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Abstract

A new approach based on Bayesian predictive density and subspace decompo-

sition is proposed to simultaneously detect and estimate coherent and non coherent

sources. As expected, the Bayesian estimator for the directional parameters coincides

with the unconditional maximum likelihood estimator when Jeffreys' noninformative

priors are used. The proposed detection criterion is strongly consistent and outper-

forms the MDL and AIC criteria, especially in a small number of sensors and/or

snapshots, and/or low SNR, without costing extra computational complexity. Simu-

lation results demonstrating its superiority are included.

I. Introduction

In the area of array processing the most popular approaches for the detection

of number of sources are based on the Akaike's information criterion (AIC) [1] and

the minimum description length (MDL) principle [2, 3]. For noncoherent sources, the

number of sources is determined from the "multiplicity" of the smallest eigenvalue

of the sample covariance matrix without estimating the directional parameters [4] rv

[6]. When the signals are coherent, this approach is not applicable since the rank of
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the signal covariance matrix is reduced. To effectively solve this problem, Wax has

proposed a subspace decomposition approach, based on above information criteria,

to detect and estimate coherent sources [7]. However, the AIC criterion suffers two

drawbacks. It tends to asymptotically overestimate the number of sources and its

probability of error can not reach zero even at a high signal-to-noise ratio (SNR). On

the other hand, the MDL criterion is consistent, but it overemphasizes the perfor-

mance when a larger number of snapshots are available, sacrificing the performance

at low SNR and/or a small number of snapshots. Unfortunately, in the most frequent

cases, it might be that the energy of the signals impinging on the array is low and

the number of snapshots is limited.

There is another question of interest. Assume that the number of snapshots

is fixed and the number of sensor is decreased, the relative penalty function of any

information criterion is supposed to be decreased, otherwise it may induce a underes-

timated result when the SNR is low. Someone may doubt whether the penalty terms

of the AIC and MDL criteria do reflect this situation or not. In this paper, we are not

try to analyze the effect of decreasing the number of sensors. However, the penalty

term of the information criterion is expected as the function of the number of sensors.

In our paper, a new criterion is proposed to simultaneously detect the number

of coherent or non coherent sources and estimate their directional parameters. The

solution is obtained by using Bayesian predictive densities (BPD) [8] and subspace

decomposition [7]. When compared to the AIC and MDL criteria in [7], the relative

penalty term of the proposed method is greater than that of the AIC and smaller

than that of the MDL. Furthermore, it is also the function of the number of sensors.

This exact penalty term leads to better detection performance, especially in the cases

that the number of snapshots is small and/or the SNR is low, without increasing

computational complexity. Unlike the AIC criterion, the proposed criterion is strongly

consistent. As expected, the Bayesian estimator coincides with the unconditional

maximum likelihood (ML) estimator [9, 10] which has been shown to be consistent
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and efficient.

The paper is organized as follows. In Section II we formulate the problem

and declare the assumptions. The Bayesian predictive density criterion is derived in

Section III. In Section IV some simulation results are performed to demonstrate the

improved performance of the proposed approach when compared to the MDL and

AIC ce[250zcriteria. Finally, the conclusion is given in Section V.

II. Problem Formulation

Consider that q superimposed far-field sources are measured by N sensors,

and assume q < N. The locations and the directional characteristics of the sensors

are allowed to be arbitrary. The sources emit narrow-band wavefronts centered at a

known frequency, £.<)0,and impinge on the sensors in a planar manner.

The observed data at the pth sensor and the ith snapshot is expressed, by the

complex envelope representation, as

q

L '()
Y. = s' IeJP I + n't,p t, t,p'

1=1
i = 1,2,..., M (1)

where (h is the directional parameter (direction-of-arrival) of the Ith source, assumed

distinct from the other sources, Si,1 is the complex amplitude of the Ith source as

received at reference point, and M denotes the number of snapshots. The ni,p is the

additive complex noise at the pth sensor.

The model for the ith snapshot can be compactly described by the following

vector notations:

Yi = D(8(q))Si + ni, i = 1,2,. .., M (2)

with

Yi = [Yi,l Yi,2... Yi,Nf (3.a)

(3.b)

(3.c)

D(8(q)) = [dUh) d(02)... d(Oq)]

d(OI) = [lej()I...ej(N-1)()I]T
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Si = [Sl,i S2,i ... Sq,i ]T (3.d)

(3.e)ni = [ni 1 ni 2 ... ni N ]
T

" ,

where D(8(q)) is an N x q Vandermonde matrix consisting of q steering vectors d(Oz)'s.

