding
the U, VY, and E, which appear in (/) and (1) are
known., The soluticn for # is cbviously

[‘0 = T— + \-1: h —r_)\(»‘g"}}a)/i’} 0 (6)

Since when £:0 the temperature is given by this term

tnly, 1t represents the st
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In such case U and (- are the x and 5 derivatives of
, R EIRF]
the wave potential™-™
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The elevation of the free surtface is

:
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The characteristic length L is taken to be w which is
L’Mr)d times the wave length. From the last expression one
finds that €&mw™ is very nearly equal to the amplitude
of the disturbance of the free surface, so that ¢ is a
measure of its slope.

The solution for 4 is in this case govermned by

2 - T - T LZ'V-(’ [)] do (2 - €
(2 - V)6 =-c-Ts sitlelall [mGe-cl] (1))
9, (x,0.,t) = - I;y;—;g— cos|m(x-cl)] (2,)

h.(x,-ht) - o (3,

where the right hand sides of equations (11) and (21) are
evaluated by making use of (6), (7) and (8). One can

easily verify that the solution for @ is
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When use is made of equations (6) -(9) equations (12) and

(22) are fou;}cl to read
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These together with (3,) yield
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Function Q;for J>2 will not be evaluated within the
framework of this treatise because the mechanical disturbance
which is O(e®) propagates at a velocity different than ¢ .
Therefore, though the method employed here is in principle
applicable the algebra involved in the solutions for 6
becomes prohibitively cumbersome for |>2 .

In this solution (bﬁj/ﬁﬁ) is equal to the right hand
side of equations (lj) and Vﬂ% vanishes, for j =0, 1, 2.
Physically this means that the temperature of every fluid
particle is fixed and that equal amounts of heat are con=- ‘ }
ducted into and out of every unit volume. The processes of

diffusion and conductions thus do not interact. This is not,

by any means, an unknown phenomenon. Distributions which
have the same property could be produced by letting the flow
between the isothermal surfaces Y=o .and 3=-A be parallel
and uniform. Such case is also treated by O'Erien(B).

In view of the last remarks and the form of the solution,
T satisfies the Laplace equation in Cx,g) as well as (xjg)
where o = :xagf . The conditions (2j) and (33) for j=o 2
can also be expressed in terms of ' . The solution for T
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is therefore the steady state distribution in a solid strip
bounded by a wavy (stationary!) top surface and a plane
bottom. It is to be expected that the increase in the area
of the top surface due to its distortion increases the mean
flux across such solid strip of length @sx/wm) . This in-
crease is represented by the first term in the curly bracket
of equation (10). The contribution of this term to the solu-
tion for temperature distribution 'T(W,ﬁ.{) in the wave-
carrying fluid, is therefore recognized as the result of the
geometrical distortion of the layer rather than a convective
effect.

The possibilities of producing an overall x-directed
heat (or mass) transfer will now be considered, bearing in
mind that each of the two modes of transfer do not interact.
Since the impressed gradient is esSentially vertical the
mean axial conduction is expected to vanish. Indeed, the
time integral of (37—/3“)2==mkf over a period 25 e
is zero. The mean convective transfer similarly vanishes,
because fluid particles retain their temperature while trac-
ing closed contours around points which are fixed in space.
Conversely convection is bound to be observed with wave
motion in which the mean positions of the isothermal particles
transverse axial distances. Such, so called, drift is
associated with the infinite train of waves under considera-
tion, but is of an order that is neglected within the frame-
work of this analysié%’i%t is shown in the next paragraph

that drift and hence convection can be produced by wave-system



of C)(&) .

Consider the following generalization of the expressions

for % and 7

W(»)COS (LHA)] w2~ a")}o[ + O, (1D

o0

7 : O_}( ]Q(») cos[m(’m-c{)] dv Q&) (12)
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Here (aw) is of Ole) and for the sake of brevity and
simplicity terms of <9(£7 are neglected. At time t-o

the following holds

oo [l an

XXX This relationship could (but need not necessarily) be
one of the initial conditions. In any case it is assumed
here that F(x) is continuous, even in 2 and decreases
more rapidly than le' for large Ix| . Under some circum-
stances (which will be discussed later) (¢ is independent
of m so that at any time t > o 7 is af(x-ct) .
The deflection of the free surface and the associated
velocity field therefore vanish far from the moving section
x= ol . In the event that F(x) is everywhere posi-
tive, i.e. when the travelling wave is associated with a
localized ‘swell of the otherwise uniform layer, the propa-
gating disturbance produces a drift. For hydrodynamic wave

of the form (M) the temperature distribution is



L T | U LG PR TR R

It is importaﬁt to note that the expressions in equations
(11), (12) and (14) are linear superpositions of solutions
of the form (7), (8) and (9). Therefore in the generalized
wave system +oo fluid particles are isothermal and the
arguments about the effect of this property on the convec-
tion hold. Thus with T= & as a reference temperature

the heat stored in a wave of breadth £ is

Q- L ("Z-‘f‘-)f\”{f“(*; b P T b [y4) Rk (£ [y 4])] dyde (25

2o

where ¥ is the specific heat. This is obtained by setting
in equation (14) t=0 and integrating the time-dependent
term with respect to y , ™ and x . In view of the
assumed properties of F(x) a is finite and non-
zero, The form of the solution (14) indicates that the
time-dependent component of T and the associated heat @ ,
propagates with the velocity C . Therefore though @ is
proportional to (G/A) , which is small, the rate of heat
flow c¢Q@ could under some circumstances be significant.
This section is concluded with some remarks about the
validity and applicability of the foregoing arguments and
results. The velocity of surface waves is related to the

gravitational acceleration 3 by

¢t = 3“M"tmwA(%l) . (16)