Any q distinct steering vectors from the array manifold are linearly independent. Yi

is an N x 1 observed data vector, Si is an q X 1 signal vector, and ni is an N x 1 noise

vectors. T denotes transpose operation.

We assume that the signal sample vectors s/s are statistically independent

and identical complex Gaussian random vectors with zero mean and an unknown

covariance matrix. The noise in each sensor is a stationary, ergodic, complex Gaus-

sian process with zero mean and an unknown variance. The noise samples are also

assumed to be uncorrelated from sensor to sensor and from the impinging signals.

The covariance matrix of the observed data is then given by

~yy = D(8(q))RssDH(8(q))+ Rnn (4)

where Rss is an q x q unknown signal covariance matrix. The signals may be un cor-

related (non coherent), partially correlated, or fully correlated (coherent). When the

signals are coherent, one signal might be a scaled and delayed version of the other, es-

pecially in multi path propagation. Rnn denotes an N x N unknown noise covariance

matrix, and in our case it is equal to O"~I.H denotes conjugation and transposition.

When the above assumptions hold, the problem can be stated as follows. Given

the observed data samples, we desire to simultaneously detect the number of the co-

herent or non coherent sources and estimate their directional parameters.

III. Bayesian Predictive Density Approach

In the sequel a method based on Bayesian inference techniques is proposed to

solve the above problem. Let Hk denotes the hypothesis that k sources are present,

and k E {O,.. . , N - I}. Under the hypothesis Hk, the model is given by

Yi = D( 8(k))Si + ni, i = 1, 2, . . . , M (5)
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The estimates of q and 9, denoted by qand iJ, are determined from the cost

function [11],

q,iJ=arg min {-10gf(9,'HkIY)}
kE{O,...,N-l};OEe

where e is the "field of view," and f( 8, 'Hk Iy) is the posterior distribution of 'Hk

(6)

and 9. By using Bayes' rule, the posterior distribution of 'Hk and 9 can be obtained

by

f( 9, 'HkIy ) = f( yJt; ~k) f( 9 l'Hk )f( 'Hk )

where f( y 19, 'Hk) is the likelihood function (LF) of 'Hk and 9, f( 9) is the a priori

distribution of 9, f( 'Hk ) is the probability of the model'Hk, and f( y ) is the marginal

(7)

distribution of y. When the probabilities of all hypotheses 'Hk are equal, the criterion

(6) amounts to maximization of f( y I0, 'Hk)f( 9 l'Hk).

Within the framework of Bayesian theory, the LF f( y 19, 'Hk) might be ob-

tained by integrating out any unwanted or "nuisance" parameters, e.g., Rss and O"n,

in the completed LF [12] rv [14]. Before this marginalization, the prior distributions

of nuisance parameters have to be carefully chosen. Unless the priors are proper and

supported by satisfactory physical or logical arguments, we prefer to use noninforma-

tive priors because they reflect the ignorance of the nuisance parameters. However,

these priors may introduce unjustified model selection criteria when the LF of 9, 'Hk

is not normalized [8]. To circumvent this deficiency, we propose a Bayesian predictive

density (BPD) criterion to estimate q and 9. The BPD criterion is given by

q, iJ = argmin { -log f( ~21~l' 9, 'Hk) -log f( 9 l'Hk) }k,O (8)

where ~l = {yt,. . . ,YL},~2= {YL+t,. .. ,YM}, and 1 < L < M. The selection of L

will be discussed later. The function f( ~21 ~l' 9, 'Hk) is called a Bayesian predictive

density of ~2 according to ~11 the parameter vector 9, and the hypothesis 'Hk. Using

the Bayesian approach, the BPD function can be expressed as

f( ~2 I~l' 9, 'Hk) = f( Y(M) 19, 'Hk)
f( Y(L) 19, 'Hk)
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- IIJi f(Y(M) I\11,8, 'Hdf( \III 8, 'Hk) d\ll
IlJif(Y(L) 1\11,8, 'Hdf(\II18, 'Hk)d\ll

(9)

whereY(L) = {~d,andY(M) = {~1' ~2}, and the nuisance parameters 1lJ= {Rss, Rnn}.

f( \III 8, 'Hk) denotes the priors of the nuisance parameters under the conditions which

() and 'Hk are given.

To properly reflect our ignorance of 8, the prior distribution f( 8 l'Hk ) is se-

lected to be an uniform distribution in the search domain of 8. Since the degrees of

freedom in the search domain equal the number of sample points in one experiment,

we choose the noninformative prior according to

f( 8 l'Hd = (N - k)!k! (10)

Note that the prior of 8 is independent of the number of experiments, M. When the

number of samples is large, the prior is negligible.

In order to deal with the marginalizations of the nuisance parameters of signals

and noises separately, the observed data space may be split into the two complemen-

tary subspaces [7]. The subspace, which is spanned by the column of the matrix

D( 8(k)), is referred to as the signal subspace. Another subspace, which is the orthog-

onal space to the signal subspace, is called the noise subspace. According to this

subspace decomposition approach, the observed data vector Y is then decomposed

into two subspace vectors by

y = G(9(k)) [ :: ]
(11)

where Xs denotes the k x 1 signal subspace vector, and Xn denotes the (N - k) x 1

noise subspace vector. G(8(k)) denotes an N x N unitary coordinate transformation

matrix and satisfies the following identities,

P(9(k»)Y = G(9(k)) [ ~ ]
(12)
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and

P~(8(k))Y = G(8(k)) [ :n ]
(13)

where P(8(k») and P.L(8(k») are two complementary projection matrices. The matrix

P(8(k») is given by

P(8(k») = D(8(k»)(DH(8(k»)D(8(k»))-lDH(8(k)) (14)

and it projects onto the signal subspace, while the projection matrix p.L(8 (k») is

obtained from

P.L(8(k») = 1- P(8(k») (15)

and it projects onto the noise subspace.

According to the linear transformation (11), the LF f(y I '11,8, Hk) can be

rewritten as

1
f ( y I '11,8, Hk ) = I /T f -- -- \ J (Xs, Xn I'11,8, Hd (16)

where :J(xs, xn) is the Jacobian of the transformation (11). 1.1denotes absolute value

or modulus. This Jacobian is

1:J(xs,xn)1 = Idet(GH(8(k»)) 1= 1 (17)

Assume that the signal and noise subspace vectors are independent and un cor-

related. Without loss of any information, the nuisance parameters '11are also split into

two nuisance parameter sets, 'lis and Wn, that belong to complementary subspaces.

The parameter set 'lis depends only on the signal subspace vector. In contrast, the set

'11n represents the nuisance parameters of the noise subspace components. Therefore,

(16) can be rewritten as

f(y I'11,8, Hk) = f(xs I'lis, 8, Hk )f(xn IWn,8, Hk) (18)
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where Ws = :Essand Wn = :Enn. The numerator of (9) can be modified as

h f(Y(M) IW,8, Hk )f( \II18, Hk) dw

= 1 f( Xs,(M) I 'lJs,8, Hk )f( Ws 18,Hk) dwsIlls

X hn f( Xn,(M)IWn,8, Hdf( Wn18,Hk) dWn

- f( Xs,(M)18, Hk )f( Xn,(M)18, Hk) (19)

The dominator of (9) is manipulated in the same way.

From the assumptions in section II and (11), it follows that the unknown signal

subspace vector Xs is modeled by a complex Gaussian process with zero mean and an

unknown covariance matrix :Ess. Given the information of :Ess and 8, the distribution

of Xs is

1 M

f( Xs,(M) I:E;},8,Hd = (-;;JkM[det(:E;n]M exp{ - LX~i:E;s1xs,di=l
(20)

where det(.) denotes the determinant. For the white noise model, Xn is an (N - k) x 1

complex Gaussian random vector with zero mean and covariance matrix :Enn = (T~I,

I.e.,

11M

f( Xn,(M) I(Tn,8, Hd = ( 2)(N-k)M exp{ -2 ?= X~iXn,i}7r(Tn (Tn t=1

Assume that the priors of \11sand Wn are independent of 8, we get

(21)

f(wsI8,Hk) = f(:E~:/IHk)

f( Wn 18, Hk) = f( (TnIHk ),

(22)

(23)

Since we have no information about :E,;-/ in (22), we may choose the non-

informative prior distribution for f( :E,;-/) using Jeffreys' invariance theory [12]. In