10
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Therefore, when w is very small ¢ is w -independent,

as assumed, and is equal to the maximum attainable value
(%Ayb._ Therefore when the causing disturbance is such that
the mH  derivatives of Foo) s F™ix) are of Q)(A‘O ’

-?(w) is very small beyond the range ceh g ms eh”

where £ << , and the resulting (hydrodynamic and)
heat wave propagates with that velocity. However, if the
surface wave is produced by a more abrupt or sharp distur-
bance, F() is not smooth, and the major contributions to
time dependent components of equations ((ll), (12) and) (13)
are due to integration with respect to m beyond the above-
mentioned range. The (hydrodynamical and) heat wave gets
dispersed, and a significant part of the heat Q propagates
with a velocity slower than (SLYA‘. Consequently the re-
sulting rate of heat flow is lower than (Sﬂjéél . A more
exact expression for it can be obtained by multiplying the
integrand of equation (13) by c¢(w) , setting #:o and
carrying out the integration with respect o Y, = and

as before.

Heat Carried by Tidal Waves

In this case the depth of the layer h is taken to be
the characteristic length L . The parameter € is the ratio
of the amplitude of the free surface deflection to ho.

The non dimensional components of velocity and the deflection

are[lj
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U = - [G(x—cﬁ - K(x+cﬁ] )
Vo= (b [G -l - Klixsch]

- [G(x~cll) + k(:mucf)]

™™
1

The functions G and K are solutions of the one-dimensional
wave equation which represent incoming and outgoing waves.
The expressions for U, V, and E, are inserted in
equations (11), (21) and (31)o The non homogeneous part of
these turn out to be functions of y | (x +ef) and (x:-cf) .
This leads one to seek a solution which is expressible in
terms of the three variables. Since, as will be shown, such
solution exists, it may be concluded that like surface waves,
incoming and outgoing tidal waves are accompanied by heat
waves.

The solution is assumed to have the following form:

v o . 00 .
- ! _ i— Q) _ T (o) ()
6. = (T, T-){AO(L('})G e-cf) 4 ‘th{j} K (xfd)} (17)
3: T
In this expansion g. and k3 are functions of 4 only.
With this, the governing equation (ll) and boundary con-

ditions (21) and (31) reduce to

-%O' G_‘S) p ( - ]
J‘_/;_‘2 (C jj., 3&1 + JJ )) 7(18)
K¥(ck, - k(b + k") = ceb(- 6 K|

+
TN
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o (A = k(H < (19)

"
N\

33(0) - }é).(a) 9 (20)

Since G and K are finite and continuous but otherwise
arbitrary their derivatives are, in general, mutually inde-
pendent. Bquation (18) is therefore satisfied by requiring
that the coefficients of 6" and K“” for ) =0, 1,2
should vanish. For =0 this requirement yields the

following differential equations

By utilizing the boundary conditions (19) and (20) these can
be readily integrated. For ;>0 this requirement yields non-
homogeneous second order equations governing 9, and % ,

in which the non homcgeneous parts contain °'g's and 'k's of
lower indices. By using the boundary conditions the co-
efficients in equation (17) can therefore be evaluated con-
secutively for =012 . The resulting solution for

is found to be

(9. = (T,, - T.) [ _‘2\_#_ (G r K o- /‘341)3-;}:(‘141) (G-'+ )(,)
(20
+ (—9-4-) .__.'___[3(54/)": ,0/\1(341)3 N 7A“[3J\)](g“’_ Km)'J?

K7 360 pt
Like the time-dependent term of equation (14) the
solution (21) represents progressing heat waves. However,
unlike surface wave tidal and associated heat waves do not

get dispersed. Therefore when GG)  or KK(x) are



(like ITGJ ) everywhere positive and vanish at infinity

the tidal waves carry non-zero amount of heat, with the
velocity of propagation (which happens to be ijAfé again).
Since the form of solution (21) indicates that the two modes
of transfer interact, it is impossible to recognize one of
these as the sole cause of convection. It is nevertheless
noted that the assumed positiveness of & and K imply the
existance of 'swell and therefore drift, It is assumed that
in the case of tidal waves too, this drift plays a role in

inducing convection.

Concluding Remarks

The diffusion equation is solved for a layer of fluid
which is bounded on the top by a time dependent free surface.
Through the lavyer either surface or tidal waves propagate.
Availability of non-trivial solution is taken here to imply
that heat waves, which have certain properties, can exist.

It is, however, born in mind that in solving the problems
initial conditions were altogether ignored. The resulting
temperature (or concentration) distribution Tlx,ﬂf) can

be regarded as a solution of a well.posed problem with
Ty, @ ) as the initial condition. It is found that
such condition is rather artificial. Hence though the result
about the existence of heat waves is theoretically conclu-
sive, the manner in which such waves could be generated has

yet to be studied.

14




Acknowledgement

The author is grateful to Dr. Edward E. O'Brien for

his helpful comments and suggestions.

15



16

References

1. Sir H. Lamb, "Hydrodynamics®, 6th edit., Dover Publication,
1945, Chs. VIII and IX.

2. J. V. Wehausen and E. V. Laitone + Handbuch der Phsik IX
-Surface Waves, Springer Verlag, 1960.

3. E. E. O'Brien, "The Flux of Heat Through Laminar Wavy Film",
Submitted to the Quart. Appl. Mech,

4. M. S. Longuet - Higgins, Phil. Trans. of the Roy. Soc. A,
1953, p. 535.

50

Sir G. G. Stokes, Trans. Camb. Phil. Soc. 8, 1847, p. 441.