Jeffreys' invariance theory, the noninformative prior distribution for a set of parame-

ters is taken to be proportional to the square root of the determinant of the Fisher's

information matrix. Hence, the prior distribution of :E';-s1can be shown to be [16]

-1 I [
8:Ess

) ]
1

f(:Ess Hk) ex: det(8:E-1 2ss

ex: [det(:E;s1)rk (24)
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where I:~~i Iis the Jacobian of the information from the elements (J"ijof :Ess to thess

elements (J"ijof :E;}. Like (24), we have to select a noninformative prior distribution

of (J"~to reflect our ignorance of the noise variance. This noninformative prior is given

by [12]

1
f( (J"nl'Hk ) ex-

(J"n
(25)

Thus, the LF of the signal subspace vector in (18) is rewritten as

f( Xs,(M)18, 'Hd

= f (! )kM[det(:E~sl)]Mexp{ -tr(M . :Ess(M) :E~/) } . [det(:E~/)tkd:E~/ (26)
J~-l 7r '55

where tr denotes the trace of the matrix, and

~ 1 ~ H

:Ess,(M) = M L.J Xs,i xs,ii=l
(27)

The estimator :Ess is a sufficient statistic for the Hermitian covariance matrix :Ess.

The integration of (26) can be manipulated by changing variables in a complex

Wishart distribution [17], then

1 k-l
f( Xs,(M) 18, 'Hk) = M-Mk[ det(:Ess,(M))tM (- )kM7rk(k-l)/2II r[M - 1]

7r [=0
(28)

Next, the LF of the noise subspace vector is obtained by

f( Xn,(M) 18, 'Hk)

= 1 (! )(N-k)M (J"-2(N-k)M ex p{ - M tr (:E ) } (i-I d(J"
n 2 nn,(M) n n

<Tn 7r (J"n

- (~)(N-k)M ~r[M(N - k)] . M-M(N-k) . [tr(:Enn,(M)) tM(N-k) (29)

where

~ 1 #-. H

:Enn,(M)= M ~ Xn,i Xn,i~=1
(30)
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Multipling (28) and (29), it yields

f( Y(M)18,1ik) = f( Xs,(M) 18, 1-{k)f( Xn,(M) 18, 1ik)

= [C(M)(8(k))rM (~ )MN (N - k)-M(N-k)7rk(k-l)/2M7r
k-l

x r[M(N - k)] IT r[M -1]
1=0

(31)

where

(
1

)

(N-k)

C(M)(8(k)) = (det(:Ess,(M)))(N - k) tr(:Enn,(M))
(32)

The data term C(M)(8(k)) can be directly obtained from the observed data

samples. As shown in [7], we get

C(M)(8(k))

(
AI .1 A .1

)- det P(8(k))~yy,(M)P(8(k)) + (N - k) tr(P (8(k))~yy,(M))P (8(k)) (33)

where

AIM H
~yy,(M) = M?= Yi Yi~=l

(34)

Furthermore, C(M)(8(k)) can also be computed in terms of the eigenvalues of

the matrices involved. Using the well-known invariance properties of the unitary

transformation, it becomes

(

k

) (

N-k

)

(N-k)

C(M)(8(k)) = ]1 ,\~s)(8(k)) (N ~ k) ~ ,\~n)(8(k))
(35)

where ,\~s)(8(k))'S are k nonzero eigenvalues ofthe rank-k matrix P( 8(k)):Eyy,(M)P( 8(k))

and ,\~n\8(k))'S are (N - k) nonzero eigenvalues of the rank-(N - k) matrix

p.l (8(k)):Eyy,(M)P.l (8 (k)).

The dominator of (9) is derived by the same approach. It results in

[
L 1 LN

f(Y(L) 18,1id = C(L)(8(k))r (L7r)
k-l

x (N - ktL(N-k)7rk(k-l)/2r[L(N - k)] IT r[L - 1]
1=0

(36)
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Thus, substituting (10), (31) and (36) into (8), the BPD is obtained to be

-log f( ~21~u 8, Hk) = M .log C(M)(8(k)) - L .log C(L)(8(k))

r[L(N - k)]
+ (M - L)(N - k)log(N - k) + log

k-l r[L - 1]
+ L log nr ~IT 11 + MNlog M7r - LNlog L7r

1=0
(37)

Note that L has to be greater than the dimension of the signal subspace vector to

satisfy the minimum number of degrees of freedom in a complex Wishart distribution.

Furthermore, we know that L should be selected as small as possible to minimize the

information loss [8]. Therefore, we choose L = N - 1 for the maximum possible

number of k, without contradicting the above constraints. To simplify the computa-

tion of (37), we may assume that C(M)(8(k)) and C(L)(8(k)) are approximately equal.

Combining (10) and (37), and ignoring the terms which are independent of k and 8,

the final BPD criterion is expressed as

q, iJ = argmin{ (M - N + 1) .10gC(M)(8(k))+ T(k)}k,() (38)

where the penalty function is

T(k) - (M - N + 1)(N - k) 10g(N- k) + log r[(N - 1)(N - k)]

~l r[N-I-1] N'L... og nr AIT 11 + log .
1=0

(39)+

Under the same assumptions in section II, the MDL and AIC criterion are given by

[7]

M DL(k) = min {M .log C(M)(8(k)) + !k(k + 1) log M}k 2 (40)

and

AIC(k) = min {M .log C(M)(8(k))+ k(k + 1)}k (41)

Clearly, the BPD criterion has the same data term, but different penalty function.
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The Bayesian estimator of () is obtained by maximizing C(M)(()(k)) because

the penalty term is independent of (). This solution coincides with the ML estimator

derived by Bohme [9], Jaffer [10], and Wax [7]. As expected, the Bayesian estimator

yields the same result as the so-called stochastic ML estimator when the Jeffreys' non-

informative priors are used [15]. This estimator has been shown to be asymptotically

unbiased (consistent) and statistically efficient, i.e., the estimation error covariance

attains the Cramer-Rao bound asymptotically [18, 19].

For the detection part, the BPD criterion yields a different penalty function

from the MDL and AIC criteria. Unlike the AIC criterion, the BPD criterion is

strongly consistent, such that limM-+ooPr(q = q) = 1 (see Appendix). When com-

pared to the MDL's penalty function, the relative penalty term of the BPD approach

is smaller, and is also a function of the number of sensors. This exact penalization

leads to better detection performance, especially in the case that the number of snap-

shots is small and/or the SNR is low. The superiority of the proposed BPD criterion

is demonstrated in the next section.

The computation of the BPD estimator based on (38) is complicated since

a nonlinear and multimodal k-dimensional maximization problem has to be carried

out. In order to efficiently solve this problem, the alternating maximization tech-

nique [20], or a dynamic programming approach [21] can be used. These techniques

transform the k-dimensional problem into a sequence of one-dimensional searches,

and this considerably reduces the computational load. In addition, some numerical

approaches [22] may be applied to further improve the efficiency in computation and

the convergence in the optimal search.

IV. Simulation results

To examine the performance of the BPD criterion, six simulated experiments

were performed, each with 100 Monte Carlo runs. The detection performance was

obtained by counting the number of correctly estimated q in 100 runs. The experi-
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ments compared the detection performance of the BPD, AIC and MDL criteria for

two cases, coherent and noncoherent sources. Each case was examined in term of M,

SNR, and N.

Figures 1 and 2 show the comparisons of the detection performance in term

of the number of snapshots for two equal power coherent and non coherent sources,

respectively. We observe that the BPD criterion outperforms the MDL criterion

in both experiments, especially when M is small and the signals are uncorrelated.

Although the AIC criterion yields the better performance for small M, it became

inconsistent as M increasing. In experiments 3 and 4, we compared the performance of

the BPD, AIC, and MDL criteria for various SNR. In Figures 3 and 4, we observe that

the BPD outperforms the MDL criterion when the SNR is small. Like experiments 1

and 2, the detection probability of the AIC criterion can not approach one even when

the SNR is high. Figures 5 and 6 show the performance of three criteria in term of

N when M = 50 and SNR = -6 dB. The results also demonstrate the superiority of

the BPD approach.

These six experiments show that the gain in the detection performance of the

BPD approach is larger in the cases of small M, SNR, and N. In addition, the gain

is greater when the sources are noncoherent. Generally speaking, the BPD criterion

has a moderate penalty function which is greater than that of the AIC and smaller

than that of MDL. The AIC tends asymptotically to overestimate q, while the MDL

tends to underestimate q when the SNR and the number of snapshots are small.

Since the Bayesian estimator (32) coincides with the unconditional ML estima-

tor, its estimation performance is not examined here. This estimator has been shown

that it outperforms the conditional ML estimation for the cases that the sources are

un correlated or fully correlated.

v. Conclusions

In this paper, we have applied Bayesian inference techniques to the detection
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and estimation of noncoherent or coherent sources. The solution is undertaken by

maximization of the posterior distribution of 1ik and (). To combine separate marginal

distributions of the signal and noise subspace vectors, Bayesian predictive density ap-

proach provides a justified decision criterion without any complicated normalization.

Since the nuisance parameters have been eliminated by marginalization, the uncer-

tainty introduced in the estimation of the parameters is reduced. In other words,

we reduce the number of the unknown parameters, which have to be estimated, and

derive a more exact penalty term. When N, M, and SNR are small, this exact penal-

ization results in the better detection performance without increasing computational

complexity- Furthermore, the BPD is consistent for estimating the number of sources

and the directional parameters.

In the AIC and MDL criteria, the penalty term is derived by asymptotical

approach and becomes the function of number of free parameters involved. The

free parameters in these approaches includes the wanted and nuisance parameters.

The more parameters involved, the larger uncertainty is introduced in the decision

function. In contrast, our approach reduce the number of free parameters in the

cost function. The penalization for nuisance parameters is automatically generated

after marginalization, without using asymptotical approach. This is the key to the

improved performance.

When the number of sensors is large, the performance of the proposed method

can also be improved by two ways. Since the possible number of sources may be much

less than N, in this case, we suggest to use a small L instead of N - 1 in (37). The

smaller L, the less information loss in the BPD criterion. In addition, the prior of ()

can be replaced by using Jeffreys' prior. Although this prior is generated from the

asymptotical assumption, it provides a good performance even when N is not large.
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Appendix A:

In order to proof the consistency of the BPD criterion, we use t4e lemma:

Lemma A.I: Any information criteria given by

1
IC(k) = MlogC(M)(8(k)) + -k(k + I)a(M)2 (A.I)

is strongly consistent if a(M) -7 00 and a(M)fM -70 as M -7 00.

Proof see Zhao, Krishnaiah, and Bai [6], and Wax [7].

Ignoring the terms which are independent of M, the penalty function of the

BPD criterion is expressed as

(k-l)

T'(k) = M(N - k)ln(N - k) -logr[M(N - k)] - L logr[M -1]
1=0

(A.2)

In order to properly apply Lemma A.I, the penalty term has to satisfy the

condition that the penalty is zero for k = O. Since T'(k) i- 0 as k = 0, we might

obtain a relative penalty function such that T"(k) = 0 as k = 0:

T"(k) = T'(k) - T'(O)

- Tl + T2 + T3 + T4 + Ts (A.3)

where

Tl = M(N - k) log(N - k)

T2 = - logr[ M (N - k) ]
k-l

T3 = - Llogr[M -1]
1=0

k
<'-J -k log r[ M - - ]2

(A.4)

(A.5)

(A.6)

for M » k, and

T4 = -MNlogN

Ts = - log r[ M N ]

(A.7)

(A.8)
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For M >> log 1[",we may apply the approximation:

1
logf(x) ~ (x - -)logx - x2

(A.g)

Therefore, (A.5), (A.6), and (A.S) can be rewitten as

1
T2 = -M(N - k) log M(N - k) + -logM(N - k) + M(N - k)2

= -M(N - k)log(N - k) - MNlogM + MklogM + MN - Mk
1 1

+ - log M + -log( N - k)2 2
k 1 k k

T3 = -k((M - - - -)log(M - -) - (M - -))2 2 2 2
1

f"V -KMlogM + -k(k + 1)logM + kM - k2/22

(A.I0)

(A.l1 )

as M » k ( log(M - k) ~ logM ), and

1
Ts = (MN - -) log MN - MN2

1
= MNlogM + MN log N - "21ogMN - MN (A.12)

Summing up (A.4). (A.I0), (A.11), (A.7), and (A.12), we get

1
T"(k) == "2k(k+ 1)logM + (3(N,L, k) (A.13)

where (3(N, L, k) is the term which does not depend on M. Thus,

a(M) == f H ~T' 1 \ logM + (3'(N,L, k) (A.14)

and a(M) ---+00 and a(M)/M ---+0 as M ---+00. Therfore, according to Lemma A.l,

the BPD criterion is shown to be strongly consistent. Q.E.D.
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